北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思
发布时间:2022-03-04 八年级上册数学教案小学 小学数学教案 北师大版 北师大版小学数学教案现在向您介绍幼儿园教案《北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思》
《北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思》这是一篇八年级上册数学教案,本节课是学生在学习了三直角三角形的性质、直角三角形勾股定理逆定理的基础上开展的,更进一步加深学生勾股定理的理解,提高学生对数形结合的应用与理解。
1.3勾股定理的应用
1.能熟练运用勾股定理求最短距离;(难点)
2.能运用勾股定理及其逆定理解决简单的实际问题.(重点)
一、情境导入
一个门框的宽为1.5m,高为2m,如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么?
二、合作探究
探究点一:求几何体表面上两点之间的最短距离
【类型一】长方体上的最短线段
如图①,长方体的高为3cm,底面是正方形,边长为2cm,现有绳子从D出发,沿长方体表面到达B′点,问绳子最短是多少厘米?
解析:可把绳子经过的面展开在同一平面内,有两种情况,分别计算并比较,得到的最短距离即为所求.
解:如图②,在Rt△DD′B′中,由勾股定理得B′D2=32+42=25;
如图③,在Rt△DC′B′中,由勾股定理得B′D2=22+52=29.
因为29>25,所以第一种情况绳子最短,最短为5cm.
方法总结:此类题可通过侧面展开图,将要求解的问题放在直角三角形中,问题便迎刃而解.
【类型二】圆柱上的最短线段
为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图①.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?
解析:将圆筒侧面展开成平面图形,利用平面上两点之间线段最短求解,构造直角三角形,利用勾股定理来解决.
解:如图②,在Rt△ABC中,因为AC=36cm,BC=108÷4=27(cm).由勾股定理,得AB2=AC2+BC2=362+272=2025=452,所以AB=45cm,所以整个油纸的长为45×4=180(cm).
方法总结:解决这类问题的关键就是转化,即把曲面转化为平面,曲线转化成直线,构造直角三角形,利用勾股定理求出未知线段长.
探究点二:利用勾股定理解决实际问题
如图,在一次夏令营活动中,小明从营地A出发,沿北偏东53°方向走了400m到达点B,然后再沿北偏西37°方向走了300m到达目的地C.求A、C两点之间的距离.
解析:把实际问题中的角度转化为图形中的角度,找到直角三角形,利用勾股定理求解.
解:如图,过点B作BE∥AD.∴∠DAB=∠ABE=53°.∵37°+∠CBA+∠ABE=180°,∴∠CBA=90°,∴AC2=BC2+AB2=3002+4002=5002,∴AC=500m,即A、C两点间的距离为500m.
方法总结:此类问题解题的关键是将实际问题转化为数学问题;在数学模型(直角三角形)中,应用勾股定理或勾股定理的逆定理解题.
三、板书设计
通过观察图形,探索图形间的关系,培养学生的空间观念.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.在利用勾股定理解决实际问题的过程中,感受数学学习的魅力.
【反思】
本节课是学生在学习了三直角三角形的性质、直角三角形勾股定理逆定理的基础上开展的,更进一步加深学生勾股定理的理解,提高学生对数形结合的应用与理解。本节课首先安排了对圆柱形中的最短距离的观察猜想,由学生讨论如何实现圆柱中的最短距离,要把立体图形展开成为平面图形,平面图形中,有结论:两点之间,线段最短。在进一步由学生质疑,一定这样的方法得到的是最短距离吗?有没有其他的路径,进而讨论圆柱中的特殊情况,当圆柱是扁平的圆柱时,得到的最短距离还是把圆柱侧面展开构造的长方形的斜边长吗?最后由教师补充总结,当圆柱时细长的圆柱时,最短距离是把圆柱侧面展开构造的长方形的斜边长;当圆柱时扁平的圆柱时,最短距离是圆柱的高加圆柱的底面直径,至于这个圆柱到底是细长的还是扁平的,要具体问题具体分析。
当学生具备这样的理论基础,在圆柱的基础上讨论长方体的最短距离时,就事半功倍了,用类比思想,得到长方体中的最短距离,因为展开方式不同,所以分类讨论,最短距离分三种情况:1.最短距离2=(长+宽)2+高2;
2.最短距离2=(长+高)2+宽2;
3.最短距离2=(宽+高)2+长2,从三种情况中找到最小的就是最短距离;进而总结利用勾股定理求最短距离的步骤:
1.将立体图形展开;展开时注意:只需要展开包含相关点的面,可能会存在多种展开方式
2.确定相关点的位置;
3.连接相关点,构造直角三角形;
4.利用勾股定理求解。
通过总结如何将立体图形中的最短路线转换成平面图形中的最短路线,让学生体会到数学来源于生活又应用的生活,在学习的过程中体会获得成功的喜悦,提高获得提高学生学习数学的兴趣和信心,但课堂上质疑追问要恰到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。
Yjs21.coM更多幼儿园教案延伸读
八年级数学上册14.2勾股定理的应用教学设计华东师大版反思
现在向您介绍幼儿园教案《八年级数学上册14.2勾股定理的应用教学设计华东师大版反思》
《八年级数学上册14.2勾股定理的应用教学设计华东师大版反思》这是一篇八年级上册数学教案,本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。
八年级数学上册14.2勾股定理的应用教学设计华东师大版
14.2勾股定理的应用(2)
教学目标:
1.会用勾股定理解决较综合的问题.
2.树立数形结合的思想.
教学重点
勾股定理的综合应用.
教学难点
勾股定理的综合应用.
教学过程
一、课前预习
1.等腰三角形底边上的高为8,周长为32,则该等腰三角形面积为_______.
解:设底边长为2x,则腰长为16-x,有(16-x)2=82+x2,x=6,
∴S=×2x×8=48.
2.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:
(1)使三角形的三边长分别为3.、(在图甲中画一个即可);
(2)使三角形为钝角三角形且面积为4(在图乙中画一个即可).
二、合作探究
问题探究1:边长为无理数
例1:如图,在3×3的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形:
(1)画出所有从点A出发,另一端点在格点(即小正方形的顶点)上,且长度为的线段;
(2)画出所有的以(1)中所画线段为腰的等腰三角形.
教师分析只需利用勾股定理看哪一个矩形的对角线满足要求.
解:(1)如下图中,AB.AC.AE.AD的长度均为.
(2)如下图中△ABC.△ABE.△ABD.△ACE.△ACD.△AED就是所要画的等腰三角形.
问题探究2:不规则图形面积的求法
例2:如图,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m.求图中阴影部分的面积.
解:在Rt△ADC中,
AC=AD+CD=6+8=100(勾股定理),
∴AC=10m.
∵AC+BC=10+24=676=AB,
∴△ACB为直角三角形(如果三角形的三边长A.B.c有关系:a+b=c,那么这个三角形是直角三角形),
∴S阴影部分=S△ACB-S△ACD
=×10×24-×6×8=96(m).
三、课堂巩固
(1)四年一度的国际数学家大会于2002年8月20日在北京召开.大会会标如图甲,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积;
(2)现有一张长为6.5cm,宽为2cm的纸片,如图乙,请你将它分割成6块,再拼合成一个正方形.
解:(1)设较长直角边为b,较短直角边为a,则小正方形的边长为:a-b.
而斜边即为大正方形边长,且其平方为13,即a2+b2=13①,
由a+b=5,两边平方,得a2+b2+2ab=25.
将①代入,得2ab=12.
所以(b-a)2=b2+a2-2ab=13-12=1.
即小正方形面积为1;
(2)由(2)题中矩形面积为6.5×2=13与(1)题正方形面积相等,仿照甲图可得,算出其中a=2,b=3,如图.
四、课堂小结
1.我们学习了什么?
2.还有什么疑惑吗?
五、课后作业
习题
14.2勾股定理的应用(1)
教学目标
1.知识目标
(1)了解勾股定理的作用是“在直角三角形中已知两边求第三边”;而勾股逆定理的作用是由“三角形边的关系得出三角形是直角三角形”.
(2)掌握勾股定理及其逆定理,运用勾股定理进行简单的长度计算.
2.过程性目标
(1)让学生亲自经历卷折圆柱.
(2)让学生在亲自经历卷折圆柱中认识到圆柱的侧面展开图是一个长方形(矩形).
(3)让学生通过观察、实验、归纳等手段,培养其将“实际问题转化为应用勾股定理解直角三角形的数学问题”的能力.
教学重点、难点
教学重点:勾股定理的应用.
教学难点:将实际问题转化为“应用勾股定理及其逆定理解直角三角形的数学问题”.
原因分析:
1.例1中学生因为其空间想象能力有限,很难想到蚂蚁爬行的路径是什么,为此通过制作圆柱模型解决难题.
2.例2中学生难找到要计算的具体线段.通过多媒体演示来启发学生的思维.
教学突破点:突出重点的教学策略:
通过回忆复习、例题、小结等,突出重点“勾股定理及其逆定理的应用”,
教学过程
教学过程设计意图
复
习
部
分
复习练习,引出课题
例1:在Rt△ABC中,两条直角边分别为3,4,求斜边c的值?
【答案】c=5.
例2:在Rt△ABC中,一直角边分别为5,斜边为13,求另一直角边的长是多少?
【答案】另一直角边的长是12.通过简单计算题的练习,帮助学生回顾勾股定理,加深定理的记忆理解,为新课作好准备
小结:在上面两个小题中,我们应用了勾股定理:
在Rt△ABC中,若∠C=90°,则c2=a2+b2.加深定理的记忆理解,突出定理的作用.
新
课
讲
解
勾股定理能解决直角三角形的许多问题,因此在现实生活和数学中有着广泛的应用.
例3:如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.
【解析】蚂蚁实际上是在圆柱的半个侧面内爬行.大家用一张白纸卷折圆柱成圆柱形状,标出A.B.C.D各点,然后打开,蚂蚁在圆柱上爬行的距离,与在平面纸上的距离一样.AC之间的最短距离是什么?根据是什么?(学生回答)
根据“两点之间,线段最短”,所求的最短路程就是侧面展开图矩形ABCD对角线AC之长.我们可以利用勾股定理计算出AC的长.
解:如图,在Rt△ABC中,BC=底面周长的一半=10cm,
∴AC==
=≈10.77(cm)(勾股定理).
答:最短路程约为10.77cm.
例4:一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?
【解析】由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.
解:在Rt△OCD中,由勾股定理得
CD===0.6米,
CH=0.6+2.3=2.9(米)>2.5(米).
因此高度上有0.4米的余量,所以卡车能通过厂门.
通过动手作模型,培养学生的动手、动脑能力,解决“学生空间想像能力有限,想不到蚂蚁爬行的路径”的难题,从而突破难点.
由学生回答“AC之间的最短距离及根据”,有利于帮助学生找准新旧知识的连接点,唤起与形成新知识相关的旧知识,从而使学生的原认知结构对新知识的学习具有某种“召唤力”
再次提问,突出勾股定理的作用,加深记忆.
利用多媒体设备演示卡车通过厂门正中间时的过程(在几何画板上画出厂门的形状,用移动的矩形表示卡车,矩形的高低可调),让学生通过观察,找到需要计算的线段CH、CD及CD所在的直角三角形OCD,将实际问题转化为应用勾股定理解直角三角形的数学问题.
小
结本节课我们学习了应用勾股定理来解决实际问题.在实际当中,长度计算是一个基本问题,而长度计算中应用最多、最基本的就是解直角三角形,利用勾股定理已知两边求第三边,我们要掌握好这一有力工具.
课堂练习练习
1.如图,从电杆离地面5米处向地面拉一条7米长的钢缆,求地面钢缆固定点A到电杆底部B的距离.
【答案】
2.现准备将一块形为直角三角形的绿地扩大,使其仍为直角三角形,两直角边同时扩大到原来的两倍,问斜边扩大到原来的多少倍?
【答案】2
(四)作业:习题
(五)策略分析
为防止以上错误的出现,除了讲清楚定理,还应该强调:
1.定理中基本公式中的项都是平方项;
2.计算直角边时需要将基本公式移项变形,按平方差计算.
3.最后求边长时,需要进行开平方运算.
【反思】
本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。
针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:
一、复习引入
对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。
二、例题讲解,巩固练习,总结数学思想方法
活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书。整个活动以学生为主体,教师及时的引导和强调。
活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。
活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。
二、巩固练习,熟练新知
通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。
在教学设计的实施中,也存在着一些问题:
1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。
2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。
3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。
八年级数学上册《勾股定理的应用》教学设计教案反思
现在向您介绍幼儿园教案《八年级数学上册《勾股定理的应用》教学设计教案反思》
《八年级数学上册《勾股定理的应用》教学设计教案反思》这是一篇八年级上册数学教案,使用多媒体进行教学,使知识显得形象直观,充分发挥现代技术作用。
八年级数学上册《勾股定理的应用》教学设计
【学习目标】
能运用勾股定理及直角三角形的判别条件解决简单的实际问题.
【学习重点】
勾股定理及直角三角形的判别条件的运用.
【学习重点】
直角三角形模型的建立.
【学习过程】
一.课前复习
勾股定理及勾股定理逆定理的区别
二.新课学习
探究点一:蚂蚁沿圆柱侧面爬行的最短路径问题
1.3如图,有一个圆柱,它的高等于12cm,底面圆的周长是18cm.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?
思考:
1.利用学具,尝试从A点到B点沿圆柱侧面画出几条线路,你认为
这样的线路有几条?可分为几类?
2.将右图的圆柱侧面剪开展开成一个长方形,B点在什么位置?从
A点到B点的最短路线是什么?你是如何画的?
1.33.蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?你是如何解答这个问题的?画出图形,写出解答过程。
4.你是如何将这个实际问题转化为数学问题的?
小结:
你是如何解决圆柱体侧面上两点之间的最短距离问题的?
探究点二:利用勾股定理逆定理如何判断两线垂直?
1.31.31.3李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直底边AB,
但他随身只带了卷尺。(参看P13页雕塑图1-13)
(1)你能替他想办法完成任务吗?
1.31.3(2)李叔叔量得AD的长是30cm,AB的长是40cm,
BD长是50cm.AD边垂直于AB边吗?你是如何解决这个问题的?
(3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
小结:通过本道例题的探索,判断两线垂直,你学会了什么方法?
探究点三:利用勾股定理的方程思想在实际问题中的应用
例图1-14是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.
1.3
思考:
1.求滑道AC的长的问题可以转化为什么数学问题?
2.你是如何解决这个问题的?写出解答过程。
小结:
方程思想是勾股定理中的重要思想,勾股定理反应的直角三角形三边的关系正是构建方程的基础.
四.课堂小结:本节课你学到了什么?
三.新知应用
1.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.
1.3
2.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()
1.3
五.作业布置:习题1.41,3,4题
【反思】
一、教师我的体会:
勾股定理的应用教学反思范文
①、我根据学生实际情况认真备课这节课,书本总共两个例题,且两个例题都很难,如果一节课就讲这两题难题,那一方面学生的学习效率会比较低,另一方面会使学生畏难情绪增加。所以,我简化教材,使教材易于操作,让学生易于学习,有利于学生学习新知识、接受新知识,降低学习难度。
把教材读薄,
②、除了备教材外,还备学生。从教案及授课过程也可以看出,充分考虑到了学生的年龄特点:对新事物有好奇心,但对新知识的钻研热情又不够高,这样,造成教学难度较大,为了改变这一状况,在处理教材时,把某些数学语言转换成通俗文字来表达,把难度大的运用能力降低为难度稍细的理解能力,让学生乐于面对奥妙而又有一定深度的数学,乐于学习数学。
③、新课选用的例子、练习,都是经过精心挑选的,运用性强,贴近生活,与生活实际紧密联系,既达到学习、巩固新知识的目的,同时,又充分展现出数学教学的重大特征:数学源于生活实际,又服务于生活实际。勾股定理源于生活,但同时它又能极大的为生活服务。
④、使用多媒体进行教学,使知识显得形象直观,充分发挥现代技术作用。
二、学生体会:
课前,我们也去查阅了一些资料,关于勾股定理的证明以及有关的一些应用,通过这节课,真真发现勾股定理真真来源于生活,我们的几何图形和几何计算对于勾股定理来说非常广泛,而且以后更要用好它。对于勾股定理都应用时,我觉得关键是找到相关的三角形,并且分清直角边或斜边,灵活机智地进行计算和一些推理。另外与同学间在数学课上有自主学习的机会,有相互之间的讨论、争辩等协作的机会,在合作学习的过程中共同提高我觉得都是难得的机会。锻炼了能力,提高了思维品质,并且勾股定理的应用中我觉得图形很美,古代的数学家已经有了很好的研究并作出了很大的'贡献,现代的艺术家们也在各方面用到很多,同时在课堂中渐渐地培养了我们的数学兴趣和一定的思维能力。
不过课堂上老师在最后一题的画图中能放一放,让我们有时间去思考怎么画,那会更好些,自然思维也得到了发展。课上老师鼓励我们尝试不完善的甚至错误的意见,大胆发表自己的见解,体现了我们是学习的主人。数学课堂里充满了智慧。
北师大版数学九年级上册6.3反比例函数的应用优秀教案反思
现在向您介绍幼儿园教案《北师大版数学九年级上册6.3反比例函数的应用优秀教案反思》
《北师大版数学九年级上册6.3反比例函数的应用优秀教案反思》这是一篇九年级上册数学教案,教师应以学段教学目标为背景,以本章教学目标为标准来考察学生的学习状况。在教与学的过程中,了解学生数学活动中情感与智力的参与程度和目标达到的水平,及时进行归因分析,不断积极引导和激励。同时利用诊断结果不断改进自己的教学。
6.3反比例函数的应用
1.会根据实际问题中变量之间的关系,建立反比例函数模型;(重点)
2.能利用反比例函数解决实际问题.(难点)
一、情景导入
我们都知道,气球内可以充满一定质量的气体.
如果在温度不变的情况下,气球内气体的气压p(kPa)与气体体积V(m3)之间有怎样的关系?你想知道气球在什么条件下会爆炸吗?
二、合作探究
探究点一:实际问题与反比例函数
做拉面的过程中,渗透着反比例函数的知识.一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示:
(1)写出y与S之间的函数表达式;
(2)当面条的横截面积为1.6mm2时,面条的总长度是多少米?
(3)要使面条的横截面积不多于1.28mm2,面条的总长度至少是多少米?
解析:由题意可设y与S之间的函数表达式为y=kS,而P(32,4)为函数图象上一点,所以把对应的S,y的值代入函数表达式即可求出比例系数,从而得出反比例函数的表达式,最后根据反比例函数的图象和性质解题.
解:(1)由题意可设y与S之间的函数关系式为y=kS.∵点P(4,32)在图象上,
∴32=k4,∴k=128.
∴y与S之间的函数表达式为y=128S(S>0);
(2)把S=1.6代入y=128S中,得y=1281.6=80.
∴当面条的横截面积为1.6mm2时,面条的总长度是80m;
(3)把S=1.28代入y=128S,得y=100.
由图象可知,要使面条的横截面积不多于1.28mm2,面条的总长度至少应为100m.
方法总结:解决实际问题的关键是认真阅读,理解题意,明确基本数量关系(即题中的变量与常量之间的关系),抽象出实际问题中的反比例函数模型,由此建立反比例函数,再利用反比例函数的图象与性质解决问题.
探究点二:反比例函数与其他学科知识的综合
某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干木块,构筑成一条临时近道.木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.
(1)请直接写出这一函数表达式和自变量的取值范围;
(2)当木板面积为0.2m2时,压强是多少?
(3)如果要求压强不超过6000Pa,木板的面积至少要多大?
解析:由于木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,而图象经过点A,于是可以利用待定系数法求得反比例函数的关系式,进而可以进一步求解.
解:(1)设木板对地面的压强p(Pa)与木板面积S(m2)的反比例函数关系式为p=kS(S>0).
因为反比例函数的图象经过点A(1.5,400),所以有k=600.
所以反比例函数的关系式为p=600S(S>0);
(2)当S=0.2时,p=6000.2=3000,即压强是3000Pa;
(3)由题意知600S≤6000,所以S≥0.1,即木板面积至少要有0.1m2.
方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p=,当压力F一定时,p与S成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.
三、板书设计
反比例函数的应用实际问题与反比例函数反比例函数与其他学科知识的综合
经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.
【反思】
“反比例函数的图像与性质”是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应该有意识地加强反比例函数与正比例函数之间的对比。对比可以从以下几个方面进行:
(1)两种函数的关系式有何不同?两种函数的图像的特征有何区别?
(2)在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?
(3)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?
从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。
此外,在学习反比例函数图像的性质(k大于0双曲线的两个分支在一、三象限,k小于0双曲线的两个分支在二、四象限)时,学生由画法观察图象可知;而增减性由解析式y等于k比x(k不等于0),学生也容易理解,但从图象观察增减性较难,借助计算机的动态演示就容易多了。运用多媒体比较两函数图像,使学生更直观、更清楚地看清两函数的区别。从而使学生加深对两函数性质的理解。
通过本案例的教学,使我深刻地体会到了信息技术在数学课堂教学中的灵活性、直观性。虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高。
在评价学生的学习时应关注以下几个过程
1、关注学生学习过程,进行形成性评价
教师应以学段教学目标为背景,以本章教学目标为标准来考察学生的学习状况。在教与学的过程中,了解学生数学活动中情感与智力的参与程度和目标达到的水平,及时进行归因分析,不断积极引导和激励。同时利用诊断结果不断改进自己的教学。
2、知识技能的评价,注重学生对函数概念及反比例函数的理解水平。
本部分内容中,对知识技能的评价包括:能否理解反比例函数的概念,了解函数及其图象的主要性质;能否根据所给信息确定反比例函数表达式,画出反比例函数的图象,并利用它们解决简单的实际问题等。对这些知识技能的评价,应当更多的关注其在实际问题情境中的意义理解。如对于反比例函数的概念及其性质,关键是体会它们在不同情境中的应用,只要学生能在具体情境应用它们解决问题即可,而不要过于关注其具体运用的熟练程度,如可以要求学生举例说明反比例函数在显示生活中的应用等。
3、发展性评价,关注数学活动引起人的变化
观察反比例函数图象获取函数相关性质的信息有较大空间,考察学生能否对信息作出灵敏反应,应用时,能否善于分析和决策,灵活支配运用知识有效的解决问题。关注并追踪这些活动所引起的学生的持久变化。
不足与改进:在整个课堂教学过程中,教师围绕主题、围绕学生提问的多,给学生提问的时间和机会很少.我的改进设想是:留给时间让学生提出问题,师生共同讨论、交流,让学生的学习更富有主动性;在活动一画出反比例函数的图象后,没有让学生趁热打铁“看图说话”,说出具体的图象的特征,为活动二猜想作很好的铺垫.我的改进设想是:在活动一画出反比例函数的图象后,追加这样一个问题:“请同学们仔细观察图象并进行讨论,这个反比例函数的图象区别于一次函数的图象有那些不同的特征呢?”留给时间让学生讨论、交流,这样改进之后,必将能更大的激发学生的探索热情,更能体现学生的创新能力,同时也为进一步学习反比例函数的图象的特征埋下伏笔,能增强学生学习的信心.
北师大版九年级数学下册3.7切线长定理1教学设计反思
现在向您介绍幼儿园教案《北师大版九年级数学下册3.7切线长定理1教学设计反思》
《北师大版九年级数学下册3.7切线长定理1教学设计反思》这是一篇九年级下册数学教案,在教学过程中,通过安排实践操作活动,使学生提高了探究的兴趣.首先教师突出操作要求,学生操作并思考回答问题,教师在学生回答问题的基础上进一步引导学生从中发现问题,让学生体会从具体情景和实践操作中发现问题,解决问题.通过设计问题情境,使学生提高解决问题的意识,通过自己画图尝试从中得到感性认识,进而不断地比较,让学生的思维能够经历一个从模糊到清晰,从具体到抽象,从直觉到逻辑的过程,再由直观、粗糙向严格、精确,使学生体会数学发展的过程.
*3.7切线长定理
1.理解切线长的定义;(重点)
2.掌握切线长定理并能运用切线长定理解决问题.(难点)
一、情境导入
如图①,PA为⊙O的一条切线,点A为切点.如图②所示,沿着直线PO将纸对折,由于直线PO经过圆心O,所以PO是圆的一条对称轴,两半圆重合.设与点A重合的点为点B,这里,OB是⊙O的一条半径,PB是⊙O的一条切线.图中PA与PB、∠APO与∠BPO有什么关系?
二、合作探究
探究点:切线长定理
【类型一】利用切线长定理求线段的长
如图,从⊙O外一点P引圆的两条切线PA、PB,切点分别是点A和点B,如果∠APB=60°,线段PA=10,那么弦AB的长是()
A.10
B.12
C.53
D.103
解析:∵PA、PB都是⊙O的切线,∴PA=PB.∵∠APB=60°,∴△PAB是等边三角形,∴AB=PA=10.故选A.
方法总结:切线长定理是在圆中判断线段相等的主要依据,经常用到.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
【类型二】利用切线长定理求角的度数
如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠ACB=70°,那么∠OPA的度数是________度.
解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB=360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.易证△POA≌△POB,∴∠OPA=12∠APB=20°.故答案为20.
方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.
变式训练:见《学练优》本课时练习“课堂达标训练”第3题
【类型三】利用切线长定理求三角形的周长
如图,PA、PB、DE是⊙O的切线,切点分别为A、B、F,已知PO=13cm,⊙O的半径为5cm,求△PDE的周长.
解析:连接OA,根据切线的性质定理,得OA⊥PA.根据勾股定理,得PA=12,再根据切线长定理即可求得△PDE的周长.
解:连接OA,则OA⊥PA.在Rt△APO中,PO=13cm,OA=5cm,根据勾股定理,得AP=12cm.∵PA、PB、DE是⊙O的切线,∴PA=PB,DA=DF,EF=EB,∴△PDE的周长PD+DE+PE=PD+DF+FE+PE=PD+DA+EB+PE=PA+PB=2PA=24cm.
方法总结:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.
变式训练:见《学练优》本课时练习“课后巩固提升”第4题
【类型四】利用切线长定理解决圆外切四边形的问题
如图,四边形ABCD的边与圆O分别相切于点E、F、G、H,判断AB、BC、CD、DA之间有怎样的数量关系,并说明理由.
解析:直接利用切线长定理解答即可.
解:AD+BC=CD+AB,理由如下:∵四边形ABCD的边与圆O分别相切于点E、F、G、H,∴DH=DG,CG=CF,BE=BF,AE=AH,∴AH+DH+CF+BF=DG+GC+AE+BE,即AD+BC=CD+AB.
方法总结:由切线长定理可以得到一些相等的线段,一定要明确这些相等线段.记住“圆外切四边形的对边之和相等”,对我们以后解决问题有很大帮助.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
【类型五】切线长定理与三角形内切圆的综合
如图,在△ABC中,AB=AC,⊙O是△ABC的内切圆,它与AB、BC、CA分别相切于点D、E、F.
(1)求证:BE=CE;
(2)若∠A=90°,AB=AC=2,求⊙O的半径.
解析:(1)利用切线长定理得出AD=AF,BD=BE,CE=CF,进而得出BD=CF,即可得出答案;
(2)首先连接OD、OE、OF,进而利用切线的性质得出∠ODA=∠OFA=∠A=90°,进而得出四边形ODAF是正方形,再利用勾股定理求出⊙O的半径.
(1)证明:∵⊙O是△ABC的内切圆,∴AD=AF,BD=BE,CE=CF.∵AB=AC,∴AB-AD=AC-AF,即BD=CF,∴BE=CE;
(2)解:连接OD、OE、OF,∵⊙O是△ABC的内切圆,切点为D、E、F,∴∠ODA=∠OFA=∠A=90°.又∵OD=OF,∴四边形ODAF是正方形.设OD=AD=AF=r,则BE=BD=CF=CE=2-r.在△ABC中,∠A=90°,∴BC=AB2+AC2=22.又∵BC=BE+CE,∴(2-r)+(2-r)=22,得r=2-2,∴⊙O的半径是2-2.
方法总结:本题综合考查了正方形的判定以及切线长定理和勾股定理等知识,解决问题的关键是得出四边形ODAF是正方形.
【类型六】利用切线长定理解决存在性问题
如图①,已知正方形ABCD的边长为23,点M是AD的中点,P是线段MD上的一动点(P不与M,D重合),以AB为直径作⊙O,过点P作⊙O的切线交BC于点F,切点为E.
(1)除正方形ABCD的四边和⊙O中的半径外,图中还有哪些相等的线段(不能添加字母和辅助线)?
(2)求四边形CDPF的周长;
(3)延长CD,FP相交于点G,如图②所示.是否存在点P,使BF•FG=CF•OF?如果存在,试求此时AP的长;如果不存在,请说明理由.
解析:(1)根据切线长定理得到FB=FE,PE=PA;(2)根据切线长定理,发现该四边形的周长等于正方形的三边之和;(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.
解:(1)FB=FE,PE=PA;
(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;
(3)假设存在点P,使BF•FG=CF•OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF•tan∠GFC=CF•tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG•tan∠PGD=DG•tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.
方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
三、板书设计
切线长定理
1.切线长的概念
2.切线长定理
3.切线长定理的应用
在教学过程中,通过安排实践操作活动,使学生提高了探究的兴趣.首先教师突出操作要求,学生操作并思考回答问题,教师在学生回答问题的基础上进一步引导学生从中发现问题,让学生体会从具体情景和实践操作中发现问题,解决问题.通过设计问题情境,使学生提高解决问题的意识,通过自己画图尝试从中得到感性认识,进而不断地比较,让学生的思维能够经历一个从模糊到清晰,从具体到抽象,从直觉到逻辑的过程,再由直观、粗糙向严格、精确,使学生体会数学发展的过程.