初二数学一次函数知识点总结(精选20篇)
发布时间:2025-12-12 初二数学一次函数知识点总结初二数学一次函数知识点总结 〖1〗
教学重点:
1、 一次函数、正比例函数的概念及两者之间的关系。
2、 会根据已知信息写出一次函数的表达式。
教学难点: 一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、
1、 简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果 ,那么我们称Y是X的函数,其中X是自变量,Y是因变量)
2、 演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?
3、 汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?
1、 做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。
2、 一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100-0.18x在形式上有什么相同之处?
让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。
问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。
问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。
并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。
例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。
例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800
1、找出下面的一次函数,并指出其中K、b的值。若不是一次函数,请说明理由。
A、y= +x B、y=-0.8x C、y=0.3+2x2 D、y=6-
2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。
学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人200元。不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有人员费用均打9折。设学生人数为x人,两家旅行社的收费分别为y甲、y乙,解答下列问题:(1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲=200x-500,y乙=180x)(2)如果学生为20人,分别计算两家旅行社收费。到哪家合算?(y甲=200×20-500=3500(元);y乙=180×20=3600(元);y甲< y乙,所以到甲旅行社合算。)(3)在什么情况下,选择乙旅行社?(依题意得, y甲- y乙>0,即(200x-500) -180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。)五、
让学生归纳本节课学习内容:
1、一次函数、正比例函数概念以及它们之间的关系。
2、会根据已知信息写出一次函数的关系式。
六、作业读一读:中国古代漏刻必做题:161页习题6.2第1、2、3题选做题:161页试一试
初二数学一次函数知识点总结 〖2〗
一般地,形如y=kx+b(k≠0,k,b是常数),那么y叫做x的一次函数。数学网整理了高考数学一轮复习知识点总结,请考生参考。
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的.x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>三象限,y随x的增大而增大;
当k<四象限,y随x的增大而减小。
当b>二象限;
当b=0时,直线通过原点
当b<四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>三象限;当k<四象限。
高考数学一轮复习知识点总结:一次函数定义与性质的全部内容就是这些,数学网希望考生可以考上理想的大学。
初二数学一次函数知识点总结 〖3〗
理解一次函数和其它知识的联系
一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。
掌握一次函数的解析式的特征
一次函数解析式的结构特征:kx+b是关于x的一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k = 0时,y = b(b是常数),由于没有一次项,这样的函数不是一次函数;而当b = 0,k≠0,y = kx既是正比例函数,也是一次函数。
应用一次函数解决实际问题
1.分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;
2.找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;
3.在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度( )的正比例函数;
4.求一次函数与正比例函数的关系式,一般采取待定系数法。
数形结合
方程,不等式,不等式组,方程组我们都可以用一次函数的观点来理解。一元一次不等式实际上就看两条直线上下方的关系,求出端点后可以很容易把握解集,至于一元一次方程可以把左右两边看为两条直线来认识,直线交点的横坐标就是方程的解,至于二元一次方程组就是对应2条直线,方程组的解就是直线的交点,结合图形可以认识两直线的位置关系也可以把握交点个数。
如果一个交点时候两条直线的k不同,如果无穷个交点就是k,b都一样,如果平行无交点就是k相同,b不一样。至于函数平移的问题可以化归为对应点平移。k反正不变然后用待定系数法得到平移后的方程。这就是化一般为特殊的解题方法。
初二数学一次函数知识点总结 〖4〗
一、课程标准要求:
①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k0)探索并理解其性质(h0或b0时,图象的变化情况)。
③理解正比例函数。
④能根据一次函数的图象求二元一次方程组的近似解。
⑤能用一次函数解决实际问题。
二、识方法回顾:
1.已知直线y=2x+m不经过第二象限,那么实数m的取值范围是 _.
2.一次函数y=kx+b 的图象经过P(1,0)和Q(0,1)两点,则k= ,b= .
3.正比例函数的图象与直线y= - 3(2)x+4平行,则该正比例函数的解析式为 ____ .
4.函数y= - 2(3)x的图象是一条过原点(0,0)及点(2, )的直线,这条直线经过第 _____象限,y随的增大而 .
5.已知一次函数y= - 2(1)x+2当x= 时,y=0;当x 时y 当x 时y0.
6.把直线y= - 2(3)x -2向 平移 个单位,得到直线y= - 2(3)(x+4)
7.一次函数y=kx+b过点(-2,5),且它的图象与y轴的交点和直线y=-2(1)x+3与y轴的交点关于x轴对称,那么一次函数的.解析式是 .
8. 直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则其解析式为 .
三、典型例题讲解:
例1 已知一次函数y=-2x-6。
(1)当x=-4时,则y= ,当y=-2时,则x=
(2)画出函数图象;
(3)不等式-2x-60解集是_____,不等式-2x-60解集是_____;
(4)函数图像与坐标轴围成的三角形的面积为
(5)若直线y=3x+4和直线y=-2x-6交于点A,则点A的坐标______;
(6)如果y 的取值范围-42,则x的取值范围__________;
(7)如果x的取值范围-33,则y的最大值是________,最小值是_______.
例2 在边长为的正方形ABCD的边BC上,有一点P从B点运动到C点,设PB=x,四边形APCD的面积为y,写出y与自变量x的函数关系式,并且在直角坐标系中画出它的图象.
例3 已知一次函数y=x+m和y=-x+n的图象交于点A(-2,0)且与y轴的交点分别为B、C两点,求△ABC的面积.
例4 某单位要印刷产品说明书,甲印刷厂提出:每份说明书收1元印刷费,另收1500元制版费;乙印刷厂提出:每份说明书收2.5元印刷费,不收制版费。
(1)分别写出两个印刷厂的收费y甲、y乙(元)与印刷数量x(份)之间的函数关系式;
(2)在同一坐标系中作出它们的图像;
(3)根据图像回答问题:
①印刷800份说明书时,选择哪家印刷厂比较合算?
②该单位准备拿出3000元用于印刷说明书,找哪家印刷厂印制的说明书多一些?
四、探究实践:
【问题1】已知:一次函数的图象经过点(2,1)和点(-1,-3).
(1)求此一次函数的解析式;
(2)求此一次函数与x轴、y轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积;
(3)若一条直线与此一次函数图象相交于(-2,a)点,且与y轴交点的纵坐标是5,求这条直线的解析式;
(4)求这两条直线与x轴所围成的三角形面积.
【问题2】有一卖报人,从报社批进某种证券报是每份1.5元,卖出的价格是每份2元,卖不掉的报纸以每份1元的价格退回报社,在30天的时间里有20天每天可卖出150份,其余10天只能卖出100份,但这30天每天从报社批进的份数必须相同.设卖报人每天从报社批出x份报纸,月利润为y元.
(1)写出y与x的函数关系式;
(2)画出此函数的图象;
(3)此卖报人应该每天从报社批进多少份报纸时才能使月利润最高?最高利润是多少?
五、巩固练习:
1.直线y=kx+b经过一、二、四象限,则直线y=-bx+k不经过第____象限.
2.已知等腰三角形周长为20,写出底边长y关于腰长x的函数解析式(x为自变量),并写出自变量取值范围,画出函数图象.
3.已知A(8,0)及在第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)求S=12时P点坐标;(4)画出函数S的图象.
4.某果品公司欲请汽车运输公司或火车货运站将60吨水果从A地运到B地。已知汽车和火车从A地到B地的运输路程均为s千米。这两家运输单位在运输过程中,除都要收取运输途中每吨每小时5元的冷藏费外,要收取的其它费用及有关运输资料由下表给出:
运输工具
行驶速度(千米/小时)
运费单价(元/吨千米)
装卸总费用(元)
汽车
50
2
3000
火车
80
1.7
4620
说明:1元/吨千米表示每吨每千米1元
(1) 请分别写出这两家运输单位运送这批水果所要收取的总费用y1(元)和y2(元)(用含s的式子表示);
(2) 为减少费用,你认为果品公司应选择哪家运输单位运送这批水果更为合算?
六、小结 本节我们主要是学习了哪些内容?
七、教学反思
初二数学一次函数知识点总结 〖5〗
九年级二次函数知识点总结
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x²的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P [ -b/2a ,(4ac-b^2;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2;+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2;+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
初二数学一次函数知识点总结 〖6〗
平行四边形的判定:
①两组对角分别相等的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③对角线互相平分的四边形是平行四边形;
④一组对边平行且相等的四边形是平行四边形。
上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。
初中数学直角三角形定理公式
下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。
直角三角形的性质:
①直角三角形的两个锐角互为余角;
②直角三角形斜边上的中线等于斜边的一半;
③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);
④直角三角形中30度
角所对的直角边等于斜边的一半;
直角三角形的判定:
①有两个角互余的三角形是直角三角形;
②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2
,那么这个三角形是直角三角形(勾股定理的逆定理)。
以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。
初中数学等腰三角形的性质定理公式
下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。
等腰三角形的性质:
①等腰三角形的两个底角相等;
②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)
上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。
初中数学三角形定理公式
对于三角形定理公式的学习,我们做下面的内容讲解学习哦。
三角形
三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;
三角形的内角和定理:三角形的三个内角的和等于180度;
三角形的外角和定理:三角形的'一个外角等于和它不相邻的两个的和;
三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;
三角形的三条角平分线交于一点(内心);
三角形的三边的垂直平分线交于一点(外心);
三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;
以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。
初二数学一次函数知识点总结 〖7〗
一、选择题
1、下列函数(1)y= x (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( )
A.4个 B.3个 C.2个 D.1个
B(x2,y2)是一次函数y=kx+2(k>0)图像上的不同的两点,若 则( )
A.t<0 B.t>0 C.t>1 D. t≤1
B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有( )
A. 5个 B.6个 C.7个 D.8个
4、把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()
A.1
5.一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于( )
A. B.
C. D.以上答案都不对
6、若函数y=kx+b的图象如图所示,那么当y>1时,x的取值范围是:( )
A、x>x>x 7、当直线y=x+2上的点在直线y=3x-2上相应点的上方时,则( ) A. x<0 B.x<2 C.x>0 D.x>2 8、在平面直角坐标系中,线段AB的端点A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是( ) A.5 B.-5 C.-2 D.3 二、填空题(每题2分,共20分) 三象限的正比例函数的解析式_______. “<”或“=”) 3.若点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则 的值为_______. 4.若函数y=-x+m2与y=4x-1的图像交于x轴,则m=_______. 三、、解答题 1、已知函数y=(2m-10)x+m -3 (1)若函数图象经过原点,求m的值 (二、四象限,求m的.整数值。 2、画出函数y=2x+6的图象,利用图象:(1)求方程2x+6=0的解;(2)求不等式2x+6>0的解; (3)若1 y 3,求x的取值范围。 3、(本题6分)已知y是x的一次函数,当x=2时,y=-3;当x=-2时,y=1. (1)试求y与x之间的函数关系式并画出图像; (y轴的交点坐标; (3)当x取何值时,y=5? 4、(本题6分)已知一次函数y=kx+3的图像经过点A(1,4). (1)求这个一次函数的解析式; (点C(点D(2,1)是否在这个一次函数的图像上. 5、(本题9分)已知点A(6,0)及在第一象限的动点P(x,y),且2x+y=8,设△OAP的面积为S. (1)试用x表示y,并写出x的取值范围; (2)求S关于x的函数解析式; 数学一次函数教案 课题 一次函数的应用 教学内容: 知识与技能:巩固所学的一次函数的定义、图象和性质。能够用一次函数的知识解决实际问题。 过程与方法:掌握用待定系数法求函数解析式的一般方法。 情感态度与价值观:继续渗透数形结合的数学思想。 教学重点和难点: 重点:用待定系数法求一次函数的解析式是本节课的重点。 难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。 方法:探索式 教学过程 一、复习提问 1.什么是一次函数?确定一个一次函数需要几个因素?是哪几个? y=kx+b(k≠0)叫做关于x的一次函数,其中k和b为常数。这样在一次函数中,只要确定了k和b的值,那么这个一次函数也就随之确定了。可以说k和b是确定一次函数的两个因素。 提这个问题是为使用待定系数法确定k和b的值做准备。 2.已知一次函数y=2x+1,x取何值时,函数值y=3? 令y=3,代入解析式,得3=2x+1,解得x=1. 3.从“形”的角度说“直线y=3x+4经过点(-1,1)”,把它改为从“数”的角度来叙述。 提这个问题的意义在于使同学们搞清“点在图象上”与“坐标满足解析式”是从“形”与“数”两个不同角度叙述的同一内容,是“数”与“形”的相互转化,是数形结合思想的体现。 二、例题讲解 例1已知ab两地相距90千米。某人骑自行车由a地去b地,他平均时速为15千米。 (1)求骑车人与终点b之间的距离y(千米)与出发时间x(小时)之间的函数关系; (2)画出函数图象: 分析:在这个问题中有两个已知量。一个是两地之间的距离90千米,一个是骑车人的速度。而骑车人与终点的距离y及出发时间x则都是未知量。我们能否找到这两个已知量与两个未知量之间的等量关系呢?找到后还要把它写成函数的形式,即把y写在等号的左边,其他的量则写到等号的右边。 解:y与x之间的函数关系式为y=90-15x. 分析:写到这里是否就写完了呢?还没有。我们知道一次函数的自变量取值范围是全体实数,而这个问题是实际问题,时间、距离都不会取负值,因此,有一个x的取值范围问题,请同学们想,x应在什么范围内取值? 得出x的取值范围是 0≤x≤6 然后取点画函数的图象。 取x=0,得y=90, 取x=6,得y=0. 画点a(0,90),b(6,0),然后连线段ab即为所求。 说明:由于函数图象是函数关系的反映,因此所画函数图象要与自变量取值范围相一致。本例中自变量x的取值范围是0≤x≤6,因此它的图象只是直线y=90-15x上的一条线段。 例2为了保护学生视力,课桌椅的高度都是按一定的关系配套设计的。研究表明:假设课桌的高度为ycm,椅子的高度(不含靠背)为xcm,则y应是x的一次函数。下表列出两套符合条件的课桌椅的高度: 第一套 第二套 椅子的高度x(cm) 40 37 桌子的高度y(cm) 75 70.2 (1) 写出y与x之间的函数关系式。 (2) 现有一把高42cm 的椅子和一张高为78.2cm 的课桌,它们是否配套?通过计算说明。 例3某地长途汽车客运公司规定旅客可以随身携带一定质量的行李,若超过规定,则需要购买行李票,行李票费用y(元)是行李质量x(kg)的一次函数,其图象如图所示。 (1)写出y与x之间的函数解析式。 (2)旅客最多可以携带多少免费行李。 分析:(1)根据一次函数的图象可以求出两个交点的坐标,进而可以列方程组,求出k、b的值,得出函数解析式。 (2)根据函数图象与x轴的交点求出旅客可以携带免费行李质量。 例4如图温度计上表示了摄氏温度与华氏温度之间的对应关系。 (1) 能否用函数解析式表示两者之间的关系? (2) 若今天的气温是摄氏20度,那么华氏是多少度? 三、小结 这节课我们讲了三个例题,重点是用待定系数法求一次函数的解析式,画一次函数的图象以及数形结合的思想。 待定系数法的主要步骤是: 1.把某些未知的系数用字母表示; 2.根据已知条件列出含有待定字母的方程或方程组。一般有几个待定字母应列几个方程; 3.解方程或方程组求出待定字母的值,使问题得解。 函数的解析式与它的图象是对应的,解析式的特点会影响到图象的位置,这种“数”与“形”的对应关系应该在函数的学习中逐渐加深理解。 四、布置作业 1.画出下列一次函数的图象: 2.已知一个一次函数,当x=-4时,y=9,当x=6时,y=3.求x=1时y的值。 3.已知一次函数的图象经过(3,2)和(-3,0)两点,求这个一次函数解析式并画出在-1≤x≤3内的函数图象。 4.某工人生产一种零件,完成定额,每天收入28元,若超额生产一个零件则增加收入1.5元 (1) 写出该工人一天收入y(元)和超额生产零件x(个)之间的函数关系式 (2) 某日该工人超额生产了12个零件,这天他的实际收入是多少? 5. 全国每年都有大量的土地被沙漠吞没,改造沙漠保护土地资源已经成为一项十分重要和急迫的任务。某地区现在有土地面积100万km2,沙漠面积200万km2,土地沙漠化的变化情况如下图所示。 (i)如果不采取任何措施,那么到第5年底?该地区的沙漠面积将新增加多少万km2? (ii)如果该地区沙漠面积继续按此形式发展那么从现在开始几年底后,该地区将丧失土地资源? (iii)如果从现在开始采取植树造林措施,每年改造沙漠4万km2那么几年底该地区的沙漠面积能减少到176万km2? 二次函数及其图像 二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2bxc(a不为0)。其图像是一条主轴平行于y轴的抛物线。 一般的,自变量x和因变量y之间存在如下关系: 一般式 y=ax∧b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a); 顶点式 y=a(xm)∧m、k为常数)或y=a(x-h)∧h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式; 交点式 y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]; 重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。 牛顿插值公式(已知三点求函数解析式) y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引导出交点式的系数a=y1/(x1*x2)(y1为截距) 求根公式 二次函数表达式的右边通常为二次三项式。 x是自变量,y是x的二次函数 x1,x2=[-b±(√(b^2-4ac))]/2a (即一元二次方程求根公式) 求根的方法还有因式分解法和配方法 在平面直角坐标系中作出二次函数y=2x的平方的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。 不同的二次函数图像 如果所画图形准确无误,那么二次函数将是由一般式平移得到的。 注意:草图要有1本身图像,旁边注明函数。 2画出对称轴,并注明X=什么 3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质 轴对称 1.抛物线是轴对称图形。对称轴为直线x=-b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 顶点 2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b^2;)/4a) 当-b/2a=0时,P在y轴上;当Δ=b^2;-4ac=0时,P在x轴上。 开口 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 决定对称轴位置的'因素 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>b要同号 当a与b异号时(即ab 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。 事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。 决定抛物线与y轴交点的因素 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 抛物线与x轴交点个数 6.抛物线与x轴交点个数 Δ=b^2-4ac>0时,抛物线与x轴有2个交点。 Δ=b^2-4ac=0时,抛物线与x轴有1个交点。 Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a) 当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b/4a;在{x|x<-b/2a}上是减函数,在 {x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2c(a≠0) 特殊值的形式 7.特殊值的形式 ①当x=1时y=abc ②当x=-1时y=a-bc 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b= 二、一次函数的性质: 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的.图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; ( 在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k>三象限,y随x的增大而增大; 当k<四象限,y随x的增大而减小。 当b>二象限; 当b=0时,直线通过原点 当b<四象限。 特别地,当b=O时,直线通过原点O(表示的是正比例函数的图像。这时,当k>三象限;当k<四象限。 四、确定一次函数的表达式: 已知点A(x;B(x,请确定过点A、B的一次函数的表达式。 (为y=kx+b。 (,都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 五、一次函数在生活中的应用: 1.当时间t一定,距离s是速度v的一次函数。s=vt。 2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。 六、常用公式: 1.求函数图像的k值:(y1-y2)/(x1-x2) 2.求与x轴平行线段的中点:|x1-x2|/2 3.求与y轴平行线段的中点:|y1-y2|/2 教学目标 : 1、知道与正比例函数的意义。 2、能写出实际问题中正比例关系与关系的解析式。 3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。 4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。 教学重点:对于与正比例函数概念的理解。 教学难点 :根据具体条件求与正比例函数的解析式。 教学方法:结构教学法、以学生“再创造”为主的教学方法 教学过程 : 1、复习旧课 前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课 就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。 顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。教师将学生的正确的例子写在黑板上) 这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。)不难看出函数都是用自变量的一次式表示的,可以写成 ( ) 的形式。 一般地,如果 ( 是常数, )(括号内用红字强调) 那么y叫做x的。 特别地,当b=0时, 就成为 ( 是常数, ) 3、例题讲解 例1、某油管因地震破裂,导致每分钟漏出原油30公升 (1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式 (2)破裂3.5小時后,共漏出原油多少公升 分析:y与x成正比例 解:(1) (2) (升) 例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元) (1) 列出小丸子的银行存款(不计利息)y与月数x 的函数关系式; (2) 多长时间以后,小丸子的银行存款才能买随身听? 分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱 解:(1) (2)1680=500+90x解得x=13.… 所以还需要14个月,小丸子才能买随身听 例3、已知函数 是正比例函数,求 的 值 分析:本题考察的是正比例函数的概念 解: 说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上 4、小结 由学生对本节课知识进行总结,教师板书即可。 5、布置作业 书面作业 :1、书后习题 2、自己写出一个实际中的的例子并进行讨论 探究活动 某居民小区按照分期付款的福利售房方式购房,政府给予一定的贴息。小明家购得一套现款价值120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和。(剩余欠款年利率为0.4%) (1)若第x( 年小明家交付房款y元,求y与x的函数关系式; (2)求第三、第十年的应付房款值。 参考答案: (1); (2) 5340元 、5200元。 教学目标 (一)知识认知要求 1、认识一元一次方程与一次函数问题的转化关系; 2、学会用图象法求解方程; 3、进一步理解数形结合思想; (二)能力训练要求 1、通过一元一次方程与一次函数的图象之间的结合,培养学生的数形结合意识; 2、训练大家能利用数学知识去解决实际问题的能力。 (三)情感与价值观要求 体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的.作用。 教学重点与难点 1、理解一元一次不方程与一次函数的转化及本质联系。 2、掌握用图象求解方程的方法。 教学过程 一、提出问题 (1)方程2x+20=0;(2)函数y=2x+20 观察思考:二者之间有什么联系? 从数上看:方程2x+20=0的解,是函数y=2x+20的值为0时,对应自变量x的值 从形上看:函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解 根据上述问题,教师启发学生思考: 根据学生回答,教师总结: 由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某一个函数的值为0时,求相应的自变量的值。从图象上看,这相当于已知直线y=ax+b,确定它也x轴交点的横坐标的值。 二、典型例题: 例1、(书中例1)一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度为17米/秒?
知识点1 一次函数和正比例函数的概念
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.
知识点2 函数的图象
由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。.不必一定选取这两个特殊点.
画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.
知识点3一次函数y=kx+b(k,b为常数,k≠0)的`性质
(1)k的正负决定直线的倾斜方向;
①k>0时,y的值随x值的增大而增大;
②k﹤O时,y的值随x值的增大而减小.
(2)|k|大小决定直线的倾斜程度,即|k|越大
①当b>0时,直线与y轴交于正半轴上;
②当b<0时,直线与y轴交于负半轴上;
③当b=0时,直线经过原点,是正比例函数.
(4)由于k,b的符号不同,直线所经过的象限也不同;
①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);
②如图所示,当k>0,b
③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);
④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).
(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.
知识点4 正比例函数y=kx(k≠0)的性质
(1)正比例函数y=kx的图象必经过原点;
(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;
(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.
知识点5 点P(x0,y0)与直线y=kx+b的图象的关系
(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;
(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.
例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.
知识点6 确定正比例函数及一次函数表达式的条件
(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.
(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.
知识点7 待定系数法
先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.
知识点8 用待定系数法 确定一次函数表达式一般步骤
(1)设函数表达式为y=kx+b;
(2)将已知点的坐标代入函数表达式,解方程(组);
(3)求出k与b的值,得到函数表达式.
思想方法小结 (1)函数方法.(2)数形结合法.
知识规律小结 (1)常数k,b对直线y=kx+b(k≠0)位置的影响.
①当b>0时,直线与y轴的正半轴相交;
当b=0时,直线经过原点;
当b﹤0时,直线与y轴的负半轴相交.
②当k,b异号时,直线与x轴正半轴相交;
当b=0时,直线经过原点;
当k,b同号时,直线与x轴负半轴相交.
③当k>O,b>O时,图象经过第一、二、三象限;
当k>0,b=0时,图象经过第一、三象限;
当b>O,b I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax²+bx+c(a,b,c为常数,a≠0) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=ax²;+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)²;+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b²;)/4a x1,x2=(-b±√b²;-4ac)/2a III.二次函数的图象 在平面直角坐标系中作出二次函数y=x??的图象, 可以看出,二次函数的图象是一条抛物线。 IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P [ -b/2a ,(4ac-b²;)/4a ]。 当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b²-4ac>0时,抛物线与x轴有2个交点。 Δ= b²-4ac=0时,抛物线与x轴有1个交点。 Δ= b²-4ac<0时,抛物线与x轴没有交点。 V.二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax²;+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax²;+bx+c=0 此时,函数图象与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 (1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。 k,b决定函数图像的位置: y=kx时,y与x成正比例: 当k>0时,直线必通过第一、三象限,y随x的增大而增大; 当k<0时,直线必通过第二、四象限,y随x的增大而减小。 y=kx+b时: 当k>0,b>0,这时此函数的图象经过第一、二、三象限; 当k>0,b<0,这时此函数的图象经过第一、三、四象限; 当k<0,b>0,这时此函数的图象经过第一、二、四象限; 当k<0,b<0,这时此函数的图象经过第二、三、四象限。 当b>0时,直线必通过第一、三象限; 当b<0时,直线必通过第二、四象限。 特别地,当b=0时,直线经过原点O(0,0)。 这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。初二数学一次函数知识点总结 〖8〗
一、教学目标
1.了解一次函数的定义及表示方法。
2.能够通过给定的一次函数方程的图象,写出该函数的解析式。
3.能够根据一次函数的解析式,画出函数的图象。
4.能够从实际问题出发,建立一次函数的数学模型,用函数来描述实际问题。
二、教学重难点
1.一次函数的定义及表示方法。
2.函数的图象和解析式之间的相互转化。
3.建立一次函数的数学模型。
三、教学过程
第一节 一次函数的概念及表示方法
1. 导入新知
教师通过实际问题引入一次函数的概念。例如:小明去超市买苹果,每个苹果的价格都是5元,那么小明购买n个苹果的总价格可以表示为f(n)=5n,其中f(n)表示总价格,n表示数量。这样的关系就是一个一次函数。
2. 引入定义
教师给出一次函数的定义:“如果一个函数可以写成y=ax+b的形式,其中a,b为常数且a≠0,则该函数为一次函数。”
3. 讲解表示方法
教师通过板书和示例,讲解一次函数的表示方法:
y=ax+b
4. 练习
让学生找出一些实际问题,然后用一次函数的表示方法来描述问题。
第二节 一次函数的图象及解析式的相互转化
1. 导入新知
教师给出一次函数y=ax+b的图象,让学生观察图象的特点,并根据图象写出函数的解析式。
2. 总结规律
教师引导学生总结一次函数的图象和解析式之间的对应关系。
3. 练习
让学生根据给定的一次函数方程的图象,写出该函数的解析式。
第三节 一次函数的数学建模
1. 导入新知
教师给出一个实际问题,例如:小明去超市购买图书,图书每本价格为10元,小明共计购买了n本图书,求小明购买图书的总花费。
2. 建立模型
教师引导学生通过分析问题中的关系,建立一次函数的数学模型。
3. 计算
教师带领学生利用所建立的模型,计算小明购买图书的总花费。
四、课堂小结
通过本节课的学习,我们学会了一次函数的定义及表示方法,能够通过给定的一次函数方程的图象,写出该函数的解析式。同时,我们还学会了如何从实际问题出发,建立一次函数的数学模型,用函数来描述实际问题。
五、课后作业
1. 将下列一次函数的图象写成解析式:y=2x+3,y=-3x+5。
2. 设一次函数y=ax+b,图象通过点(1,3),(2,7),求该函数的解析式。
六、拓展延伸
1. 请探究一次函数的图象和解析式之间的对应关系。
2. 请尝试用一次函数来描述你身边的其他实际问题。初二数学一次函数知识点总结 〖9〗
初二数学一次函数知识点总结 〖10〗
初二数学一次函数知识点总结 〖11〗
初二数学一次函数知识点总结 〖12〗
初二数学一次函数知识点总结 〖13〗
初二数学一次函数知识点总结 〖14〗
✹幼儿教师教育网熬夜必刷:
初二数学一次函数知识点总结 〖15〗
初二数学一次函数知识点总结 〖16〗
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:
①在同一平面
②两条数轴
③互相垂直
④原点重合
初二数学一次函数知识点总结 〖17〗
一、教材分析
本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.
二、学情分析
学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.
三、目标分析
1.教学目标
知识与技能目标
(1) 初步理解二元一次方程和一次函数的关系;
(2) 掌握二元一次方程组和对应的两条直线之间的关系;
(3) 掌握二元一次方程组的图像解法.
过程与方法目标
(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;
(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.
(3) 情感与态度目标
(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
2.教学重点
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系.
3.教学难点
数形结合和数学转化的思想意识.
四、教法学法
1.教法学法
启发引导与自主探索相结合.
2.课前准备
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
五、教学过程
本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.
第一环节: 设置问题情境,启发引导
内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?
3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?
由此得到本节课的第一个知识点:
二元一次方程和一次函数的图像有如下关系:
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.
意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.
效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.
前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.
第二环节 自主探索方程组的解与图像之间的关系
内容:1.解方程组
2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.
3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;
(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.
效果:由学生自主学习,十分自然地建立了数形结合的.意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.
第三环节 典型例题
探究方程与函数的相互转化
内容:例1 用作图像的方法解方程组
例2 如图,直线 与 的交点坐标是 .
意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.
效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.
第四环节 反馈练习
内容:1.已知一次函数 与 的图像的交点为 ,则 .
2.已知一次函数 与 的图像都经过点A(2,0),且与 轴分别交于B,C两点,则 的面积为( ).
(A)4 (B)5 (C)6 (D)7
3.求两条直线 与 和 轴所围成的三角形面积.
4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?
意图:4个练习,意在及时检测学生对本节知识的掌握情况.
效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.
第五环节 课堂小结
内容:以问题串的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的图像的关系;
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1) 方程组的解是对应的两条直线的交点坐标;
(2) 两条直线的交点坐标是对应的方程组的解;
3.解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.
意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.
第六环节 作业布置
习题7.7
附: 板书设计
六、教学反思
本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.
初二数学一次函数知识点总结 〖18〗
尊敬的各位评委老师:
大家上午好!今天我说课的题目是九年级《一次函数》复习课,所选用的教材为新人教版义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。
一、教材分析
1、教材的地位和作用
本章教材是初中数学八年级第十四章的内容,是初中数学的重要内容之一。一方面,这是在学习了函数概念的基础上,对函数知识的进一步深入和拓展;另一方面,又为学习反比例函数、二次函数等知识奠定了基础,是进一步研究数学应用的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析
针对即将面临中考的学生来说,在具有了一定知识的基础上,培养他们分析问题和解决问题的能力尤为重要,因此本节课除了让学生进一步熟悉本章知识以外,重在培养学生的能力。从认知状况来说,学生在此之前已经学习了函数的定义,对函数的三种表示法已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于一次函数的性质的理解和应用,仍然是部分学生所存在的困惑,所以在教学过程中要充分利用一些函数的图象,通过直观教学让学生更加深入的理解一次函数的性质。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数的定义及性质的理解。
难点确定为:一次函数的性质在实际问题中的应用。
二、教学目标分析
新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为: 1.知识目标:理解一次函数的定义及其性质
2.能力目标: 通过一次函数性质及其应用的学习,培养学生观察分析、类比归纳的探究能力,加深对数形结合、分类讨论等数学思想的认识。
3.情感目标:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
三、教学方法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。,由于本节课是复习课,为了有序、有效地进行教学,本节课我主要安排以下教学环节:
(1) 基础知识回顾:
设计意图:由于学生已经有一段时间未系统接触过本章知识,所以部分学生难免会出现或多或少的遗忘,所以,为了更好地利用这些知识,有必要将本章知识进行系统的回顾,使学生头脑内部建立关于本章的一个系统的知识结构,为知识的利用奠定基础。 (2) 典型例题:
设计意图:一次函数的知识是中考的热点,也是难点,所以我在这一环节精选了一些典型的中考题作为例题,一方面通过例题规范学生的解题过程,另一方面也让学生对中考试题有个初步的了解,让学生知道中考题并不像他们想象的那样困难,激发学生的学习积极性。通过这一环节,学生的恐惧心理基本消除,为下面的尝试应用做了铺垫。 (3)尝试应用:
设计意图:本章知识已经在学生头脑中达到了系统化的掌握,而且上面的例题也为学生提供了一些解题的方法和规范的解题格式,所以在这一环节学生通过练习既巩固了知识,有提高了学生解决问题的能力。而且通过学生解题,进一步使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。 (4)走近中考:
设计意图:中考中重在考察学生对数学知识的应用能力,所以在这一环节,通过两个典型的中考题,让学生自己尝试解决,切实认识到一次函数在实际生活中的应用,并通过自己亲自解决中考题而增加他们对中考的信心。还有就是通过节水的问题培养学生爱护水资源和节约用水的意识。 (5) 谈谈你的收获:
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的只是、方法、体验是那个方面进行归纳,我设计了这么三个问题:
① 通过本节课的学习,你学会了哪些知识; ② 通过本节课的学习,你最大的体验是什么; ③ 通过本节课的学习,你掌握了哪些学习数学的方法?
以上就是我对本节课的设计思路,如有不足之处,望各位评委老师多多批评指正,谢谢!
初二数学一次函数知识点总结 〖19〗
顶点式:y=a(x-h)^2+k[抛物线的顶点p(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点p。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点p,坐标为:p(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,p在y轴上;当Δ=b^2-4ac=0时,p在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab0),对称轴在y轴左;
当a与b异号时(即ab0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b^2-4ac0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴:
当h0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h0时,则向左平行移动|h|个单位得到.
当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△0.图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0.
5.抛物线y=ax^2+bx+c的最值:如果a0(a0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
初二数学一次函数知识点总结 〖20〗
一次函数的解析式
①点斜式:y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点);
②两点式:(y-y1) / (y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y2)两点),
③截距式:x/a+y/b=1 (a、b分别为直线在x、y轴上的截距)。
解析式表达的局限性:
①所需条件较多(2个点,因为使用待定系数法需要列一个二元一次方程组);
③不能表达没有斜率的直线(即垂直于x轴的直线;注意没有斜率的直线平行于y轴表述不准,因为x=0与y轴重合);
④不能表达平行于坐标轴的直线和过原点的直线。
x轴的正半轴逆时针旋转到直线所成的角(直线与x轴正方向所成的角)称为直线的倾斜角。设一直线的倾斜角为,则该直线的斜率k=tan。倾斜角的范围为(0, )。
只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。
-
我们精彩推荐初二数学一次函数知识点总结专题,静候访问专题:初二数学一次函数知识点总结
