两位数乘两位数优秀教案
发布时间:2023-06-22 两位数优秀教案两位数乘两位数优秀教案精选。
前辈告诉我们,做事之前提前下功夫是成功的一部分。为了使每堂课能够顺利的进展,教师通常会准备好下节课的教案,优秀的教案能帮老师们更好的解决学习上的问题,教案可以帮助学生更好地进入课堂环境中来。那么怎么才能写出优秀的幼儿园教案呢?以下为小编为你收集整理的两位数乘两位数优秀教案精选,建议你收藏本页和本站,以便后续阅读!
两位数乘两位数优秀教案(篇1)
教学目标:
1.能够对两位数加法的各种类型进行整理分类、归纳。
2.在学生已经掌握了两位数加法的各种算法的基础上进行复习整理,深化对两位数加法各种算法的理解。
3.熟练掌握两位数加法的各种算法,进一步培养学生的算法思维。
4.能用自己喜欢的计算方法来计算两位数的加法,培养学生个性化学习。
教学重点:
掌握两位数加法的各种算法。
教学难点:
理解两位数加法各种算法的算理。
教学准备:
多媒体教学软件
教学过程:
一、引入
1.媒体出示8个算式,让学生进行整理和分类。
2.学生汇报:一种是按照进位和不进位分类,另一种是按照两位数加一位数和两位数加两位数分类。
3.媒体出示一张表格,引导学生把2种不同的分类情况合并成一张表格。指表格中的一格,让学生说说这格中填写的算式要符合什么要求。指其中的一个算式,让学生说说应该填在哪一格中,为什么?
二、不进位加法算法讨论
1.媒体出示:22+13你知道这道题属于哪一类?你们有些什么方法来计算这道题呢?学生独立思考。
2.全班交流。原来我们和小巧、小胖和熊猫的算法一样,而且方法还比他们多。
3.媒体出示:61+23比一比哪个小组的方法最多?汇报,展示。
4.学生选择自己喜欢的一种方法完成38+21,43+43.
三、进位加法算法讨论
1.媒体出示:36+17这道题又是属于哪一类的呢?小组讨论你们有些什么方法计算这道题?
2.展示各组的算法,并且看书上小胖的4种方法进行比较和补充。
3.出示4道判断题:
46+25=7124+17=4117+55=8246+5=5124+10=3417+60=7751+20=7134+7=4177+5=824.用自己喜欢的方法完成
35+1646+2517+5524+17刚才有同学提到的竖式计算也是我们平时常用的计算方法,一起来完成书上4道竖式计算题,边做边想在列竖式计算的时候要注意什么。
四、总结
1.今天对两位数加法算法进行整理以后,我们发现了那么多不同的算法,能不能选择一种你认为最好的方法又对又快算我们刚才整理的8道题呢?
2.师生共同总结。
两位数乘两位数优秀教案(篇2)
“两位数减两位数退位减法”是人教版小学数学二年级上册第二单元P18-19的教学内容。这部分教学内容是在学生学习了“两位数减两位数不退位减“的基础上进行学习的。 《 数学课程标准》指出,数学教学必须建立在学生的认知发展水平和已有的知识经验基础之上,有了一定的.学习基础,此类题大多学生都会算。本节课我试图让学生了解每一种计算方法,目的是从小就培养学生“多种选优,择优而用”的科学研究态度。同时当学生自己创造的算法被肯定时,他们幼小的心灵所萌发出的自我价值、学习信心、主动挑战意识等不也是课堂教学的成功所在吗?我认为这些才是提倡算法多样化乃至教学改革的真谛。
(一)学习例2
1、看算式56-18,刚才已经算出结果了,能说说你是怎么算的吗?
2、能用竖式计算吗?试试看。
不会的小朋友借助小棒摆一摆(上下齐做,反馈说算法)
3、计算中你发现了什么?
和昨天的两位数减两位数有什么不同呢?
你是怎么办的?
4、能用摆小棒的形式边摆边说出你是怎样解决这个问题的?
学生动手操作,教师巡视指导。
5、学生展台演示操作过程
师问:你看明白了吗?
谁能把他演示的过程再说一遍?
有不同的方法吗?
6、教师电脑演示,小结,帮助学生理解算理
师问:回到竖式,个位是要先算( 16 )-( 8 )
十位上要算 ( 4 )-( 1 )
教师板书16、4
(二)指导写竖式
过渡语:这是我们想的过程,列竖式时我们应这样写:相同数位对齐………
1、师问:如何记住从十位退位了“1”呢?
(在十位数字的上面点个小圆点,提醒自己十位减少1后再减)
2、教师质疑:这道题可以从十位减起吗?
为什么?
(三)解决问题:
1、多伦多比巴黎多几票?你会用竖式计算吗?试试看。
(上下齐做,反馈说算法)
2、师问:你想提醒大家些什么?(十位上的0不写)
鼓励探索,交流算法
(一)学习例3,师板书算式50-24,
问:观察50-24和56-18有什么不同?
会做吗?试试看。(上下齐做,反馈说算法)
师:整十数减两位数,用竖式计算时,个位上要算( 10)-( 4 )
有没有不是用10-4的?
十位上再算( 4 )-( 2 )
(二)对比56-18和50-24有什么共同点? (师板书,补充课题)
(三)今天学习两位数减两位数,你想提醒大家注意些什么?
学生尝试归纳计算法则。
学生在探索新知的经历中,要面临问题、困惑、挫折和失败。这就意味着学生可能花了很多时间和精力结果却一无所获。但这是一个人的学习、生存、生长、发展、创造必须经历的过程。它是一个人的能力、智慧发展的内在要求,而耗费的时间和精力应该是值得付出的代价。我在教学中遇到比较难学的内容,不易掌握的知识点时,经常让学生先体验挫折,后体验成功。
本环节反思:
《课程标准》指出,必须建立在的认知发展水平和已有的知识经验基础之上,有了一定的基础,此类题大多都会算。所以我们要把主动权交给,让他们借助已有的知识经验自己去探究,去发现解决问题的。作为教师不要去为设计“过渡题”“样板题”,这样容易把带入教师预设的中。应该放手让自己去比较,分析,选择适合自己的计算,或心服口服的认同书本上相对较好的。此节课,我也深深的感到,作为一名教师要有耐心,要把机会让给每一个,让每一个孩子在启发中互相创新,在启发中激起探究的热情。因为这种动态生成的效果正是我们所追求的。虽然对一时的“创造发明成果”还没有马上转化,但在这过程生思维的发展,共同促进氛围的形成。对今后的发展,都会有意想不到的收获吧。本节课让了解每一种计算,目的是从小就培养“多种选优,择优而用”的科学研究态度。同时当自己创造的算法被肯定时,他们幼小的心灵所萌发出的自我价值、信心、主动挑战意识等不也是课堂的成功所在吗?我认为这些才是提倡算法多样化乃至改革的真谛。
两位数乘两位数优秀教案(篇3)
教学目标:
1、使学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法。
2、使学生获得运用已有知识解决新的计算问题的体会,感受数学知识和方法的内在联系。
3、学生在自主探索,合作交流中体验成功的愉悦,进一步树立学习数学的自信心,发展对数学的积极情感。
重点难点:
1、使学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法。
2、理解“用两位数哪一位上的数去乘,乘得的数的末位就和那一位”对齐。
教学过程:
一、复习旧知
1.口算训练
师:咱们先进行口算大战,看看谁的表现最出色,先听要求:老师每一小组任意抽一名同学,被老师抽到的6名同学代表你们小组进行抢答,回答正确加1人。
出示口算卡片
2.笔算
23×1530×87
师:不要骄傲,还有难的啊!这次的规则是谁先做完,给谁板演的机会,做完后举手告诉老师。
笔算后,由学生说说笔算的方法及应注意的问题。
师:我们学习了两位数乘两位数的笔算方法,今天我们来进一步学习三位数乘两位数的乘法。(板书课题)
二、创设情境,提出问题
出示信息窗3的情境
1.教师和学生交流信息窗的信息
师:同学们知道2008年奥运会帆船、帆板项目是在哪个城市举办的吗?为了迎接奥运,青岛现在新建了高速公路。请同学们打开课本37页,通过观察你知道了哪些数学信息。(板书信息)
2.根据信息窗的信息,你能提出什么数学问题?
板书:高速公路一期工程全长多少米?
高速公路二期工程全长多少米?
3.问题怎样解决?咱们先来列出算式。学生列式。
三、合作探究,解决问题
1.解决问题一:高速公路一期工程全长多少米?
(1)师:算式中是三位数乘两位数,你准备如何解决?听好老师要求:先自己独立解决,然后把你的方法在你们小组交流。
(2)全班交流:这些做法都对吗?
师:有没有不同的做法?师引导:为什么积的末尾和十位对齐?
师:同学们你们觉得笔算三位数乘两位数笔算时应注意什么问题?
2.解决问题二:高速公路二期工程全长多少米?
师:咱们解决了第一个问题,还有一个问题等着咱们呢。自己能解决吗?
学生可能会有两种竖式:
师:观察这两个算式,你有什么想法?
引导学生进行比较,明确第2种比较简单。
师:像这样的算式,可以先用0前面的数相乘,再根据两个乘数的末尾有几个0,就在乘得的数的末尾添几个0。
师:同学们你们觉得象这样的算式应注意什么问题?
四、自主练习
师:同学们出色的解决了这两个问题,那对三位数乘两位数的笔算,同学们还有问题吗?那下面咱们进行练习,看看谁能全部过关,对自己有信心吗?P38页自主练习第一题,由于时间关系我们先做第一行,把第一行做到练习本上,开始。
五、总结
师:时间过得真快,一节课马上要结束了,通过这节课的学习,你有哪些感受,学到了什么,和大家一起分享一下吧。
我的反思:
两位数乘两位数优秀教案(篇4)
教学目标:
1、知识与技能:使学生掌握三位数乘两位数的笔算方法。培养学生类推迁移的能力和口算的能力。
2、过程与方法:使学生在小组内经历笔算乘法计算的全过程,掌握算理和计算的方法
3、情感、态度和价值观:让每一个学生在合作学习、汇报展示、课堂互动交流中体验到学习带来的喜悦,培养学生认真计算的良好学习习惯。
教学重点:
使学生掌握三位数乘两位数的计算方法。
教学难点:
使学生掌握三位数乘两位数的计算方法并正确计算。
教学过程
一、复习引入
1、口算
35×2=/18×3=/250×3=
2、估算
19×5≈/21×7≈/398×2≈
3、笔算
24×12=
从刚才的计算中,你还记得两位数乘两位数的计算方法吗?
两位数乘两位数的计算方法:
(1)、先用第二个因数个位上的数去乘第一个因数,得数的末位和因数的个位对齐;
(2)、再用第二个因数十位上的数去乘第一个因数,得数的末位和因数的十位对齐;
(3)、最后把两次乘的积加起来。
4、引入
我们已经学习了两位数乘两位数,这节课我们继续学习三位数乘两位数。(板书并出示课时目标)
二、新授
1、情景导入
同学有没有看过火车呢?那你们有没有坐过火车啊?李叔叔要坐火车去北京,但是他遇到了一个问题,我们一起来帮帮他好不好?
2、教学例1
李叔叔从某城市乘火车去北京用了12小时,火车每小时行145千米。某城市到北京有多少千米?
(1)理解题意:每小时145千米,用了12小时
(2)题析并列出算式:145×12=(千米)
(3)估算
估算一:把145看成150,把12看成10,150×10得1500
估算二:把12看成10,145×10=1450
(4)探索计算方法
先独立计算,再在小组交流算法,最后全班共享。
可能出现:
A、口算:先算10小时:145×10=1450(千米),再算2小时:145×2=290(千米),加在一起:1450+290=1740(千米)
B、口算:145×12=145×4×3=580×3=1740(千米)
C、竖式计算145
×12
290………2乘145的积
145………10乘145的积
1740
(5)讨论归纳
讨论:在这么多的算法中,你最喜欢哪种方法?
归纳:三位数乘两位数的计算法则:
1.先用第二个因数个位上的数去乘第一个因数,得数的末位和因数的个位对齐。
2.再用第二个因数十位上的数去乘第一个因数,得数的末位和因数的十位对齐。
3.然后把两次乘得的积加起来。
三、巩固新知
1、基础练习:134×23
2、数学医院
(1)134×16
(2)246×343、134×12176×47425×36237×82
四、课堂小结
通过这节课的学习,你有哪些收获?
两位数乘两位数优秀教案(篇5)
教学内容:
人教版义务教育课程标准实验教科书《数学》四年级上册第49页例1、做一做及练习七的第1—3题
教学目标:
1、知识目标:yjS21.COM
让学生经历探索三位数乘以两位数笔算方法的过程,掌握三位数乘以两位数的基本笔算方法,能正确进行计算。
2、能力目标:
让学生在探索计算方法和解决实际问题的过程中体会新旧知识的联系,能主动总结、归纳三位数乘以两位数的笔算方法,培养类比及分析,概括能力,发展应用意识。
3、情感目标:
让学生在主动参与活动的过程中,进一步体验数学在日常生活中的运用,培养学生迁移类推的能力,掌握算理和计算的方法
教学重点:
探索并掌握三位数乘两位数笔算乘法的算理和方法,能正确进行计算。
教学难点:
理解竖式中,第二个因数的十位与第一个因数相乘时,积的末尾要与十位对齐的道理。
教学过程:
一、创设情境,复习旧知,导入新知
师:李叔叔在哈尔滨工作,过中秋节了,他很想念家中的亲人,决定在中秋与国庆双节期间回北京老家一趟,他买了12斤月饼,每斤45元,请同学们算一算李叔叔买月饼一共花了多少钱?
(1)让学生理清题意,找出题中的已知量和所求量。
(2)根据已知量和所求量列出算式
(3)全班齐做,然后指名板演并说说其计算过程。
回顾两位数乘两位数的计算方法(出示幻灯片,学生读一读)
谈话引入例1。
师:在回老家的时侯,李叔叔为了节约钱,决定不坐飞机,坐火车,当他到家时,他算了算,从哈尔滨到北京用了12小时,火车1小时行145千米。那你们帮李叔叔算一算从哈尔滨到北京有多少千米?
(1)由学生列出式子,师板书:145×12
(2)师:现在请同学们观察45×12与145×12什么不同?找出其相同点和不同点。揭示课题:这就是我们今天学习的内容。板书课题:三位数乘两位数
二、自主交流,合作探究,获取新知
1、估算
师:那你认为哈尔滨距离北京大约有多少千米呢?现在同学们来估算一下(学生动笔算)师:你是如何估算的?谁愿意把你的估算过程和想法跟我们分享一下呢?
让学生说说,教师随机板书学生的估算方法。
2、笔算
师:现在我们已经估算出来了,145×12大约是在1500至1800之间,那么如何准确算出145×12的积呢?同学们一起用自己喜欢的方法来算一算好不好?
学生动笔算,教师巡视,然后让学生说说自己是用什么方法算出来的。
(如果有用竖式算的就指名板演,并说出自己的计算方法;如果没有教师试着提示。)师:用竖式计算也就是笔算,这就是我们今天要掌握的内容:三位数乘两位数的笔算乘法(补充板书)
教师讲解,板书145×12用竖式计算的过程
师:你认为三位数乘两位数,列竖式和笔算的顺序与两位数乘两位数的方法有联系吗?
3、小结三位数乘两位数的笔算方法(课件演示)
(1)先用两位数个位上的数去乘三位数的每一位,得数的末位和两位数的个位对齐。
(2)再用两位数十位的数去乘三位数的每一位,得数的末位和两位数的十位对齐。
(3)然后再把两次乘得的积加起来。
4、巩固练习
教材第49页做一做。(分组完成,集体订正)
三、仔细琢磨,细心计算,巩固新知
1、数学医院,判断正误
(幻灯片出示题目,让学生观察,找出错误的地方,并改正过来。)
2、50页第一题。(分组完成,集体订正)
3、解决问题(50页第二题)
四、仔细想想,谈谈收获,归纳小结
师:今天,我们学会了什么?
生:三位数乘两位数的笔算乘法
师:那现在哪个同学可以来帮我们小结一下三位数乘两位数竖笔算乘法的计算方法?
五、作业布置:练习七第3题
两位数乘两位数优秀教案(篇6)
教学内容
人教版四年级数学上册第47页及相应练习
教材分析
该课内容为三位数乘两位数的笔算第一课时,在三年级学生已经学过多位数乘一位数,两位数乘两位数,本节课是在两位数乘两位数的基础上学习的,其乘法算理是一样的。该课也是小学阶段整数乘法的最后内容。
教学目标
1、让学生经历两位数乘两位数笔算知识的迁移,自主理解三位数乘两位数的笔算算理,掌握三位数乘两位的笔算方法。
2、引导学生结合具体的问题情境,选择合适的估算方法,体验知识迁移的过程,培养学生类推能力和概括能力。
3、在学习过程中,感受数学知识与实际生活之间的密切联系,培养学生认真计算并养成验算的习惯。
教学重点
掌握三位数乘两位数笔算方法,能够正确进行笔算。
教学难点
理解三位数乘两位数的笔算原理。
教具准备
课件、学生用计算器
教学过程
课前2分钟口算练习
一、情境导入
播放北京标志性景点的图片。
教师:同学们,暑假你们都去哪里玩了呢?王叔叔、李叔叔暑假去了首都北京旅游,他们乘车所用的时间都是12小时,想知道他们是怎么去的呢?我们一起来看大屏幕。
王叔叔
旅游大巴
平均78千米/时
李叔叔
火车
平均145千米/时
教师:他们是从同一个城市去的么?
教师:根据提供的信息,你能算出王叔叔所在城市到北京多少千米么?指明学生列出算式:78×12
学生列竖式计算,交流、汇报。
二、探究新知
李叔叔所在的城市离北京又有多少千米呢?如何计算呢?
引导学生列出算式:145×12
1、运用估算
能不能估一估李叔叔住的城市离北京大约有多少千米呢?
说一说估得方法。
要想知道准确结果,还得用笔算。
今天我们就来学习笔算三位数乘两位数。(板书课题)
2、探究算理
学生尝试笔算,教师巡视,挑选出几种不同思路的算法到黑板板演。我们先请刚才板演的同学说一说他是怎么算的吧,每一步的算理。(根据学生汇报,课件演示)
1 4 5
× 1 2
2 9 0 ——表示什么?(表示2小时行的路程,即290个1)
1 4 5 —表示什么?(表示10小时行的路程,即145个10)
1 7 4 0
我们想知道这个结果是否正确,有什么好办法呢?(一是与估算结果比较,二是通过验算。)
3、讨论交流
大家四人一组讨论一下,三位数乘两位数的计算方法是什么样的,互相说一说。
4、学生汇报。
三、巩固练习
1、教材第47页做一做横着第一排。
学生独立计算完成,教师巡视发现典型现象,请其板演。
集体订正。
2、算理选择题
(1)在计算234×35的时候,2×5表示( )
a、 2×5 b、 20×5 c、 200×5 d、 200×50
(2)下面( )算式中2×5表示的意思是200×50
a、 209×15 b、 205×52 c、325×52 d、 152×5
3、不计算,选择答案。
425×19=( )
a、3825 b、 8020 c、 8075 d、46325
425×219=( )
a、93075 b、68000 c、46325 d、80000
4、练习八第1、2题
四、课堂小结
同学们,通过这节课的学习你有什么收获呢?
yJS21.com更多精选幼儿园教案阅读
两位数乘法教案
俗话说,做什么事都要有计划和准备。身为一位优秀的幼儿园的老师我们都希望自己能教孩子们学到一些知识,一般来说,提升学生的效率最好是准备一份教案,教案可以让上课自己轻松的同时,学生也更好的消化课堂内容。写好一份优质的幼儿园教案要怎么做呢?经过收集并整理,小编为你呈上两位数乘法教案,仅供参考,我们来看看吧!
两位数乘法教案 篇1
一、教学内容
人教版《义务教育课程规范实验教科书》三年级数学下册P63。
二、教学目标
1、知识与技能目标:同学经历探索两位数乘两位数的计算方法的过程,进一步掌握笔算方法,理解两位数乘两位数的算理。
2、过程与方法目标:同学通过自主探索、合作交流,体验计算方法。
3、情感态度与价值观目标:在探索算法与解决问题过程中,增强合作交流的意识,体验胜利的喜悦。
三、教学重点
在理解算理基础上掌握两位数乘两位数的笔算方法。
四、教学难点
理解笔算乘法的顺序与第二局部积的书写方法。
五、教学对象与准备
对象:三年级3班。教学准备:多媒体课件、教学平台、图片。
六、教学过程
环节一:情境引入
1、旧知引入:8×6(一位数乘一位数)、20×8(两位数乘一位数)、20×10(两位数乘两位数)。
师:像20×18、38×18......这类型的算式,我们叫它两位数乘两位数。
引入课题:两位数乘两位数的笔算。
2、情景激趣:
书店一角(课件展示情景图):
(1)每本书24元,买2本要付多少钱?24×2=48(元);
(2)每本书24元,买10本要付多少钱?24×10=240(元)
(3)每本书24元,买12本要付多少钱?48+240=288(元)
想:假如用乘法怎样列式呢?
环节二:算法探究
1、估算:
请你估算一下,24×12大约是多少?说说你的估算情况。
2、自主探索:同学独立在练习纸上计算24×12,教师进行巡视指导。
3、小组交流:小组内进行核对算法和答案。(同学组内交流)
4、同学汇报:展示不同算法并说说算法。
5、师生评议:请同学说说你喜欢哪种算法?为什么?
6、研究笔算:
(1)同学研讨笔算算理;
(2)师生一起小结笔算算理:
24
×12
------
48......24×2的积,问:48是怎么来的?
24......24×10的积,问:这里的24是表示多少?
------
288
环节三:巩固练习
1、解题活动:小博士寻宝、探路。
2、游戏活动:帮小动物找鞋,比比哪组找得多。
3、拓展延伸:
①我们学校的阶梯教室共有22排,每排有14个座位。假如有300位老师来参与听课活动,能坐得下吗?
②课后研讨:123×23(三位数乘两位数)
环节四:教学小结
通过今天的学习,你有什么收获?两位数乘两位数的笔算,最关键是什么?你有什么好的建议?
七、教学反思
本节课,我以“情境引入(层次推进)--算法探究(自主、合作学习)笔算算理(师生研讨)--专项练习(解决问题)”三个环节来讲述两位数乘两位数的笔算。是在同学比较熟练地口算整十、整百数,估算和笔算两位数乘一位数的基础上进行教学的。
1、注重笔算与算理结合,体验计算。让同学研讨计算方法,理解竖式计算的算理。增强自主学习的能力。
2、注重同学主动探索,加强竞争意识,在活动中提高他们的积极性与增强学习兴趣和加强思想交流。
3、在判断与交流中逐步完善知识结构。强化提升已有的知识经验。
两位数乘法教案 篇2
今天听了李林涛老师三年级数学《两位数乘两位数的笔算乘法》一课,我有以下几点想法:
好的地方:
1、情境导入以旧引新,渗透先分后和解题策略。
2、注重了算理的直观呈现。
3、练习设计有层次。
探讨的地方:
(1)充分发挥点子图的作用,培养几何直观。
教学时,李老师先让学生把想法用点子图表示出来,然后交流汇报。这时要有效发挥好教师的引导作用,使全体学生都在探索、交流中体会“先分后合”的解题思路。但李老师在这个的教学环节占用了较大时间。
在研究笔算方法的算理时,应充分利用点子图,帮助学生很好地理解笔算过程中每一步的意义,培养几何直观。在研究竖式的计算方法时,教师可以再在点子图上分一分,并把四次相乘得出的结果都在图上圈出来,沟通算理与算法的关系。从而突出教学重点:用十位上的数去乘时,所得的积的末位数要和十位上的数对齐。教师追问:为什么最后要把两次乘得的积加起来,学生自然就会理解。
(2)处理好算法多样化与优化的关系。
在交流14×12的多种算法时,在感受算法多样化的同时,应注意让学生通过对不同计算方法和点子图的比较、归纳和分类,体验方法的异同,掌握解题的策略。例如,学生可能会说“这些方法都是‘先分后合’”“分开以后,数变小了,就会算了”“‘分’”了以后就把新知识转化为旧知识来解答了”,体会这些方法的共同特点及解决问题的策略。学生可能还会比较每一种方法的优劣,“把12分成10和2,比较好计算”“把12分成两个6,两部分的数相同,只要计算一次乘法再加就可以了,也比较好计算”,在比较过程中培养学生的分析能力和优化意识。这方面我觉得李老师引导不够。
建议:课题出示应置于学生列出两位数乘两位数算式后;机智把握课堂教学失误,教师出错要学会把出错原因“推”给学生,鼓励学生及时发现错误并敢于提出。
两位数乘法教案 篇3
【教学内容】
人教版小学数学三年级上册第46页例1
【教学目标】
1、掌握两位数乘两位数的不进位乘法的笔算方法。
2、理解用第二个因属十位上的数乘第一个因数的多少个“十”,乘得的数的末位要和因数的十位对齐。
【教学重难点】
重点:掌握笔算方法并正确计算。
难点:解决乘的顺序和第二部分积的书写位置问题。
【教学准备】
例1点子图
【教学过程】
一、复习旧知提高能力
1、口算(出示彩球)
30×80 88×10 900×10 60×70 13×3 32×2
2、笔算并说出计算过程。
14×2 231×3
【设计意图】通过课件出示彩球让学生进行口算练习和笔算,不仅提高了学生学习的积极性,而且巩固了旧知,提高了学生的计算能力,为本节课的内容做铺垫。
二、情景导入探究新知
1、情景导入
出示新华书店的图片,今天王老师带大家到新华书店去买书,遇到了一些问题,想请你们帮忙解决,你们愿意吗?课件出示情境图,让学生说一说,这幅图所展示的情景是什么。
(王老师去书店买书,买了12套,每套书有14本,她在想一共买了多少本)
让学生说一说,这道题如何列式。引导学生去想这是一道什么样的乘法算式。(两位数乘两位数的乘法算式)今天我们就来研究两位数乘两位数的计算方法(板书课题)
【设计意图】让学生在生活的情景中,找出问题,解决问题,体现出数学来源于生活的数学思想。
2.自主探究
指导:你能不能运用以前学过的知识,来探究今天摆在我们面前的这个问题呢?
组织学生用充足的时间进行讨论,把讨论的结果记录在练习本上,然后各组选代表说出本组的想法,展示各组不同的计算过程和结果。
例:14×10=140(本)14×2=28(本)
140+28=168(本)或14×12=168(本)
有些学生会想到把12看成10和2的和,先用14×10,再用14×2,然后把两次乘得的结果相加,有些学生想到其它分成的方法,这时提出把12分成10和2是比较好计算。如果遇到数字比较大的数字怎么办呢?
如果我们列竖式该怎样算呢?谁愿意来黑板上试算一下。找两个同学在黑板上试算,其它同学在本上试算。
【设计意图】先让学生根据已有的知识尝试解决14×12,并要求学生在点子图上表示出计算方法。培养了学生将新知转化为旧知解决新问题的.能力,同时培养了学生的几何直观。接着让学生自主探索用竖式怎么计算,培养了学生探索研究的能力。
3.点拨归纳
学生做完后,先让学生说他是如何写的,在这过程中针对学生说得不对或不清楚的地方,教师要加以指导,也可以让写得对的给同学讲一讲。
教师在指导分析过程中,要把每步板书详细列出。
再找几名学生说计算方法。
最后教师总结。
从个位乘起:2在个位,表示2个1,个位上的2乘个位上的4得8,是8个什么?写在什么位?第二个因数个位上的2乘第一个
(讲解算法并板书)
再把两次所乘的积加起来。
教师归纳总结,板书强调每步难点。
在总结过程中提问:
(1)两位数乘两位数一种是口算方法,一种是笔算方法,你认为哪种方法好?
(2)笔算中乘了几层,为什么?乘得的结果怎么样?
(3)十位上的1和14乘完后,“4”为什么和十位对齐?
【设计意图】教师强调每一步计算的具体含义,帮助学生理解算理,掌握算法。
三、加强运用明确算理
第一关小车开到哪儿停(主要考察第二因数的十位合第一个因数的个位相乘以后得得积和谁对齐)。
13×12= 23×21= 43×22=
第二关笔算大比拼
23 33 43
×13 ×31 ×12
第三关啄木鸟治病
第四关弄脏的题单
【设计意图】利用闯关的形式来提高学生计算的兴趣,练习的题型分层次,有梯度,目的是让学生掌握两位数乘两位数的算理,巩固算法。
板书设计:
两位数乘两位数(不进位)
14×12=
口算:14×4=56 14×10=140
56×3=168 14×2=28
140+28=168
笔算:
1 4
× 1 2
2套书的本数← 2 8……14×2的积
10套书的本数←1 4 0……14×10的积(个位的0不写)
1 6 8
【设计意图】板书设计通过口算和笔算的对比,体现用笔算的解决问题的优化性。
两位数乘法教案 篇4
一、导入
师:刚到宁波,叶老师发现有一种“福娃”玩具特别好卖!(出示图片及有关数据)请问,买5个这样的福娃要多少元?
生1:24×5=120元。
师:解决这个问题,我们用到了什么旧的知识!(板书:旧知识)
生2:两位数乘一位数的笔算。
师:那么,如果买10个这样的福娃,又该付多少钱呢?
生3:24×10=240元。
师:在这里,我们又用到了什么旧的知识!
生4:两位数乘整十数的口算
师:假如老师想买12个福娃,该怎样计算需要的钱呢?
生5:24×12
师:与两位数乘一位数、两位数乘整十数相比,这是一道怎样的算式?
生合:两位数乘两位数(板书:两位数乘两位数)
[评:情境创设具有时代性与现实性,这是教学情境有效性的重要标准。教师善于把握最新社会生活中发生的信息,北京奥运吉祥物刚刚公布,学生们对此题材十分感兴趣,研究这个问题的积极性十分高涨,这对于学习数学知识起到了很好的促进作用。有效的情境也使计算教学过程成为了提出问题解决问题的过程,加强了计算教学的.数学思考,这正新课程背景下重视计算教学的价值所在。]
师:我们以前学过这类计算吗?
生合:没有!
师:所以说,这是我们面临的一个新问题!(板书:新问题)以前碰到新问题,你一般会怎么办?
生6:我会请教爸爸妈妈和老师。
生7:我会自己动脑筋解决。
生8:我会请同学帮忙。
师:哦!面对新问题,我们各有高招!而这节课,老师将和同学们一起,借助已经学会的旧知识来解决今天遇到的新问题!
[评:用旧知识来解决新问题是学习的很好的学习方法,但如何让学生能比较好地接受,需要教师运用好的方法引导。叶老师一开始出示了一位数乘两位数和两位数乘整十数原来已学过的旧知识,然后通过比较引出了两位数乘两位数这一新的问题,先让学生自己谈谈遇到新问题时一般采取的策略,教师在肯定学生原有的各种学习策略的基础上,引导学生学习和尝试运用旧知识来解决新问题的策略,这样既体现了教师尊重学生,又体现了较好地发挥教师的指导、引导作用。]
二、探究
师:请你估算一下,24×12的积大约会是多少?
生9:我把24看成20,把12看成10,所以24×12的积大约会200。
生10:大约是250。因为我是把24看成25、12看成10来进行估计的。
师:同学们的估算能力都很强!那么,究竟24×12的精确答案是多少呢?请每位小朋友开动脑筋,自己试着在纸上算一算!如果独立计算有困难的,可以先参考课本中的算法,再独立进行计算!
(学生独立计算,教师巡回指导)
[评:先让学生估算,再尝试用笔算,这样既复习了上节课上的估算方法,也为笔算(精算)学习打下基础,使估算、笔算有机结合。同时,教师要求学生独立计算时,允许不同层次的学生采取不同的学习步骤。能完全独立的就独立完成;暂时有困难的,可向书本请教,自学书本知识后再独立完成。较好地体现了教学中因材施教的原则。]
师:都算完了吗?请在四人小组里说说你的算法,也听听别人的算法!
(小组展开交流,教师参与其中)
师:谁愿意与同学们分享你的计算方法?
生11:我是把先算24×10=240,再算24×2=48,最后把240与48加起来得到288!
师:能说说每一步分别在算什么吗?
生11:“24×10=240”是求10个24是多少,“24×2=48”是求2个24是多少,240+48就是求12个24是多少!
生12:我是用竖式进行计算的。先算4×2……(该生讲不太清楚竖式过程,教师请他在实物投影上展示自己的计算过程。竖式见下方板书所示)
师:这个竖式有些新鲜!请问,这里的48、24分别是怎么得到的?
生12:48是24乘2得到的,24是24乘1得到的!
师:那么,24为什么要这样写呢?歪歪扭扭的,不太舒服!
生12:因为12的“1”表示的是10,而24×10是240,所以4要对在十位上,2要对在百位上!
生13:我补充一下,这里虽然写着24,实际上表示的是24个十!
[评:为什么“24“的4要与十位对准齐,这是这节课的新知,也是这节课的难点。为突破这个难点,教师安排了学生自己介绍计算方法,让学生自己说出“24”实际上是240,它是由24乘10得到的,它表示的是24个十,这样的安排,对于学生明白算理算法有十分重要的意义。]
师:原来是这样!你是怎么知道这种方法的?
生12:书上看的!
师:阅读课文,获取知识,是数学学习的好方法!
[评:鼓励学生运用课本获取知识,培养学生的良好学习习惯。]
生14:我是把12拆成3×4,先算24×3=72,再算72×4=288。
生15:还可以把12拆成2×6,先算24×2=48,再算48×6=288。
(随着学生的算法介绍,教师相应予以板书)
(准备题)
师:真不简单!如此短的时间里面,我们居然能够发现这么丰富的计算方法。那么,叶老师很想知道,每种方法分别是借助什么旧知识解决新问题的呢?你可以选一种算法来谈一谈!
生16:我说第(1)种方法。这种方法借助了两位数乘一位数、两位数乘整十数、笔算加法三个旧知识来解决新问题的!
生17:第(3)、(4)两种方法是差不多的,都是用到了两位数乘一位数的旧知识!
生18:第(2)种竖式算法是借助两位数乘一位数的竖式笔算来进行计算的!
师:说得真好!在这些算法中,你比较欣赏哪一种算法?
生19:我喜欢笔算,非常简便。
生20:我觉得竖式比较好,容易算对。
生21:我喜欢第(1)种方法,因为它比较容易弄懂!
师:真是青菜萝卜,各有所爱!那就请你选择自己喜欢的一种方法计算23×13吧!
(请三位学生上台板演,结果其中两位同学用竖式计算,另外一位同学用上面的第(1)种方法计算。然后,教师请这三位学生代表阐述算法,并请同样选择该算法计算的同学举手示意。师生共同发现,原来全班同学用的都是这两种算法!)
师:老师发现,同学们计算“23×13”时选用的算法明显比“24×12”要统一了。那么,为什么这么多的同学都会选择这两种方法计算,而不去选择这种方法计算呢?难道你们事先商量过了吗?
[评:教师明知故问,目的是为了引起学生进一步思考,有些算法有局限性。]
生22:因为另外一种方法这里用不来!
师:为什么呢?
生22:如果把因数13拆成两个数相乘的样子,就会有余数了!不能拆的!
师:都是这样想的吗?
生合:是!
师:的确,这种方法有局限性,当题目数据不能拆成两数之积的形式时,这种方法就不能用了。而另外两种方法都能帮助我们计算。不知同学们是否发现,其实这两种方法也是有联系的。
(教师引导学生发现方法(1)横式与方法(2)竖式之间的联系:横式中的“24×2=48”相当竖式中的第一部分积“48”;横式中的“24×10”相当于竖式中的第二部分积“24”。对于横式和竖式中的这种联系,教师用“连线”方式在板书中表现出来。然后追问:“那么,为什么竖式里还是写24呢?引导学生再次理解这个“24”表示的是24个10)
师:正是因为考虑到了两种算法的内在联系,又为了使计算过程清晰,便于检查,所以小学阶段我们进行笔算的基本算法是竖式计算。并且,随着计算学习的不断深入,竖式计算过程清晰、便于检查的优势将会越来越明显!那么,请同桌两位小朋友讨论一下:我们刚才是怎样用竖式来计算“24×12”这道两位数乘两位数的?
[评:通过两种算法内在联系的分析,让学生体验到竖式(笔算)计算的优越性和学习竖式的价值。]
(学生讨论,然后结合板书中的竖式步骤进行汇报,教师适时体提问、适度点拨,并把笔算顺序用箭头予以清晰表示,同时在第一层积“48”旁边板书“48个1”,在第二层积“24”旁边板书“24个10”)
师:谁能连起来完整说说这道题的竖式计算过程?
(学生回答过程中,教师穿插提携:也就是说,先用因数24乘因数12的个位“2”;再用因数24乘因数12的十位“1”;再把两次的积加起来。)
师:这道题是不是完成了?还需要怎样?
生合:在横式后面写得数!
(教师示范补上答案)
师:仔细严谨,体现了我们学习数学的良好品质!
(单项训练:(1)把竖式补充完整;(2)竖式计算)
[评:《数学课程标准》中,在计算教学中提倡算法多样化。算法多样化的目的是能在计算教学中,加强数学思考,尊重学生的个性,体现因村施教,培养和发展学生的创新思维能力。教师根据教材的实际,能较好地处理算法多样化与算法优化的关系。让学生在经历具体算式的过程中,自主运用自己喜欢的方法进行计算。在具体的计算中,体验到竖式计算的的优越性:简洁、明白、通用,易检查,在这个过程中,教师始终作为学习活动的组织者、引导者,让学生在自主探索、合作交流中去体会各种算法,感悟和选择出最优的方法,这样既张扬了学生的个性,又能使学生认同算法优优化的必要性。]
三、小结
师:这节课,我们学习了什么内容?
生合:两位数乘两位数!
师:准确地说,我们学习的是两位数乘两位数的笔算。(补充课题,齐读课题)笔算“两位数乘两位数”,你想给同学们提些什么建议?
生23:第二个因数十位上的数去乘第一个因数时,积的末尾要与十位对齐!
生24:要弄清楚每个得数的意义,正确地写在相应的数位上!
师:整节课,我们是怎样学习“两位数乘两位数的笔算”算法的呢?
生25:是我们先自己试着做,然后老师帮助我们理解基本算法!
生26:是叶老师和我们一起研究出来的!
师:让我们应用所学的知识,来解决两个我们身边的实际问题!
[评:通过学生自己的探究与一定量的训练,让学生在经历具体的计算中,在应用中,进一步理解算理算法,并自己归纳出两位数乘两位数的计算方法,这样的安排使人觉得有“水到渠成、瓜熟蒂落”之妙!]
四、练习
(一)
师:刚到镇明小学,叶老师发现我们学校的班级三面红旗竞赛开展得红红火火!在上周一到周四的竞赛栏中,老师发现每个班都贴着12个五角星。根据这个信息,你能解决什么问题?
生27:3个班一共贴着多少个五角星!
生28:12个班一共贴多少个五角星!
师:好!请你帮助老师算一算“全校一至三年级所有班级一共贴了多少个五角星?”
生29:因为我们学校一至三年级一共有13个班级,所以应该用“12×13=156”来解决这个问题!
师:看了这则数据,叶老师发现我们大队部的老师非常辛苦。每周都要剪出这么多的五角星来开展三面红旗竞赛活动,请同学们珍惜这来之不易的竞赛成果!
[评:这是在浙江省小学数学“同上一堂”课浙江省第十届小学数学课堂教学交流评比活动上的比赛课。为了充分展现参赛选手的真正实力,本届大赛组委会——浙江省教育厅教研室特意确定了“同上一堂课”(选择相同教材)“现场抽签定课、集中封闭备课”的比赛方法。这是借班上课,如何在借班课中,学习材料尽量贴近学生的生活,教师是作了认真的思考。这里,教师能较好地运用了学校的现实资源,运用同学们经历过的班级“红旗竞赛”活动的材料,联系实际让学生计算,学生们感到很亲切。而且在计算以后教师通过数据对学生进行教育,教师的“辛苦”、“珍惜”两个词,充满着浓浓的人文关爱,使大家体会到了纯真的情!]
(二)
师:叶老师无意中翻了翻我们的语文课本,发现里面的课文很美。所以,忍不住找了一篇读了起来。(课件出示:赵州桥)大家学过这篇课文吗?(齐读课题)想一想,叶老师今天为什么把一篇语文课拿到数学课堂上来呢?
生30:让我们找一找里面有哪些数字?
生31:让我们算一算这篇课文一共有多少字数?
(就在这时,下课铃声响了)
师:那好,课后请同学们先估计这篇课文大概有多少个字,再应用今天所学的知识去验证一下这篇课文究竟有多少个字?好吗?
(下课)
[评:在运用中巩固知识,通过应用激发学生学习数学的兴趣,提高数学的意识。]
[总评:本节课理念新、设计巧、思路清、特色明。总观这节课体现了“简洁而充满活力,朴实而富有情意”的设计理念。它为公开课返璞归真,展示原生态的课,提供了成功的案例。
1、明确教学目标,重视算理算法的理解与应用。《数学课程标准》中指出:计算教学中,“要通过观察、操作、解决实际等丰富的活动,感受数的意义,体会数用来表示和交流的作用,初步建立数感” 。教师在教学中,不仅使学生会算,还通过学生自己的探究,懂得为什么这样算的道理。并在多种算法的比较中使算法得到了优化。
2、通过改进教学方法,促进学习方式的改变。著名数学教育家弗赖登塔尔认为:“学习数学的唯一正确的方法是让学生‘再创造’”。即让学生通过数学活动自己去探究、去寻找正确的方法。这本节课中,教师在学习探究两位数乘两位数的计算方法时,通过交流,让学生充分展示学习的思路,让学生充分感受到知识发生、发展的过程。让学生真正自己领悟数学知识掌握数学技能。教师组织学生创新,鼓励学生发表自己的观点、介绍不同的计算方法。如“请在四人小组里说说你的算法,也听听别人的算法!”“谁愿意与同学们分享你的计算方法?”“在这些算法中,你比较欣赏哪一种算法?”等等,让学生在交流中学会吸收,学会欣赏,学会评价。
3、教学内容联系实际,重视学生的体验与感悟。
数学课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
教师在引入阶段通过现实数学情境的创设,采取忆旧引新的方法,从复习两位数乘一位数笔算,两位数乘整十数的口算,再引出两位数乘两位的笔算。两位数乘两位数的计算,可以分解为两位数乘一位数和两位数乘整十数来计算,这里教师充分依据学生原有的知识和经验,复习旧知来为学习新知打下了扎实的基础。
4、关注学生良好习惯的养成,重视学习方法、学习策略的指导。我国近代教育家叶圣陶先生曾说过:“教是为了达到不需要教”。本节课自始至终都渗透着教师对学生进行学习方法、学习策略的指导,让学生自己能够运用不同的策略解决实际问题。重点让学生体验到了用旧知识解决新问题的方法。但又鼓励,学生根据各人的实际选用合适的策略。如看书,请教家长老师、同学间相互帮助、独立思考解决等。
5、课堂评价语运用恰到好处,时时处处都在关注促进学生的发展,激励学生学习更好地学习。如:“哦!面对新问题,我们各有高招!”“同学们的估算能力都真强!”“仔细严谨,体现了我们学习数学的良好品质!”“阅读课文,获取知识,是数学学习的好方法!”等都体现了教师看到学生在学习活动中的表现十分满意和欣喜。正是由于充满了人文关怀才使课堂如此温馨!
两位数乘法教案 篇5
做梦也没有想过,置身在村小任教的我能在市级课堂教学研讨会中与名师们同台竞技,面对面的交流。因此,非常感谢于科长给我们村小教师提供了这样一个观摩学习和成长的平台,更感激王主任给了我这样一次历练的机会。反思自己的课堂教学效果确实与后面两节差距较大。静下心来前后对比,剖析根源,具体体现在以下两个方面:
一、课前对学生的认知基础了解不足。
教材中要求“学习两位乘两位数(不进位)的笔算乘法”这一教学内容,必须建立在学生学习了笔算多位数乘一位数的基础上进行教学。所以课前对学生旧知识掌握程度的状态了解非常重要。而我在课前熟悉学生时,只是简单的测试了学生的两位数乘一位数和两位数乘整十数的口算、估算能力,忽略了对学生笔算两位数乘一位数的方法及算理的回顾,导致学生在课堂上叙述新知识的算理时造成障碍。假如再次上这节课的话,课前我还要补充一些两位数与三位数的笔算加法的复习,这样既避免了课堂中一位学生出现的两次相乘的积从高位加起的现象而节省时间,又对新知识的学习做了铺垫。
二、课中对教学的环节处理不细。
1.课堂预设没有踩准学生的思维线。
在教学中,围绕买书的情景设计了三个数学问题,前两个数学问题是学生能够解决的旧知识,第三个数学问题是新知识的呈现,学生能够顺利列式:24×12,我的此处预设是想让学生先口算,再估算,最后探索笔算,目的是想让学生感知解决生活问题的策略多样化,同时又为后面的探索口算与笔算的联系埋下伏笔。但是课堂实际脱离了我的预设,没有一位学生口算出结果。当时我脑海一片慌乱,一时不知如何引导,就舍弃此处马上进入了估算和笔算环节。与教材编者的意图不相符,导致本课的教学重、难点突破不到位,直接影响了学生的学习效果。现在想来,是我脱离了问题情境拉高了学生的思维线,如果当时能像于科长指点的那样,结合情境让学生尝试口算,问题就迎刃而解了。
2.估算环节的设计目的性不强。
“一堂好课精彩在课的设计,一堂高效的课重在学生从中收获了多少。”此时我才真正读懂这句话的含义。对比三节课,同样都有让学生估算的环节,但是每个人设计的意图不同,学生的收获也就不同。刘秀艳老师的设计意图重在让学生关注估算的应用价值,在解决实际问题时感受需要估多还是估少。吴名老师的设计意图是让学生学会通过估算锁定准确值的范围。而我的设计只是让学生“百花齐放”的估算了一把,没能给学生带来“估算”之外的收获。从中我也深受启发:在以后的备课中,每个环节设计前都要思考:到底能让学生收获什么。
3.教学方法不够科学、巧妙。
科学的方法是教学取得成功的前提。在教学中刘秀艳老师用画箭头的方法来帮助学生理解乘的顺序,感觉更直观、更易于学生理解。吴名老师采取了在竖式中找口算算式的方法,巧妙的引领学生加深了笔算的计算过程,都值得我学习和借鉴。
当然,在本节课中存在的问题还有很多,我会以此为契机,深入反思,努力学习,吸取新的教育理念,主动向名师请教,提高自身的素质和教学水平,让自己在这片肥沃的教育土地上茁壮成长!
两位数乘两位数的笔算乘法(不进位),是在学生已经掌握了多位数乘一位数的笔算乘法、两位数乘整十数的`口算的基础上进一步学习的。本节课的地位在于学习了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础,也为学生解决生活中遇到的因数是更多位数的乘法问题奠定基础。也就是说,本节课在这一单元起着至关重要的作用。本节课的教学关键①掌握乘的顺序;②理解用第二个因数十位上的数乘第一个因数是得多少个“十”,乘得的数的末位要和因数的十位对齐。
本节课以算理教学为支撑,以算法教学为目标,注重了学生的思维训练和数学思考,具有浓浓的“数学味”。主要体现在以下几个方面:
1.一“明”一“暗”两线并行,突出算理,掌握算法。
陈老师在上课伊始,渗透两道复习题,两道复习题放在新授课之前,是有着重要的意义。这两道题是两位数乘一位数和两位数乘整十数,这不仅是对原来所学知识的一个巩固,更重要的是紧紧抓住本节课的教学的起点,降低学生学习的坡度,让学生在不知不觉中深入新知识的学习中,实际上,学生在解决前面的两个问题时,就已经蕴含了两位数乘两位数竖式计算的道理,这是一个“暗处”所指。学生在列出算式后,经过自主探索,让新知识与已有旧知相结合,逐步解决问题,明确了乘的顺序和第二次相乘和积放在“十”位这一道理,这是一个“明处”。通过两条线的相互结合,突出了算理,让学生掌握了算法。
2.一“浅”一“深”相互交映,有效质疑,相机释疑。
由于有效铺垫的渗透,学生对新知存在着兴趣。在学生列出两位数乘两位数的算后,教师适时让学生在估算的基础上想办法计算出准确值,这是从一个很好的“浅入”的契机,目的突出学生自主能力,放手让学生自主解决“怎样算”的问题,让学生亲历学习计算方法的过程。由于本节课的重点之一是第二次积的书写位置,因此,老师在学生质疑的同时,适时提出“第二个4”为什么要写在“十位”上,可谓是“一石击起千层浪”,学生的思维在教师的引导下集中到这一焦点上,并想办法积极解决。在这个基础上,运用合作学习方式,让学生交流自己的计算方法,并相互评价。学生在合作交流中,体验解决问题的乐趣。这是“深”的表现。
3.一“加”一“减”活用教材,重视生成,达成目标。
教材是我们教学的载体,它要求教师从一个单纯的教材的使用者、执行者转变教材的开发者和研究者。因此教师根据学生思维特点和教学的需要,对例题进行了两个层次的改进,即把例题改变成12×4和12×20的形式,这一“加”是重视了学生学习的起点,为后续学习奠定了基础。在学生想办法进行计算12×24时,由于学生不善于运用口算的形式进行计算,即先算12×4,再算12×20,再将两次相乘的积相加,这个口算过程就是竖式的另一种形式,但在课堂上是没有看到的,陈老师并没有刻意的要求出现这一种结果,而是适时在学生都用竖式计算的基础进行交流、质疑,进而发现算理,掌握算法。一位专家说过,“课堂上是按照孩子们的思路去进行教学,还是按照你的思路去进行教学?这是教学指导思想的问题。”我想,这位专家的话给我们的启示是有着积极的意义的。学生都这么做了,我们没有必要再让学生回头思考口算的过程,我们最好的方式就是按照学生的思路进行上课,这一“减“也是至关重要的,是体现学生主体性的最好说明。
课堂永远是有着遗憾的地方,在这节课上也有着几点商榷之处,如在提升算法时再明确一些就更好了,教师的评价相对比较薄弱,这些都应当在以后的教学过程中有意地改进和加强。
三位数乘两位数教案汇总
幼儿教师教育网精选栏目推选:“三位数两位数教案”。
一位优秀的教师不打无准备之仗,会提前做好准备,提前编好教案是老师最为重要的一项工作。教案有利于教师整理教学内容,捋顺教学思维。我们应该怎么去写适合自己的教案?在此,你不妨阅读一下三位数乘两位数教案,希望能帮助到你,请收藏。
三位数乘两位数教案 篇1
一 、教学内容:
青岛版《义务教育课程标准实验教科书》数学(五四制)三年级下册P54信息窗3
二、教材分析
这部分内容是在学生掌握了三位数乘一位数、两位数乘两位数笔算方法的基础上学习的。学习两位数乘两位数时,学生已经掌握列竖式计算对位问题的算理和算法,这些都为学生探索发现新知做好了铺垫和准备。
三、学情分析
在学完两位数乘两位数后,学生已掌握了乘法运算的基本技能。从这个角度上说,本节课所学知识,属于旧知。所不同的仅仅是运算数据增大一些。根据学生已有的这个知识基础,在教学时放手让学生通过自主探索、亲身实践、合作交流等活动,自行总结笔算的方法。
四、教学目标
1、使学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法。
2、使学生获得运用已有知识解决新的计算问题的体会,感受数学知识和方法的内在联系。
3、学生在自主探索,合作交流中体验成功的愉悦,进一步树立学习数学的自信心,发展对数学的积极情感。
五、教学重点和难点
使学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法,并能正确计算。
理解“用两位数哪一位上的数去乘,乘得的积的末位就和那一位对齐”。
六、教学准备:多媒体课件
教学过程:
一、 复习旧知,导入新课 用竖式计算。38×49=
引导学生交流两位数乘两位数的计算方法。
【设计意图】复习旧知,为学习新的计算做好铺垫和准备。
二、 创设情境提出问题
1、谈话:青岛是奥运的伙伴城市,为了迎接奥运,青岛现在新建了高速公路。我们一起去施工现场吧。引出课本信息窗3的情境图。
【设计意图】借助奥运场景,让学生自己提出问题,培养学生发现问题的能力,促进学生积极主动的参与学习当中。
三、合作探究解决问题
1、解决问题:一期工程历时15个月,平均每个月修建213米。一期工程全长多少米?
(1)引导学生思考用什么方法计算?怎样列算式?
(2)鼓励学生用估算的方法解决问题。
213≈200200×15=3000
(3)列竖式计算
引导学生分析算理,在计算时应先算什么?再算什么?最后算什么?
重点说说两位数的十位数去乘三位数的个位时,积的末尾应写在哪一位上,理由是什么?
(4)运用估算进行检验。
估算的结果比实际结果怎样,为什么?
归纳总结:估算是近似值,不是精确值;列竖式计算结果精确,可以用精确值。
2、反馈练习
先估算,再列竖式计算。
287×63= 206×19=
引导学生学习因数中间有0的乘法,学生独立完成,交流计算方法,集体订正。
四、归纳总结
1、小结计算方法。
对照竖式,说说三位数乘两位数的方法是怎样的?
2、边读边填。
三位数乘两位数,先用两位数()位上的数去乘三位数,乘得的积的末尾和()位对齐,再用两位数()位上的数去乘三位数,乘得的积的末尾和()位对齐,最后把两次乘得的数()起来。
五、应用知识自主练习
1、列竖式计算。 185×14= 25×302 =
2、解决问题
(1)从濮阳到北京的单程车票是每人185元,旅游团一共有48人。这个旅游
团的单程车票一共需要多少元?
(2)摩天轮最大载重量是5000千克,三年级学生平均体重是25千克,三年级104人可以同时乘坐摩天轮吗?
【设计意图】通过练习,让学生在已有的知识和经验的基础上,掌握系统的数学知识,培养学生应用数学知识解决实际问题的能力。
【教学反思】
一、比较好的几方面:
备课时把握住了知识的前后联系。小学阶段对整数笔算乘法的最高要求是掌握三位数乘两位数的笔算,两位数乘一位数是笔算乘法的开始,两位数乘两位数是笔算乘法的关键。因为两位数乘两位数和三位数乘两位数同是乘数是两位数的乘法,如果熟练掌握了两位数乘两位数的笔算,再恰当的利用知识的迁移,学生肯定会很快的掌握三位数乘两位数的笔算。教学中学生能积极大胆的对其他同学计算过程中存在的缺点和不足及时指正,对于问题,通过学生之间的讨论,交流得出问题的答案,学生的学习效果比较明显。有效的培养了学生认真书写乘法竖式的习惯。教学的板书做到以身作则;相同数位如何对齐以及横线的画法;要求学生按要求书写
二、不足之处
在新旧知识的迁移过程中应多引导学生说出计算方法和过程,教师说得太多,因此没能更好的引导学生发挥积极自主的学习方式。在拓展应用环节,虽然学生的思路很清晰,但给学生的展示交流时间还不够充分,有些仓促,没能给学生提供更好的条件展示自己。
三、今后改进方面
教学中复习铺势要到位,唤起学生已有的知识,关注数学知识本身的逻辑联系,充分的利用已有知识学习新知,旧知迁移效果会更好。
三位数乘两位数教案 篇2
一、教学目标
(一)知识与技能
使学生理解掌握积的变化规律,尝试用简洁的语言表达积的变化规律,并能运用规律解决一些简单的问题。
(二)过程与方法
引导学生参与自主探究活动,经历观察发现、大胆猜想、举例验证、归纳总结积的变化规律的全过程,获得探索规律的基本方法和经验。初步渗透函数思想。
(三)情感态度和价值观
初步获得探索规律的一般方法和经验,发展学生的推理能力。
二、教学重难点
教学重点:发现、掌握并运用积的变化规律。
教学难点:初步掌握探究规律的一般方法。
三、教学准备
课件
四、教学过程
(一)揭示课题
口算比赛
(1)6×2 = (1) 20×4=
(2)6×20 = (2) 10×4=
(3)6×200= (3) 5×4=
师:两组算式的积分别得多少?你们怎么算得这么快呀?今天我们就来学习找规律——积的变化规律
(二)探究新知
1.研究因数乘几的情况
看来,这三个算式中可能隐藏着某些联系、某些规律,为了便于发现,我们就一起按一定的顺序来观察。
(1)6×2 =
(2)6×20 =
(3)6×200=
(1)三个都是什么算式?
乘号两边的两个数叫什么?乘得的结果叫什么?
(2)整体看这三个乘法算式,什么变了?什么没变?
下面我们就具体研究一下因数怎么变的,积怎么变的?积的变化有没有规律,有什么规律?积的变化规律。(板书课题:积的变化规律)
(3)从上向下观察这三个乘法算式:
从(1)式到(2)式,一个因数怎样?另一个因数怎样?积呢?看来(1)式和(2)式间有这种关系,还有哪两个算式之间存在这种关系?
从(1)式到(3)式,因数和积发生了怎样的变化?从(2)式到(3)式呢?两人互相说一说。
(4)刚才我们观察了(1)式和(2)式、(1)式和(3)式、(2)式和(3)式,你们发现什么共同的规律了吗?(在乘法算式中,一个因数不变,另一个因数乘几,积也乘几)
(5)我们通过观察这三个算式,发现了算式间的联系与变化,这个过程叫“观察发现”(板书:观察发现)。随后,我们根据发现进行了大胆猜想(板书:大胆猜想)――在乘法算式中,一个因数不变,另一个因数乘几,积也乘几。要想知道这个猜想是不是在任何情况下都成立,是否正确?我们可以怎么办?(板书:举例验证)
(6)两人一组举例验证,我们刚才的猜想是否成立。
(7)汇报。
(8)回忆一下,我们归纳这条规律经过了哪几个环节?
(观察发现、大胆猜想、举例验证,归纳结论。)
【设计意图】这一环节的设计,让学生不仅仅再次明确了本课知识点,更加明确了积的变化规律的探究策略,这样真正做到了授之以“渔”,为后面的探究做好方法铺垫。
2.研究因数除以几的情况
(1)由此你能猜到,在乘法算式中,还可能有什么规律?
(2)两人一组,用我们刚才的方法来研究:“在乘法算式中,一个因数不变,另一个因数除以几,积也除以几”这个猜想。
可以以口算题为例,也可以自己举例。
①20×4=
②10×4=
③5×4=
(3)汇报。
(4)通过验证研究,我们又发现了一个什么规律?
(在乘法算式中,一个因数不变,另一个因数除以几,积就除以几。)
(5)刚才举例验证时,另一个因数除以几都行吗?除以0行不行? 为什么?
这条规律还要补充什么?(板书:0除外)
3.归纳小结:
最开始,我们发现在乘法算式中,一个因数不变,另一个因数变化,积也变化。通过整节课的学习,能完整地说说因数和积是怎么变化的吗?
师:“谁能用一句话将发现的两条规律概括为一条?”(在乘法算式中,一个因数不变,另一个因数乘几或除以几(0除外),积就乘几或除以几。)
4.应用规律。
完成例3下面的“做一做”第1题
【设计意图】根据前面探究积的变化规律的方法,每一位学生都亲自去经历探究规律的方法,从而培养学生的探究能力,概括总结能力。
(三)规律拓展
研究“两数相乘,两个因数都发生变化,它们的积变化的规律。”(这部分内容作为弹性要求,应视学生情况决定是否选用。)
1.独立思考,发现规律。
请学生完成下列计算,并在组内述说自己发现的规律。
18×24= 105×45=
(18÷2)×(24×2)= (105×3)×(45÷3)=
(18×2)×(24÷2)= (105÷5)×(45×5)=
2.交流讨论,概括规律
组织全班交流,让学生用自己的话概括发现的规律,然后指导学生用数学语言进行概括:两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)相同的数,它们的乘积不变。
【设计意图】不同层次练习的设计,让学生真正把学到的知识应用于解决实际问题中,并激发学生进一步探究的热情,把学习引向课外。
(四)巩固练习
1.在○中填上运算符号,在□中填上数。
24×75=1800 36×104=3744
(24○6)×(75×6)=1800 (36×4)×(104○4)=3744
(24○3)×(75○□)=1800 (36○□)×(104○□)=3744
2.应用规律解决问题。
完成例3下面的“做一做”第2题
【设计意图】通过基本练习,让学生不断加深对规律的认识与理解,提升学生的观察能力、概括和归纳能力以及语言表达能力。通过解决实际问题,让学生切实感受数学与生活的联系。
三位数乘两位数教案 篇3
教学目标:
1、理解和掌握三位数乘两位数的计算方法。
2、探索积的定位方法,并能正确计算。
3、能利用竖式进行乘法运算。
4、使学生在主动参与学习活动的过程中,进一步体验估算学习对计算的帮助。
教学过程:
一、课前热热身:
1、笔算下面各题。2 35 8
2、谈话导入
同学们喜欢看奥运比赛吗?为迎奥运,青岛市要新建一条高速公路。一期工程历时15个月,平均每月修建213米,求工程全长就是求15个213是多少,用乘法计算。列式为213×15=米
3、学生进行估算,并说说想法。
213≈20xx00×15=3000
所以213×15≈3000(米)
4、通过诱导,引入新课。
刚才每位同学都进行了估算,那么究竟213×15的准确答案是多少呢?面对新问题,我相信同学们各有高招,这节课我们一起借助已经掌握的知识来解决今天遇到的新问题。(板书课题:三位数乘两位数)
(设计意图:创设了一个生活中学生比较熟悉的情境,希望学生能主动投入到估算中来,让学生通过估算,试图培养学生的数感,同时也使学生明确要解决的问题,用已有知识来解决新问题是数学学习的重要方法。)
二、自主探究,尝试解决问题
1、学生独立思考,自己试着在练习本上算一算。有困难的,可以参考课本中的算法进行计算。
2、教师巡回指导,特别关注学困生。
(设计意图:先让学生估算,再尝试笔算,实现了估算、笔算的有机结合。同时,允许不同层次的学生采取不同的学习方法,较好地体现了“关注差异、因材施教”的教学原则。)
三、交流汇报、归纳解题策略
1、小组交流计算方法请同学们在四人小组里说说你的算法,也听听别人的算法。
2、全班交流,汇总策略以小组为单位,每小组推荐一位代表向全班同学汇报本组的学习成果。
(1)、充分展示学生的研究成果,学生的解题策略可能有:
①213×10=2130213×5=10652130+1065=3195②213×3=639639×5=3195
③213×5=10651065×3=3195④利用竖式
(2)、通过比较,着重指导,从而理解算法,掌握方法。
(3)、请学生算一算213×15,目的是让学生发现方法二、三的局限性,从而更好的体会学习竖式的价值。
(设计意图:让学生通过对不同方法的比较、算法之间内在联系的深入分析,从中逐步体验到竖式计算简洁、明白、通用、易查的优越性,体验到竖式计算的优越性和学习竖式的价值。在这个过程中,注重引导学生在自主探索、合作交流中体验各种算法。感悟和选择出最优的方法。)
四、应用深化,总结计算方法
1、教师小结:三位数乘两位数的笔算方法:先用两位数个位上的数去乘三位数,得数的末位数和两位数的个位数对齐,再用两位数十位上的数去乘三位数,得数的末位数和两位数的十位数对齐,然后把两次乘得的数加起来。
2、出示38页例:让学生自主完成,教师指导。
3、用你喜欢的方法算一算:列竖式计算。205×63=138×27=
294×25=382×45=
五、总结这节课我们学习了什么?布置课后作业。(38页自主练习)
教学反思:
本节课,我把学习的主动权教给学生,让学生主动地学习,成为学习的主人,在让学生自主探索的过程中,我尽我所能当好一个引路人的角色,放手让学生自己尝试和总结计算步骤,从运用已有知识解决问题,到引导学生说笔算方法,学生始终处于学习的主体地位,我只是铺路引路。学生在与他人交流中经历了三位数乘两位数法笔算方法的得出过程,获得了运用已有知识解决新的计算问题的体会,体会到成功的喜悦,增强了学习数学的兴趣和自信。
三位数乘两位数教案 篇4
教学内容:三位数乘两位数的笔算
教学目的:
1、使学生进一步掌握三位数乘两位数的方法,自己提高熟练程度。
2、使学生在计算时遇到连续进位问题时会正确计算。
3、培养学生初步的分析、类比、计算能力。
教学过程:
一、创设情境,激发兴趣
同学们,0年广州亚运会取得圆满成功。广州市在比赛前作了大量的准备工作,咱们一块儿去了解一下关于修建高速公路方面的信息。
(多媒体出示)为迎亚运,广州市修建了高速公路。一期工程历时14个月,平均每月修路86米;二期工程历时15个月,平均每个月修建213米;三期工程历时12个月,平均每个月修建260米。
师:根据这些信息,你能提出什么数学问题?
生交流,师选择性板书:
一期工程全长多少米?
二期工程全长多少米?
三期工程全长多少米?
师:一期工程全长多少米?请同学们做在练习本上。比比谁做得又对又快。学生交流算法。
二、自主探究,解决问题:
(一)探究新知:因数中没有0的三位数乘两位数的笔算
解决问题:二期工程全长多少米?
1、生列算式,师板书:213×15
2、揭示课题:
师:这两个算式有什么不同?
这节课我们就一起来学习:三位数乘两位数的笔算
(板书课题:三位数乘两位数的笔算)。
学生试做,抽一生板演。
做完小组内交流做法。
3、集体交流。(出示错误做法。)
1)展台展示,学生错误原因。
重点交流:用第二个因数的十位数去乘第一个因数的个位数时,积的末位应该写在哪一位上,说明理由。
(2)黑板板演的学生说一说计算过程:先算什么?再算什么?最后算什么?师根据学生的说法板书:213×5的积,213×10的积。
4、小练习:456×19208×37
(二)探究新知:因数末尾有0的三位数乘两位数的笔算。
解决问题:三期工程全长多少米?
1、生试做。
2、师巡视,展台展示不同做法。
260260
×12×12
重点讨论:为什么积的末尾要加上0?(强调简便结果是384个10)
3)算法最优化:哪种做法更简便?
3、两个因数末尾都有0
出示320×30,会做吗?
学生试做。
展示交流多种算法。
4、:在计算因数末尾有0的乘法时应注意什么?
计算因数末尾有0的乘法,可以先用0前面的数相乘,再看两个乘数的末尾一共有几个0,就在乘得的积的末尾添几个0。
三、巩固拓展
1、第55页第1题
2、第57页第8题生自己在书上改正后指名说说错误之处及错误原因。
四、这节课你学会了什么?说说计算中应注意哪些问题?
三位数乘两位数教案 篇5
教学内容:人教版第七册课本P49 一P50
教学目标
1 、知识技能目标:让学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位
数的笔算方法,能正确地进行计算。
2 、情感与态度目标:让学生获得运用已有知识解决新的计算问题的体会,体验成功的愉
悦,进一步树立学习数学的自信心。
教学重点:
根据本节课的教学目标,本课的教学的重点为掌握三位数乘两位数的笔算方法。
教学难点:
三位数乘两位数笔算时的进位。
教学过程:
(一)、复习导入
1 、回顾上一节所学的内容。
2 、电脑课件出示口算题:23X20 = 42X30 =
3 、课件接着出示估算题:
23 X 19 = 42 X 29 =
23 X 21 = 42 X 31 =
4 、笔算下面各题。
1 6 4 3 3 8 65
X 2 1 X 1 5 X 4 4 X 34
先要求学生独立完成,然后再请四位学生上台板演,讲评时请同学们说说计算步骤和要点。
学生自己动手完成并思考:用竖式计算乘法你有哪心得可以与大家交流一下?
5 、总结:两位数乘两位数,先用第二个乘数的个位与第一个乘数相乘,再用第二个乘数的十位与第一个数相乘,最后把两次乘的结果相加。
(二)、讲授新课。
1 、课件出示:李叔叔从某城市乘火车去北京用了12 小时,火车1 小时约行145 千米。该城市到北京大约有多少千米?
2 、认真读题,弄清题意,明确已知条件和问题。提问:李叔叔的城市离北京有多远?你能解决吗?
3 、独立列式:145 x12 =
师:观察这算式,你发现和我们以前所学得乘法算式有什么不同吗?(三位数乘两位数,两个因数都没有0 .· · … )提问:你能运用估算知识猜一猜:李叔叔家离北京大约有多远吗?说一说你的想法?
4 、经历计算过程。
( l )请学生估一估145 xlZ 的大致范围。估算一:把145 看成150
15Ox1O 得1500
15Ox2 得300
1500 + 300 = 1800
145
145XIO = 1450
12 > 10 ,所以结果应比1450 米大。
( 2 )笔算。你们已经学过了两位数乘两位数的笔算方法,现在请你们尝试列竖式计算
145X12 。
师:你能用竖式计算出准确答案吗?有困难的,可以参考课本中的算法进行计算。
① 学生独立尝试笔算,教师巡视课堂,特别关注平时计算错误率高的同学,看看他们每一部分积的书写位置和计算结果是否正确。
② 反馈计算结果,要求学生回答:
先算什么?(先算145 x2 )
再算什么?(再算145 xlo )
最后算什么?( 2 个145 与10 个145 的和)
注意什么?(两部分的相同数位要对齐)
学生交流汇报、归纳解题策略
( 1 )、同桌之间交流计算方法
请同学们与同桌说说你的算法,也听听别人的算法。
( 2 )、全班交流,汇总方法
( 3 )、通过比较,着重指导,从而理解算法,掌握方法。
应说以下几点:( 1 )、数位对齐;( 2 )先算2 火145 ( 3 )再算1 x 145 ( 10 X 145
) ; ( 4 )、最后将两次乘法结果相加。(黑板板书)
板书:145x12 = _千米
1 45
X 12
2 90
1 45
1 7 40
师:说一说,三位数乘两位数的计算方法与步骤和两位数乘两位数的有什么区别和联系。
生:我们发现三位数乘两位数同两位数乘两位数的计算方法是一样的。它们都是先用第二个乘数的个位去乘第一个乘数,积的末尾和个位对齐,再用第二个乘数的十位去乘第一个乘数,积的末尾和十位对齐,最后把两次乘得的积加起来。
④ 对照自己的估算结果,算一算估算值与准确值的误差,是否是合乎实际,以提高学生
估算的真确性。
(三)、巩固练习
l 、课本49 页“做一做”
这是三位数乘两位数的基本练习,要求学生独立用竖式计算,以巩固三位数乘两位数的笔
算方法。每个学生独立完成后,各自用计算器自行检验。2 、练习七第3 题。
164X32 = 54X145 = 254X36 =
2 1 7 X 83 = 43 X 139 = 328X25 =
提示学生:怎样列竖式可使计算方便些?让学生在自主探索、对比的基础上反思,明白在列竖式时,上面一行写三位数,下面一行写两位数,这样计算比较方便。同时提醒学生书写要工整,数位要对齐,计算要仔细。
(四)、总结
这节课我们学习了什么?
免责声明:除正式文件通知外,好研网所有文章及所有评论只代表作者个人观点,不代表好研网及海南省教育研究培训院任何观点,所有文章文责自负,若有任何非法及不当信息,请与我们联系,我们会在第一时间作出相应的处理。
三位数乘两位数教案 篇6
教学内容:
三年级下册教科书第51页。
教材分析:
本课内容是学生学习了两位数乘一位数和整百数乘整十数口算的基础上进行的,是把三位数乘两位数的估算转化到整百数乘整十数的口算上来,让学生借助已有的学习经验,创设现实的学习情景,增加学生自主探索、合作交流、观察对比的机会,培养学生的估算能力。
学情分析:
三年级学生在第一学段已经多次经历过估算,对于估算的基本方法学生并不陌生,教学时应充分放手让学生通过自主探索,引导学生自主归纳总结估算的方法,进一步体会算法多样化与算法优化的关系,有意识地引导学生从多种方法中选择一种合理的、简洁的方法进行估算。
教学目标:
1、在解决实际问题的过程中,学会估算的方法,并能熟练地进行估算。
2、在解决问题的过程中,逐提高提出问题和解决问题的能力,体会解决问题策略的多样性。
3、在具体的情境中,能对估算的结果作出合理的判断,体会估算的必要性。
教学重点:
使学生学会估算的方法,并能熟练的进行估算。
教学难点:
选择一种合理的、简洁的方法进行估算。
教学过程:
一、创设情境,提出问题
1、谈话导入
师:同学们,我们已经知道2008年奥运会的帆船比赛在青岛举行。为了办好奥运会,青岛人人都积极行动起来,想知道青岛的小学生在做什么吗?请看大屏幕出示情境图。
2、搜集信息。
师:仔细情境图,你看到了什么?
生1:我看到我为奥运种棵树几个字。
生2:育才小学有18个班,平均每班发223包树种。
生3:光明小学有12个班,平均每班发340包树种。
3、提出问题。
师:同学们观察得真仔细,为了美化青岛,青岛市政府向全社会发出了倡议书,还免费向市民发放树种呢,人们积极响应政府号召,植树造林。根据两位小同学的介绍,你能提出什么数学问题?
生1:我想知道育才小学发了多少包树种?
生2:我想知道光明小学发了多少包树种?
三位数乘两位数教案 篇7
教学目标
1、知识与技能目标:让学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法,能正确地进行计算。
2、能力目标:让学生通过两位数乘两位数到三位数乘两位数知识的迁移,感受数学知识和方法的内在联系,培养学生迁移类推的能力和解决简单实际问题的能力。
3、情感与态度目标:让学生获得运用已有知识解决新的计算问题的体会,体验成功的愉悦,进一步树立学习数学的自信心。
教学重点和难点
教学重点:
探索并掌握三位数乘两位数笔算乘法的方法,能正确地进行计算。
教学难点:
让学生理解三位数乘两位数的计算中用第二个因数十位上的数去乘第一个因数,积的末尾应写在什么位置上。
教学过程
一、复习铺垫
同学们,车白泥小学一年一度的计算大赛即将开始,你们有信心赢得比赛吗?
一、赛前热身
1、牛刀小试
哪两位同学愿意请战?
白板出示竖式笔算:24×12= 19×12=
同学们说一说计算方法,竖式计算乘法要注意哪些问题?
2、脱口而出
口算怎么又快又准确的得出答案呢,能分享一下你的计算秘籍吗?
如果是142X12这样的三位数乘两位数,又该怎么算呢?
板书课题:三位数乘两位数
请同学们以同桌为小组,开展合作学习,动笔试一试……
指导并指名学生汇报,参照两位数乘以两位数的计算方法,计算三位数乘与两位数时,需要注意哪些问题?你能说一说吗?
团结协作的力量无穷大,看来,这个赛前热身对同学们来说,真的是小菜一碟,接下来的项目你们还敢继续挑战吗?看招。
二、东想西算
情境导入:
(白板出示)
普者黑风景区位于文山州丘北县境内,风景优美,景色宜人,是国家5A级景区。这不,家住广州市的李桐和爸爸慕名而来。
1、白板出示题目:火车行驶了12小时,每小时行驶195千米。广州市到普者黑景区有多少千米?
2、你想怎么列式? 195×12=(千米)
3、195 X 12,怎样来计算?
(1)你能运用估算知识猜一猜吗:广州市到普者黑景区大约有多少千米?说一说你的想法?
(2)你能用竖式计算出准确答案吗?试着做一做,在计算时,想一想这道题与142 X12相比较,有哪些值得注意的地方。
①学生独立思考,自己试着在练习本上算一算。尝试算出195×12的结果,并对照估算的情况,算一算估算值与准确值的误差是否合乎实际。
②巡回指导,特别关注计算有困难的学生。
③交流汇报、归纳解题策略。理解算理,掌握算法。
4、学生互相说算法。
5、你想提醒大家笔算时要注意那些问题?(引导学生说出做题过程中的易错点)
6、验算。你会验算吗?你有没有什么好的想法愿意和同学们分享?
三、计算接力赛----谁是计算大王
接下来这个项目就对我们班同学团结协作能力的考验了,要赢得此项比赛,就要有赖于同学们的默契合作了。我们即将选出六位骁勇善战的计算能手来出战。
结论:仔细观察上面的各道算式,想一想:三位数乘两位数积是( )位数或( )位数。
四、加时赛:
1、134×12176×47 425×36237×82
2、文山市思源实验学校平均每个班有32人,共有116个班,思源实验学校一共有多少人?
通过我们全班同学的努力,我们赢得了此次比赛的胜利,恭喜同学们!
五、课堂总结,学以致用
回顾一下这节课,你有什么收获想和大家分享吗?
三位数乘两位数教案 篇8
三位数乘两位数教案(青岛版)
教法:新授
教学目标:
1、理解和掌握三位数乘两位数的计算方法。
2、探索积的定位方法,并能正确计算。
3、能利用竖式进行乘法运算。
4、使学生在主动参与学习活动的过程中,进一步体验估算学习对计算的帮助。
教学过程:
一、课前热热身:1、笔算下面各题。2358
2、谈话导入
同学们喜欢看奥运比赛吗?为迎奥运,青岛市要新建一条高速公路。一期工程历时15个月,平均每月修建213米,求工程全长就是求15个213是多少,用乘法计算。列式为21315=米
3、学生进行估算,并说说想法。
213xx0015=3000
所以213153000(米)
4、通过诱导,引入新课。
刚才每位同学都进行了估算,那么究竟21315的准确答案是多少呢?面对新问题,我相信同学们各有高招,这节课我们一起借助已经掌握的知识来解决今天遇到的新问题。(板书课题:三位数乘两位数)
(设计意图:创设了一个生活中学生比较熟悉的情境,希望学生能主动投入到估算中来,让学生通过估算,试图培养学生的数感,同时也使学生明确要解决的问题,用已有知识来解决新问题是数学学习的重要方法。)
二、自主探究,尝试解决问题
1、学生独立思考,自己试着在练习本上算一算。有困难的,可以参考课本中的算法进行计算。
2、教师巡回指导,特别关注学困生。
(设计意图:先让学生估算,再尝试笔算,实现了估算、笔算的有机结合。同时,允许不同层次的学生采取不同的学习方法,较好地体现了关注差异、因材施教的教学原则。)
三、交流汇报、归纳解题策略
1、小组交流计算方法请同学们在四人小组里说说你的算法,也听听别人的算法。
2、全班交流,汇总策略以小组为单位,每小组推荐一位代表向全班同学汇报本组的学习成果。
(1)、充分展示学生的研究成果,学生的解题策略可能有:
①21310=21302135=10652130+1065=3195②2133=6396395=3195
③2135=106510653=3195④利用竖式
(2)、通过比较,着重指导,从而理解算法,掌握方法。
(3)、请学生算一算21315,目的是让学生发现方法二、三的局限性,从而更好的体会学习竖式的价值。
(设计意图:让学生通过对不同方法的比较、算法之间内在联系的深入分析,从中逐步体验到竖式计算简洁、明白、通用、易查的优越性,体验到竖式计算的优越性和学习竖式的价值。在这个过程中,注重引导学生在自主探索、合作交流中体验各种算法。感悟和选择出最优的方法。)
四、应用深化,总结计算方法
1、教师小结:三位数乘两位数的笔算方法:先用两位数个位上的数去乘三位数,得数的末位数和两位数的个位数对齐,再用两位数十位上的数去乘三位数,得数的末位数和两位数的十位数对齐,然后把两次乘得的数加起来。
2、出示38页例:让学生自主完成,教师指导。
3、用你喜欢的方法算一算:列竖式计算。20563=13827=
29425=38245=
五、总结这节课我们学习了什么?布置课后作业。(38页自主练习)
教学反思:
本节课,我把学习的主动权教给学生,让学生主动地学习,成为学习的主人,在让学生自主探索的过程中,我尽我所能当好一个引路人的角色,放手让学生自己尝试和总结计算步骤,从运用已有知识解决问题,到引导学生说笔算方法,学生始终处于学习的主体地位,我只是铺路引路。学生在与他人交流中经历了三位数乘两位数法笔算方法的得出过程,获得了运用已有知识解决新的计算问题的体会,体会到成功的喜悦,增强了学习数学的兴趣和自信。
[个人简历]
赵宪光,男,汉族,1963年11月出生,现年50岁,1982年毕业于益都师范学校,现任宋池小学教师,小教高级,教龄30年。自从教以来,热爱教育事业,刻苦钻研教材,形成了独特的教学风格。
三位数乘两位数教案 篇9
一、教学目标
1.使学生理解三位数乘两位数乘法的算理,掌握三位数乘两位数乘法的笔算方法。
2.把笔算和简算结合起来,培养学生的计算能力。
3.培养学生应用知识解决实际问题的意识和能力。
二、重点难点
理解三位数乘两位数乘法的算理,掌握笔算方法。
三、教学过程
(一)导入
1、国庆长假快到了,小丽一家决定从广州坐火车到北京旅游。看了这幅图,你看见了哪些数学信息?
2、如何解决这个问题呢?谁来列式?
(二)探究新知
1、回答并板书:114X21三位数乘两位数应该怎样计算呢?(出示课题)
2.探索方法
(1)让我们先来估计一下,从广州到北京大约有多少千米?
(2)那这道题的正确答案究竟是多少呢?请你用课堂本进行计算解答。
(3)四人为一小组交流一下你的计算方法,并说一说理由。
(4)汇报方法并板书。说说其中的道理。
(5)竖式请人说,再说,提问:这里吴老师就有一个疑问了,1X4得4写在个位上我理解,可是这个2X4得8的8为什么不写在个位上却要写在十位上呢?2280是114X20得到的,114是114X1得到的。那么这个228中的两个2表示的意义一样吗?各表示什么?
(6)在计算完以后,我们来对照一下我们的计算结果与我们的估算结果怎么样?很接近,那么我们在做题之前可以先估计一下积的范围,在计算完以后还可以对照一下估算的结果,检查自己的计算是否正确。接下来我们把这道题补充完整。横式和答。
四、练习
1、现在小丽一家已经在火车上,我们去听听他们都在议论些什么?(生回答)
2、你想帮他们解决哪一个问题,就请你用课堂本进行解答。
3、展示学生答案:118X12=1416(个)125X11=1375(元)
4、火车不停地向前行驶,现在他们到哪了呢?让我们一起去看看?
5、那到底火车已经行驶了多少千米呢?离北京究竟还有多远?让我们一起来计算一下吧。
114X18=20xx(千米)2394-20xx=342(千米)
6、看来小丽一家就快要到北京了,那么在此,我们祝福小丽一家一路顺风,旅途愉快!
:今天这节课,我们帮小丽一家解决了旅途中的一些数学问题,那要想准确地计算出三位数乘两位数的结果,要注意些什么?
(在计算的时候,我们要先从个位乘起,乘到哪一位就要把积的末尾写在那一位上)
五、数学游戏(抢占阵地)。
三位数乘两位数教案 篇10
三位数乘两位数估算教案
教学目标:
1.理解和掌握三位数乘两位数的估算方法。
2.使学生在主动参与学习活动的过程中,进一步体验估算学习对计算的帮助。
3.体验估算在实际生活中的应用。
教学过程:
一、课前热热身
1.估算下面各题。392199199899
2.谈话导入育才小学有18个班,平均每班发223包树种。光明小学有12个班,平均每班发340包树种。你能提出什么问题?
二、合作探索,尝试解决问题
1、育才小学大约发了多少包树种?
2、教师巡回指导,特别关注学困生。
三、交流汇报、归纳解题策略
1.小组交流计算方法请同学们在四人小组里说说你的算法,也听听别人的算法。
2.全班交流,汇总策略以小组为单位,每小组推荐一位代表向全班同学汇报本组的学习成果。
223200
1820
xx0=4000
大约发了4000包树种。
答:育才小学大约发了4000包树种.
3、请学生估算34012
4、教师巡回指导,特(更多请搜索es;19713497950260401
409932118301389822
2.营丘小学有23个班,平均每班植树198棵。一共大约植树多少棵?
六、同桌互相交流学习所得。
七、教师总结这节课我们学习了什么?布置课后作业。(35页自主练习)
三位数乘两位数教案 篇11
新人教版四年级上册数学《三位数乘两位数》教案
教材分析
课标中对本节内容的要求是:能笔算三位数乘两位数的乘法。关于整数乘法运算的学习,本学期已进入了尾声。即本单元的学习内容是义务是义务教育阶段整数乘法的最后一个知识块。它是在学生掌握了两位数乘两位数的计算方法的基础上进行教学的。教学中两位数乘两位数的算理和算法都将直接迁移到三位数乘两位数笔算中来,因此,学生对算理和算法的理解和探索并不会感到困难,但是,由于因数数位的增加,计算的难度也会相应的增加,计算中就会出现各种不同的情况,因此,这一课的学习对学生来说也是非常必要。学习这部分内容,有利于学生完整地掌握整数乘法的计算方法,为今后进一步学习小数乘法奠定基础。
学情分析
1〃学生学习基本情况:这个班大多数学生的计算能力较强,书写比较规范。但这个班学习不够积极,上课不喜欢个别回答问题,只喜欢集体回答。2〃学生认知发展分析:这节课是在学生掌握两位数乘两位数的笔算基础上进行教学的,教学中两位数乘两位数的算理已理解了。
3〃学生认知障碍点:由于因数数位的增加,计算的难度也会相应的增加,计算中就会出现各种不同的情况。
教学目标
1、知识与技能目标:让学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法,能正确地进行计算。
2、能力目标:让学生通过两位数乘两位数到三位数乘两位数知识的迁移,感受数学知识和方法的内在联系,培养学生迁移类推的能力和解决简单实际问题的能力。
3、情感与态度目标:让学生获得运用已有知识解决新的计算问题的体会,体验成功的愉悦,进一步树立学习数学的自信心。
教学重点和难点
教学重点:探索并掌握三位数乘两位数笔算乘法的方法,能正确地进行计算。教学难点:让学生理解三位数乘两位数的计算中用第二个因数十位上的数去乘第一个因数,积的末尾应写在什么位置上。
教学过程
一、复习铺垫
1、口算热身:每组算一题其他组作判断。
16423041931804
2、竖式笔算:4512=
学生自己动手完成,说一说计算方法,竖式计算乘法要注意哪些问题?
二、情境导入:
同学们知道我们南宁人的精神是什么?能帮就帮,那你们愿不愿意帮助一个身患重病的同学呢?昨天我们中心校倡议同学们为一个身患重病的同学捐款,对吗?据了解已经有一个班捐得了145元钱,如果每个班都捐得145元,我们中心校共有几个班级呀?(12个班),你想提什么问题?(一共能捐多少元呢?)
1、板书题目:每个班捐145元,我们学校共有12个班,一共捐得多少元钱?
2、你想怎么列式?14512=(元)
3、观察这算式,你发现和我们以前所学得乘法算式有什么不同吗?
4、揭示课题:三位数乘两位数。
5、145x12,你想怎样算?
(1)你能运用估算知识猜一猜:全校共有12个班,一共捐得多少元钱?说一说你的想法?
(2)你能用竖式计算出准确答案吗?今天我们就重点来研究三位数成两位数的笔算方法。(板书)
①学生独立思考,自己试着在练习本上算一算。尝试算出14512的结果,并对照估算的情况,算一算估算值与准确值的误差是否合乎实际。有困难的,可以参考课本中的算法进行计算。
②教师巡回指导,特别关注有困难的学生。
③交流汇报、归纳解题策略。理解算理,掌握算法。
6、学生互相说算法。
7、你想提醒大家笔算时要注意那些问题?(学生畅所欲言。)验算。
8、观察归纳乘数是两位数的乘法法则。
三、练习:
1、基本练习〔目的:达到正确,快速,对新知识的巩固和加强〕分层测试卡基本练习的第一题,能做几题就做几题。(讲评时提醒学生最后一题可交换因数的位置,使计算简便)
279315456928287
结论:仔细观察上面的各道算式,想一想:三位数乘两位数积是()位数或()位数。
2、变式练习〔目的:针对易错点进行改错〕课本51页第7题说出右面计算中的错误,并把它改正过来。
3、分层测试卡的基本练习第3题。
四(2)班有35名学生,每人交书费116元,一共交书费多少元?
四、课堂总结,学法提炼
回顾一下这节课,你有什么收获想和大家分享吗?
师:回顾一下刚才你们是怎样学会的?通过哪些办法?
三位数乘两位数教案十篇
教案课件是我们老师工作的一部分,相信老师对写教案课件也并不陌生。教师编写教案是向学生传授知识的重要手段之一,好的教案课件需要注意哪些方面呢?接下来是小编为您精选的“三位数乘两位数教案”内容,您可以相信这篇文章会为您提供一些灵感!
三位数乘两位数教案 篇1
教学目标:
1.在自主尝试计算、交流等活动中,经历学习三位数乘两位数乘法计算的过程。
2.掌握三位数乘两位数的笔算方法,能用竖式计算三位数乘两位数的乘法。
3.在运用已有经验自主学习新知识的过程中,培养迁移、类推的能力,体验自主学习的快乐。
教学方案:
教学环节设计意图教学预设
一、问题情境
1.师生谈话,由早餐谈起,引出磨面粉的问题。
2.学生读题、观察情境图,了解数学信息和要解决的问题。
由早餐引出磨面粉的问题,使学生感受到数学与生活的联系。
自主读书和交流信息是学生应具备的能力,也是解决问题的必要准备。
师:同学们,谁愿意给大家说一说你今天早晨吃的什么饭?
学生可能回答:面包、馒头、鸡蛋、煎饼
师:你们知道我们每天吃的面包、馒头等食物都是由什么做的吗?
生:面粉。
师:对,我们每天吃的馒头、面条等首先是农民伯伯种的小麦,然后还要经过工人叔叔把小麦磨成面粉,才能做出来。今天我们一起来解决一个面粉加工的问题,请同学们看课本第14页。
学生看书。
师:说一说你了解到了哪些信息?要解决的问题是什么?
生1:一台面粉机每小时可以磨面粉158千克。
教学环节设计意图教学预设
二、自主学习
1.根据这台面粉机一天可以磨面多少千克?的问题,师生列出15824的乘法算式。然后,教师启发学生根据两位数乘两位数的笔算方法自主尝试计算三位数乘两位数。要求先用竖式计算,再用计算器检验。
2.交流计算过程和结果。先了解哪些同学没有算对,再请学生说竖式计算过程,教师板书,就竖式计算时两个部分积中6的书写位置进行讨论。
给学生提供在已有知识的背景下自主探索三位数乘两位数笔算方法的空间,培养学生知识迁移和类推能力。用计算器进行检验,使学生及时获得自主学习的成功感或发现自主计算中的问题。
了解哪些同学没有算对,是对学习稍差学生的关注,师生共同完成竖式计算是使全体学生经历计算方法的形成过程。
生2:一天有3班工人工作。
生3:一天是24小时。
生4:问题是这台面粉机一天可以磨面粉多少千克?
师:要求这台面粉机一天可以磨面多少千克?怎样列式?
学生说算式,教师板书:
15824=
师:以前我们学过两位数乘两位数的竖式计算,158乘24是一道三位数乘两位数的计算,你们能根据两位数乘两位数的计算方法,自己算出这道题的计算结果吗?试一试!先用竖式计算,再用计算器检验一下,看竖式算的对不对。
学生自主,教师巡视,个别指导。
师:谁用竖式计算和计算器计算的结果不一样?
如果有不一样的,不讲怎样算的,只分别说一下两种方法计算的结果。
师:两种方法计算结果是一样的,大家来说一说你是怎样用竖式计算的?你们来说,我来板书。
生1:先写出158乘24的竖式。
师:2乘4分别写在哪?
生1:2写在5的下面,4写在8的下面。
教学环节设计意图教学预设
教师完成板书:
158
24
师:先算什么?
生2:先用24个位的4去乘158每一位上的数。
师:好,继续说。
学生说,教师板书:
158
24
632
师:谁来说一说百位上这个6是怎样算出来的?
生3:4乘158百位上的1得4,再加上进位的2就是6。
师:下面算什么?
生4:接着用24十位上的2乘158每一位上的数。
师:好!2乘8,二八十六,1怎么办?6应该写在哪儿?
生5:向十位进1,6应该写在十位上。
教师板书:
158
24
632
6
师:谁能说一说为什么这个6要写在十位上?
生6:23十位上的2表示2个
教学环节设计意图教学预设
3.师生共同归纳、总结三位数乘两位数的笔算方法。先让同学讨论一下,再全班交流,最后教师完整口述。
在学生学会计算的基础上,总结、概括计算方法,是对学生已有计算经验的总结和提升。
十,2个十乘8得16个十,向百位进1后,还剩6个十,所以这个6要写在十位上。
学生继续说计算过程,教师完成板书:
158
24
632
316
3792
如果有出现计算错误的同学,请他们说一说错在哪。
师:结合我们刚才的计算,谁能说一说三位数乘两位数的笔算方法呢?先同桌讨论一下。
学生同桌讨论,教师巡视。
师:谁来说一说你总结的方法?每人说一条。
生1:用两位数个位和十位上的数依次分别乘三位数中每一位上的数。
生2:用两位数哪一位上的数去乘,乘得的积的末位就和哪一位对齐。
生3:把两次乘得的数加起来。
最后,教师完整口述三位数乘两位数的笔算方法:
三位数乘两位数先用两位数个位上的数去乘三位数,得数的末位和两位数的个位对齐,再用两位
教学环节设计意图教学预设
三、拓展练习
1.提出:这台面粉机一星期能磨面粉多少千克?的问题,让学生说出不同的算法,教师板书出有关算式。然后用激励性的语言鼓励学生自主计算。
充分利用教材,设计拓展型计算练习。给学生提供尝试进行四位数乘一位数和三位数乘三位的空间。
数十位上的数去乘三位数,得数的末位和两位数的十位对齐,然后把两次乘得的数加起来。
师:刚才,我们计算出了这台面粉机一天可以磨面粉3792千克。如果要求这台面粉机一个星期能磨面粉多少千克?可以怎样计算?
学生可能有两种算法。学生说计算方法,教师列出有关算式。
●先求出每天磨面粉的千克数,再用每天磨面粉的千克数乘7。
教师板书:
15824=3792
37927=
●先算出一个星期有多少个小时,再用158乘求出的小时数。
教师板书:
247=148(小时)
158148=
师:这两种方法都不错。但是,计算都比较难,一个是四位数乘一位数,一个是三位数乘三位数。怎么样?还能试着算一算吗?
生:能。
师:好,那就试着用竖式计算一下。有问题可以同桌商量,也可以问老师。
学生算,可找两个学生板演在黑板上。
教学环节设计意图教学预设
2.检查、交流计算的过程和结果。先了解有没有做错的,再让板演的同学说计算的过程。教师进行必要的提问。如:148的1乘158的8得8,这个8为什么写在百位上?
四、课堂练习
1.练一练第1题,让学生在练习本上列竖
交流尝试计算的结果,既是学生自主学习结果的检查,更是互相学习的过程。
多种方式笔算练习内容,给学生练习笔算的机会,在交
158
148
1264
632
158
23384
师:谁和黑板上的算法和结果不一样?
如果有错,说一说错在哪,如果没错,让板演的同学说一说计算的过程。重点是三位数乘三位数的竖式计算。
学生说完后,教师提问。
师:老师有一个问题:这个8为什么写在百位上?
学生可能回答:
●用148百位上的1乘8的积写在百位上。
●因为148百位上的1表示1个百,一个百乘8等于8个百。所以8要写在百位上。
教师肯定学生的回答。对出现计算错的同学给予指导。
师:有的同学计算出了错误,没有关系,像这样比较复杂的计算题,多练几次,就不会出错了。
师:下面,请同学们试着完成练一练中的第1题,把计算结果填在书中表格中。
教学环节设计意图教学预设
式,独立完成后,将结果填在书上的表格中,
然后全班交流。
2.练一练第3题,先让学生读题,观察情境图,说说发现的数学信息和问题,再独立计算,然后交流。
3.练一练第4题,先了解图中的信息,独立完成,再集体订正。
4.练一练第5题,先读图,了解两个人打字的时间和打字的速度等信息。再提出教材中的两个问题,让学生独立回答。
流中提高计算的能力。
考察应用所学知识,解决生活中实际问题的能力。
利用生活中的实际事例,进行三位数乘两位数的计算练习。
以不同形式出现的数学信息,培养学生了解信息的能力,并利用计算知识解决一些实际问题。
交流时,特别关注20832计算的过程。
答案:6642101256656
师:同学们,练一练第3题,
观察图并读题,你了解到什么?
生1:这个图书馆一天卖了17套《科学探索》丛书。
生2:每套《科学探索》丛书106元。
生3:求一天收入多少元钱?
师:根据以上信息请同学们自己列式计算,解决问题。
生独立回答,然后交流。
师:同学们,看第4题,从图中了解到哪些数学信息?
生1:一箱饮料是24瓶。
生2:一瓶饮料是355毫升。
师:读一读书上的问题,自己列式计算。
答案:8520毫升。
师:观察第5题的情境图,并读题,说一说你发现了哪些数学信息?
生1:两个人同时打字。
生2:红红平均每1分钟打47个字。
生3:张阿姨平均每1分钟打112个字。
生4:她们9时开始打字,9时25分结束。
生5:她们打字,用了25分钟。
师:你能计算出红红打了多少个字吗?张阿姨打了多少个字吗?
教学环节设计意图教学预设
五、课后练习
1.教师谈话,提出:一台面粉机每小时能磨306千克面粉,这台面粉机148小时能磨多少千克面粉?的问题,鼓励学生先求出每星期的小时数,在列出两个乘法算式并计算。
2.练一练第2题。要求课下完成。
通过问题情境的扩展,让学生在解决问题的过程中尝试进行三位数中间有0的乘法计算。调动学生自主尝试的积极性。
考查学生计算的正确率。生独立计算,教师巡视指导。
师:这节课我们通过解决磨面粉的问题,学会了三位数乘两位数的计算。还尝试了三位数乘三位数的计算。你们知道吗?随着现代化技术不断的提高,如今有的一台面粉机一小时能磨面粉306千克。这样的面粉机一个星期,也就是148小时能磨多少面粉呢?课下请同学们列出两个乘法算式,分别用竖式进行计算。看看计算过程有什么不同。
师:另外,请同学们完成练一练第2题。看谁能全部算对。
三位数乘两位数教案 篇2
教学内容:教课书P6
教学目标:
1、在掌握了除数是整十数的笔算方法的基础上学习三位数除以两位数的笔算的试商方法,初步掌握试商的基本方法;
2、在学会试商的基础上尝试让学生进行三位数除以两位数的笔算,初步学会计算的方法;
3、通过交流合作等活动培养学生的合作意识和态度;
教学重难点:掌握三位数除以两位数的笔算的试商方法;
教学准备:挂图与小黑板
教学过程
一、复习准备,引出新知
1、出示估算题请你估计下面式子的商分别是多少,并说说你是怎么估算的?
510909224075680
先让学生说说估计的商是几?然后交流是怎么想的?
2、出示引导题【教师拿一本书说】老师手里的书共192页,现在老师决定每天看30页,你觉得我能看几天,还多几页?
【出示题目让学生理解题意后列式并估算结果,集体交流后,复习除数是整十数除法的计算方法】
3、那如果老师现在决定每天看32页的话,那我得看几天,还有没有余下的页数?请同学们先列出算式先不要解答。
4、学生列出式子后,引导学生观察除数和刚才的除数有什么不同,引出课题。
二、探究新知
1、要求学生也来估算一下,商是多少?你是怎想的?
2、交流个人观点后,引导学生讨论可以把32看作几十来试商,并尝试完成计算。【初步理解试商的基本方法】
3、集体交流计算结果后,组织验算
4、教学试一试(1)
出示题目后,让学生讨论这回应该把39看作多少来试商?
组织讨论结果,说明为什么看作40来试商;
5、交流试商结果后,再让学生完成计算。
6、然后组织学生讨论你觉得除数是两位数的除法可以怎样试商?
三、巩固提高
1、完成想想做做第1题
让学生一组一组地对比着说说把除数分别看作几十来试商,再计算。
2、完成想想做做第2题
先自己说一说应把除数分别看作几十来试商,最后再计算,并要求验算。
四、全课总结
通过今天的学习,你有什么发现?
五、完成《课堂练习》
三位数乘两位数教案 篇3
教学内容:教材第2-3页
教学目标:
通过练习,进一步掌握三位数乘两位数的笔算方法,提高计算的正确率.并能解决一些相关的实际问题.
教学重点,难点:提高三位数乘两位数的笔算方法,进一步熟悉中间有0的乘法.
教学过程:
一,复习.注意的主要错误:一是进位问题,二是乘数中间有0.
8453760428
补充:如果算式是要算37845,你觉得竖式可以怎么写为什么
指出:三位数和两位数乘的时候,为了计算的简便,我们更习惯于把位数多的乘数写在上面.
二,口算练习
想想做做第5题
交流:这些题你算的时候有什么窍门么(可以先不考虑后面的0,算出结果后再添上几个0)
问:第一组题下面2题为什么得数会一样呢
三,解决实际问题:
1,想想做做第7题:
读题,问:你有疑问么(可能会有学生提出为什么汽车的速度慢但需要的时间还少呢)可让别的学生帮忙解答这个疑问.(说明:虽然都是从北京到上海,但实际路程的长度是不同的)
分别列式算出两条路的长度.
交流后明确:速度时间=路程
2,第8题
读题,解读人均月收入和人均年收入的含义
学生选择必要的信息解决问题.
3,第9题:
读题后让学生说说自己准备如何解答(可以分别用乘和减两种方法,这里可能更多的会考虑用乘法)
学生列式解答,在交流的时候主要要让学生说完整的解答过程.
4,第10题:
学生读题看图了解题目所提供的信息及要解决的问题.
帮助学生理解:已卖出的要按每个16元计算,而剩下的要按每个13元计算.
学生独立完成.
指名学生回答,说说解题思路.
四,思考题
学生尝试练习,交流探讨思考过程,最后的出结果.
五,课堂作业
p.2第6题
三位数乘两位数教案 篇4
教学内容:第1页例题,想想做做第1~4题
教材简析:
这部分内容教学三位数乘两位数笔算的基本方法。这是在学生掌握了三位数乘一位数、两位数乘两位数笔算方法的基础上安排的。学生学习这部分知识可以完善和提升整数乘法的笔算能力,为以后进一步学习乘法计算伐好基础。
教学目标:
1、使学生经历探索三位数乘两位数笔算方法的过程,掌握三位数乘两位数的基本笔算方法,能正确进行计算。
2、使学生在探索计算方法的过程中体会新旧知识的联系,能主动总结、归纳三位数乘两位数的笔算放大,培养类比以及分析、概括的能力。
3、使学生在主动参与学习活动的过程中,进一步体验学习成功带来的快乐,激发探索计算方法、解决计算问题的兴趣。
教学重点、难点:
使学生经历探索三位数乘两位数笔算方法的过程,掌握三位数乘两位数的基本笔算方法,能正确进行计算。
教学准备:光盘
教学过程:
一、复习:
学生自己出一道两位数乘两位数的题目,并笔算。算完后互相检查。
指名一人板演,看板书,说说两位数乘两位数的笔算方法(主要说清楚分别要用第2个乘数的个位、十位上的数去乘)。
二、教学例题:
出示例题图:
让学生看图后,读读题目的意思,说说怎么列式?
随学生回答板书:14415
指出:这节课我们来学习三位数乘两位数的笔算
板书课题:三位数乘两位数
三、探索算法:
1、学生自主探索:每人在本子上自己算一算,算完后和同桌交换算法,说说自己怎么算的?有问题么?
2、找几个学生的做法板演,分别说说各题错在哪里?正确的该怎么算?
[课堂中出现的问题:(1)直接一次乘。指出:乘数是两位的,要分两次乘。
(2)分别用第一个乘数三个数位上的数去乘,乘了三次。指出:一般用第二个乘数分别去乘]另外再指出:个位乘得的积末尾和个位对齐,十位乘得的积和十位对齐。
总结:(1)用两位数的个位和十位上的数依次分别去乘三位数;(2)用两位数哪一位上的数去乘,乘得的数的末位就和那一位对齐;(3)把两次乘得的数加起来。
四、完成想想做做的第1~4题
1、做想想做做第2题(做在书上)
三位数乘两位数计算中很容易出错,除了上面说的错,还有哪些呢?一起看第2题:说说错在哪里?怎么改正?
特别要注意三位数中间有0时,不能漏乘;还要注意不能忘记每次计算时的进位。
2、完成第1题
让学生在作业本上写出竖式进行笔算,算完后指名说说得数。
3、做想想做做第3题
组织学生讨论:怎样列竖式计算可以方便一些?
指出:用竖式计算类似的题目时,通过交换两个乘数的位置能使笔算方便一些。
4、做想想做做第4题
让学生读题,指名说题意。
提问:要求算出每种水果各卖了多少元,就是要算出总价,总价是怎样计算的?(板书:数量单价=总价)
学生列式计算,写在作业本上。
教学反思:
下课后,我仔细想了想这节课,我认为有成功的地方,也有不足之处。成功之处是我注意到让学生自主掌握乘法运算的基本方法。教学中,我放手让学生通过自主探索、合作交流,总结出笔算的一般方法,在这个过程中我只是作为一名参与者,引导学生准确把握不同算法的特点,尽可能选择多种算法中较优化的一种,采用合理、简洁、灵活的方法进行计算,真正做到了充分发挥学生的自主性。
不足之处:(1)课堂中没有让学生充分进行估算的练习。在课堂开始时,出现三位数乘两位数就应该让学生充分进行估算,但我只是一带而过。(2)课堂估计不足。学生课堂作业时间不够,在前面的算法引导中还可以简洁些,这样就能多留些时间给学生完成作业
三位数乘两位数教案 篇5
教学目标:
1、巩固三位数除以两位数的笔算的试商方法,熟练掌握试商的基本方法,提高学生试商的水品。
2、在试商的基础上让学生学会基本的计算方法。
3、联系生活实际综合不同内容的知识,让学生解决简单的实际问题。
教学重难点:
进一步提高学生的试商水平,以试商为基础解决实际问题。
教学准备
POWERPOINT课件一份
教学过程设计
教学内容
1、口算下面各题
4449060166
27060154462
9551803072030
2、连线题一、
1、教学P7第4题
(1)先出示第一行指名学生口答结果,其余同学判断;
(2)出示第二行和第一行一样完成;
(3)引导学生观察第一行和第二行在运算时的区别,总结出下面一行的题目计算时要注意用个位相乘的时候满10应该向前一位进一的。
2、教学P7第5题
(1)出示题目,先让学生根据题意估计积最接近于哪个数,把结果用线连起来。
(2)集体交流估算结果,然后组织学生讨论每一题是怎样估算的?【只要表达的意思是把两位数看作与它接近的整十数来相乘。】
(3)教学P7第6题帮助学生掌握两位数乘一位数的基本口算方
3、试商并计算
4、解决实际问题
5、解决问题的最佳方法
(1)逐个出现引导学生讨论,应该把除数看作多少来试商,商应该是几位数?试商结果是多少?(说明自己的理由,指名回答)
(2)试商结束后,让学生分组完成上面一行,指名3位学生板演,最后集体交流。4、教学P7第7题
(1)让学生默读题目,理解题意;
(2)交流理解的结果,然后让学生列式交流后解答;
(3)求出每天生产水泥多少吨,后引导学生观察下半题,理解照这样计算的意思,引导学生发现求解天数的数量关系式:工作总量工作效率=时间
(4)找出计算方法后,引导学生说出试商的结果,并指名说说是怎样想的,然后把结果计算出来。
(5)结果计算出来交流后,让学生观察表格,并总结出生产水泥的吨数越多,需要的天数也就越多。
6、教学P7第8题开放题。
(1)先让学生阅读理解题意,然后引导学生明白怎样来解决问题,既要用试商的方法来进行计划;
(2)同桌活动,然后组织交流;
(3)拓展开来,寻找最佳方案的方法三、简单总结练习中出现的关键性知识点
四、完成课堂作业完成第6题第二行
课后感受
三位数乘两位数教案 篇6
《两位数加一位数进位加法》教学设计
主备人:张意萍 教学目标:
1.探索两位数加一位数进位加法计算方法的过程,理解两位数加一位数进位加法的算理。
2.了解不同计算内容和方法之间的联系,理解口算方法的思维过程。 3.能用所学的知识解决一些简单的实际问题,感受数学与生活的联系,增强数学应用意识。
4.培养学生学习数学的热情,以及积极思考、动手操作、合作学习的良好习惯。
教学重难点:理解口算方法的思维过程。 教学过程: 一、课前听算
1.播放录音。10+3 5+6 12+3 40+50 40+5 24+5 2.公布答案。13、11、15、90、45、29 3.同桌交换批改,请有错误的同学记录错题并订正答案。 二、复习导入
听算最后一道24+5你是怎样算的?
预设生:拆两位数,24分成20和4,先算4+5=9,再算 20+9=29 两位数加一位数,我们拆两位数,先算个位加个位。 三、讲授新课
1.请看大屏幕,你从图中知道了什么?
预设生:我知道了箱子里有24瓶矿泉水,外面有9瓶矿泉水,一共有几瓶? 2.怎列算式?
预设生:24+9=33(瓶)
3.怎样计算24+9?请同学们用小棒代替矿泉水瓶摆一摆。 要求:
(1) 边摆边想自己是怎么样得出结果的?
(2) 摆完跟同桌说一遍自己是怎样知道24+9等于多少的。 (3) 同桌都说完了,请坐端正举手!(争当最棒同做桌) 4.汇报:
(1)谁来说一说你是怎么摆的? (2)谁跟他方法不一样? 5.多种方式理解算理
同学们摆的不错,表达能力也有进步。下面让我们一起再来看一看大家怎么摆的。 (1)方法一:
看一看:摆出24和9,拆一位数9,因为4和6可以凑成十,把9分成6和3,4+6=10,正好够一捆,可以看出24+6=30,再算30+3=33。 想一想:请同学们闭上眼睛想一想刚才我们是怎么摆的。 说一说:睁开眼睛,哪位同学能说一说我们刚才是怎么摆的?
填一填:说的不错。谁能根据我们刚才摆的过程填一填。某某来试一试(板书)。一起填一遍。
想一想:在这里,24+9我们其实是先算谁再算谁? 生:先算24+6=30,再算30+3=33。
这种方法你学会了吗?试着做这两道题,做在练习本上。27+4 8+63 (2)方法二:
看一看:摆出24和9,先算个位加个位,把两位数24拆成20和4,4+9=13,其中的10根正好捆成一捆,这时候20+13=33。 想一想:请同学们闭上眼睛想一想刚才我们是怎么摆的。 说一说:睁开眼睛,哪位同学能说一说我们刚才是怎么摆的? 想一想:在这里,24+9我们其实是先算谁再算谁? 生:先算4+9=13,再算30+13=33。
这种方法你学会了吗?试着做这两道题,做在练习本上。36+8 5+35 (3)比较两种方法:
请同学们看黑板,这两种方法有什么不同? 生:一种拆一位数、另一种拆两位数。
请同学们看大屏幕,观察比较这两次摆小棒的过程,两种算法有什么相同的地方?
生:两种方法最终都满十根捆成一捆,10个一变成了一个十,十位上增加了一个十。
总结: 当个位上的数相加满十时,一定要向十位进1。这样的加法叫进位加法。
这节课学习的两位数加一位数和以前学习的两位数加一位数有什么不同?(今天学的是进位加法,以前学的是不进位的) 我们今天研究的就是两位数加一位数的进位加法,个位相加满十向十位进一。 四、练习
数学就是这样奇妙,同一个问题往往可以用不同的方法解决,希望同学们多动脑,学会用不同的方法解决问题。接下来练习巩固一下。 打开课本66页完成练习十五4-6题,要求独立完成,做完后认真检查。
三位数乘两位数教案 篇7
教学内容:
教材第2页的“想想做做”第5~10题。
教学目标:
1、使学生进一步巩固三位数乘两位数的计算方法,提高计算的能力。
2、培养学生解决实际问题的能力,激发学习的兴趣。
教学重点难点:
巩固三位数乘两位数的竖式计算的方法,培养学生解决实际问题的能力。
教学资料:
小黑板、投影仪。
教学过程:
一、创设情境
同学们,我们上节课学习了什么内容?你学会了什么?
今天,我们继续来学习三位数乘两位数。
二、组织练习。
1、“想想做做”第5题。
学生口算,交流答案。
指名几人说说口算的方法。
2、“想想做做”第6题第1、2两列。
指名四人板演,其余学生分成两组,在自己本子上练习。
集体订正。强调计算的方法和注意点。
3、“想想做做”第7题。
(1)学生自由读题,理解题意。
(2)要求什么?应该知道什么?
(3)学生先自练,再指名交流。
4、“想想做做”第8题。
读题,理解题意。
这题要求什么?已经知道了什么条件?
应该怎么求?
(注意:这题的数据相当的多,学生在理解题意上有一定的困难,教师应做适当的引导。)
5“想想做做”第9题。
学生自己读题,独立完成。
交流方法。
①5300-115×45=5300-5175=125(个)
答:她45分不能把这份稿件打完。
②5300÷45=117(个)……35(个)
答:她45分不能把这份稿件打完。
6、教学思考题。
(1)学生尝试填数。
(2)针对学生出现困难的地方作出指导。
(3)交流结果,当然答案不一定都是唯一的。
三、课后延伸
完成第2页“想想做做”第6题的第3列,
和第3页“想想做做”第10题。
三位数乘两位数教案 篇8
教学内容:教科书第7页的例2及做一做题目,练习二的第6-10题。
教学目的:在学生掌握两位数乘两位数的基础上进一步理解和掌握两位数乘多位数的计算法则,并能正确地计算。
教学重点:掌握两位数乘多位数的计算法则,并能正确地计算。
教学难点:两位数乘多位数法则的运用。
教学关键:乘数与被乘数的积的个位要与乘数对齐。
教学过程:
一、复习。
1、完整回答下列各题。
(1)70里面包含有几十?260里有几个十?
(2)140是几个十组成的?几个十组成280?
2、口算。
47+337+679+8
68+575+978+3
3、专项训练。(要求学生正确填写乘数十位上的数去乘被乘数所得数是多少个十。)
二、新授。
1、引言:上节课我们已学习了两位数乘两位数的笔算乘法,如果被乘数是三位数,该怎样乘呢?分几步计算?这是今天例2所要研究的内容。课题是:三位数乘以两位数的笔算(板书)
2、教学例2。21234
(1)学生试算。
(2)分析讨论:
提问:例2用乘数个位、十位上的数分别去乘被乘数各位上的数,各乘了几次?为什么?(各乘了三次,因为被乘数是三位数。)
3、例2与例1比较。
(1)不同点:例1,两位数乘以两位数;例2,三位数乘以两位数。
(2)相同点:乘的笔算方法相同。
帮助学生讲述计算过程,归纳笔算法则。
先用乘数的()位去乘被乘数,得数的末位和乘数的()位对齐;再用乘数的()位去乘被乘数,得数的末位和乘数的()位对齐;然后()。
三、巩固。
完成教科书第7页做一做题目。
1、板演:
(1)提问:963是什么与什么相乘的积?
(2)继续把题做完。
(3)训练学生口述笔算法则:
321乘以13的笔算分三步算:第一步用乘数3去乘321得963;第二步用乘数1去乘321得321个十,得数的末位和乘数的十位对齐;第三步把两次乘的得数加起来。
2、独立做另外2道题。
四、总结。
今天我们学习了两位数乘多位数的计算方法,计算时应该注意乘数十位上的数去乘被乘数,得数的末位要和乘数的十位数对齐。
四、作业。
做练习二的第6-10题。
三位数乘两位数教案 篇9
课题:三位数除以两位数的笔算要调商(2)
教学内容:教材第9页例题,第10页想想做做中的第14题
教学目标:
1、使学生初步掌握五入的试商方法
2、能够用这种试商方法正确计算用两位数除商一位数的笔算除法。
进一步增强学生的估算意识,提高学生的估算能力。
3、提高学生的计算能力及归纳概括能力。
教学重难点:正确进行笔算三位数除以两位数,进一步提高口算和估算的能力。
教具准备:小黑板及教学挂图
教学过程:
一、引入新课
师:上节课,我们学习了用四舍的试商方法进行除数是两位数的除法计算,上节课,我们再来学习一种试商方法,就是用两位数除当除数个位是5、6、7、8时该怎样试商。
二、教学例题
1、出示课本第9页教学例题图
提出问题,引出算式。
提问:看了这幅图,你知道了什么?要知道四年级二班平均每人借书多少本?可以怎样列式?
指名口答,引导学生列出算式25236
2、探索25236的笔算方法
提问:25236可以怎样试商?为什么要把36看作40试商,你估计商应是几?
独立尝试
让学生根据估计的商,试着算一算。教师巡视,及时了解学生在计算中存在的问题。
交流算法
先指名把计算过程写在黑板上,进行全班核对。
3、再出示下面的计算过程和问题。
问题是:商6对吗?为什么?
小组进行交流后,教师组织学生进行全班交流,通过交流,引导学生认识,这里把除数36看成40来试商,商6太小了,因为有余数是36,和除数相等,所以商要改成7。
4、教师强调:计算过程中要注意调商,使余数比除数小。
归纳概括:
除数是两位数的除法,一般按照四舍五入,把除数看作和它接近的整十数来试商。当除数的个位是5、6、7、8、9时,可用五入法来试商,把除数的个位五入后再试商,由于除数变大了,商容易偏小,出现余数比除数大或余数页除数相等的情况(如上面的例题)。商小了,要把初商改大。
比较,发现异同点。
让学生比较37234和25236的计算过程,找出相同点和不同点。
让学生,先独立观察,比较,并在小组内交流想法,然后教师组织学生进行全班交流。
通过交流,引导学生认识:
相同点:都要把除数看成整十数进行试商;除的时候都要调商;除的时候都要注意余数比除数小这个计算要求。
不同点:当除数的个位数是1、2、3、4时,可以把除数的尾数舍去,把它看作整十数来试商,当除数的个位数是5、6、7、8、9时,可以把除数的尾数舍去,用比除数十位上的数多1整十数来试商。
三、巩固练习
指导学生完成想想做做中的1、2、3、4题。
第1题
先让学生认真观察各题的竖式,然后指名口答,让学生说一说各题准确的商,并让学生说一说确定商的理由。
第2题
先让学生认真观察题中两道小题的计算过程,找出错在哪里,并加以改正。
第3题。
先让学生独立计算,再组织全班核对,订正时,让学生说说调商过程。根据学生在练习中存在的问题,教师进行针对性的指导。
四、全课小结
通过本节课的学习,你又有什么新的收获?
三位数乘两位数教案 篇10
今天我说课的题目是《三位数乘两位数的笔算乘法》,接下来我将从以下五个方面进行说课。
本内容选自人教版小学数学四年级上册第三单元,在此之前,已学习口算乘法,学生清楚了口算乘法的方法,也为学习三位数乘两位数的笔算乘法打好了基础。由于小学四年级的学生已经学习了两位数乘两位数的笔算方法,所以,在教学中我会以此为突破口来提升我的教学效益。
根据教材编排和学生特点,我将确定以下教学目标:
1、能够掌握三位数乘两位数的笔算方法,并能进行正确计算;
2、能够感受知识与方法的内在联系,并且要养成解决简单而实际的问题的能力;
3、在合作交流的学习过程中,体验成功的喜悦,树立学习数学的信念,建立对数学学习的积极情感。
其中,第一点、第二点也是我本节课的教学重难点。
计算本身具有很强的抽象性,学生在学习的时候可能会倍感枯燥、错误百出,但是计算又与我们的生活有着密切的联系,所以在教学中我主要采用讲解法、练习法、来引导学生自主探索式的学习。
根据对教材的分析,目标和方法的确定,我将从以下四个步骤来展开我的教学过程:
1、创设情境,导入新课。
出示孙悟空去蟠桃园偷桃子吃的图片,告诉同学们,大闹天宫的孙悟空又想去蟠桃园偷桃子吃了,蟠桃园有45棵桃树,每棵桃树上有12个桃子,请问蟠桃园一共有多少个桃子?先小组交流自己的算法,再指明学生回答并根据学生的回答板书列式:45X12,重点是让学生说说两位数乘两位数的笔算方法。在此基础上,让同学想想,假设蟠桃园有145棵桃树,每棵桃树上有12个桃子,请问蟠桃园有多少个桃子?让学生独立思考,怎样列算式,再指明学生回答,并根据学生回答板书列式:145X12,从而揭示课题,既温故旧知也承接新知。
2、探索交流,建构新知。首先让学生估算一下145X12等于多少,再鼓励学生自己列出竖式,小组交流自己的算法,老师再组织全班同学一起讨论:三位数乘两位数怎样计算?引导学生理解,计算时怎样乘?数位怎样对齐?最后怎样书写得数?老师根据学生的回答总结归纳算法。用竖式计算三位数乘两位数,先要用两位数个位和十位上的数依次分别去乘三位数,用两位数哪一位上的数去乘,乘得的数末位就和那一位对齐,再把两次乘得的数相加就得到计算结果了。
3、巩固练习,促进深化。
让学生独立快速地完成以下做一做,以此来巩固所学知识。
134176425237
12473682
4、课堂总结,课后练习。
通过引导学生谈谈自己的收获,作为本节课的总结。
为了力求简单明了,有利于学生对重难点的掌握,起到画龙点睛的效果,我
设计如下板书。
总之,我是通过创造学生熟悉的生活情景,来引导学生自主探索式的学习,这样的教学也充分的体现了学生在教学过程中的主体性。
两位数加两位数进位教案
新加入工作的教师需要准备好与上课有关的教案和课件。每位教师都应该仔细地设计自己的教案和课件。编写出优秀的教案是衡量教师教育教学实践能力的必要标准。接下来是我们为您整理的一系列与“两位数加两位数进位教案”相关的内容,希望您能将这篇文章加入您的收藏夹中!
两位数加两位数进位教案【篇1】
学习目标:
1、使学生学会两位数加两位数进位加的笔算方法;
2、使学生能熟练得进行进位加竖式计算;
3、提高学生的计算能力。
教师用投影片出示题目:
72+5= 34+20=
请学生用竖式计算,集体订正。
请学生说说竖式计算时应注意什么?
师:二(1)班和二(2)班可以合乘一辆车,二(3)班和二(4)班可以合乘一辆车,那么二(1)班和二(3)班能合乘一辆车吗?
请学生在小组里讨论怎样计算36+35,可根据自己的情况选择用小棒、竖式或口算的方法。
你认为应从哪一位算起?为什么?
3、比较小结:和我们以前的两位数加两位数比,有什么不同?计算时要注意什么?
三、做一做:
教师用投影片出示题目,指名做在投影片上,其他学生做在书上,边做边思考书上提出的问题。
订正时指名说“个位上6加7得,怎样写?”
“个位上6加4得(),怎样写?”
请学生先用小棒摆一摆36+47怎样算,再列竖式计算。
学生将竖式写在课堂练习本上,得数写在书上。
两位数加两位数进位教案【篇2】
教学目标
1.使学生在理解的基础上掌握计算方法,明白个位满十,向十位进一的道理.初步学会两位数加两位数的笔算加法.
2.培养学生作业书写格式规范、字迹工整的好习惯.
3.培养学生初步的观察能力.
教学重点
在理解的基础上掌握进位加法的笔算方法.
教学难点
理解个位满十,向十位进一的算理.
教学过程设计
(一)复习准备
1.指名学生板演:34+25=
2.口算.
5+78+650+30
6+2834+957+3
师问:6+28=34你是怎样想的?(把28分成20和8,用6加8得14,再用14加20得
3.让板演的同学口述计算过程.
师问:在笔算列竖式时应该注意什么呢?(根据学生的回答板书)
板书:1.相同数位对齐;
2.从个位加起.
(二)学习新课
1.导入新课.
师:我把上题中的第二个加数25换成了28,(边说边板书:34+28=)这道题写成竖式怎么写?
生:相同数位对齐.(教师板书竖式)
师:从哪位加起?(从个位加起)
师:个位4加8等于几?满十了吗?(个位4加8等于12,满十了)
师:个位满十了怎么办呢?这就是我们今天要学习的新内容:两位数加两位数的进位加法.(教师边说边板书课题)
2.教学例3.
(1)边摆边说.
教师在数位板第一排挂34根小棒,在第二排挂28根小棒.学生在画有计数单位的纸上摆小棒.
师:34和28各是由几个十和几个一组成的?(34是由3个十和4个一组成的;28是由2个十和8个一组成的)
师:个位是几个一加几个一,得几个一?(个位是4个一加8个一,得12个一)
师:几个一是一个十?个位12满十了吗?(十个一是一个十,个位12满十了)
师:12满十了,在竖式里怎么写呢?
(2)边摆边算.
师:个位4加8满十,将其中的10根小棒捆成一捆,挂到十位上,说明个位满十,向十位进一.在竖式中怎么表示呢?就在十位下写个小1(写在横线上.学生模仿老师,也把其中的10根小棒捆成一捆,放到十位这边)
师:个位上还有2个一怎么办?(留在个位上)
师在竖式横线下对齐个位写2.
师:十位上原来是几个十加几个十?后进上来的这个十怎么办?(原来十位上是3个十加2个十,再加进上来的1个十,一共是6个十.师在竖式横线下对齐十位写6)
(3)看竖式叙述计算过程.
师:34加28,个位4加8得12,满十向十位进一,在个位写2;十位上3加2再加进上来的1得6,在十位写6.
找上、中、下各一名学生看竖式口述计算过程.
(4)仿例练习:(边说边做)
56+37=
3.教学例4.
教师在数位板第一排挂46根小棒,在第二排挂24根小棒.
师板书:
师:个位6加4得十,(把6根小棒和4根小棒放在一起,捆成一捆,放到十位这边)10怎样写?
生:向十位进1,个位写0.(师板书)
师:个位不写零行不行?(师强调:个位一个也没有要用0占位)
师:十位上4加2再加进上来的1得7,在十位写7.最后得70.
4.总结法则.
师:今天学的笔算加法和过去学的有什么不同?(个位满十了要进位)
师:进位加法还应注意什么?(个位满十,向十位进1)师同时板书.
全体齐读.
(三)巩固反馈
1.在练习本上计算.(同时请3人板演)
2.在□里填什么数可以使它成为进位加法题?
师:请同学们任选两个数,在练习本上计算.
3.编两位数加两位数的进位加法题.注意十位上的数不要太大,和不能超过100.学生编题,教师板书.如:26+39,45+38,37+43,54+25,
学生讨论:同学们编的这些题里有没有不符合要求的?
4.思考题.
在□里填哪些数合适?
板书设计
探究活动
小猫钓鱼
游戏目的
巩固百以内的加减法.
游戏材料
用硬纸片做成的鱼若干条,每条鱼身上有一道算式,鱼嘴用铁丝做成一小圆圈;小猫面具;钩鱼杆、线、鱼钩.
游戏程序
1.用课桌围成一个长方形鱼塘,塘中放鱼,鱼身有算式的一面朝上.
2.每3人一组,头戴小猫面具,身上挂一个写有得数的牌子,围在课桌外面.
3.用鱼杆、鱼钩钓得数与自己身上的得数相同算式的鱼.
游戏:夺红旗
游戏目的
巩固两位数加两位数的计算
游戏准备
教师准备一幅登山图和一面小红旗.
游戏过程
1.教师出示登山图.
2.学生分为两组,分别计算两侧的竖式.
3.给先完成的小组颁发小红旗.
两位数加两位数进位教案【篇3】
一、教材分析
1、教学内容:
《两位数加一位数(进位)》是义务教育课程标准实验教科书数学(苏教版)下册第六单元《加和减(二)》的第一课时。
2、教材分析:
《两位数加一位数(进位)》是在学生能比较熟练地口算100以内不进位加法的基础上学习的,先教学和是整十数的(特殊情况),再教学和是非整十数的(一般情况)。突出了进位的基本原理是“10个一是十”,有利于学生依据已有的数学知识理解“满10进一”的操作方法。在此基础上教学计算的一般情况,就能把进位的原理、方法灵活地应用到各个具体的计算中去,逐渐形成相应的计算技能。
3、学情分析:
在此之前,学生已经掌握了两位数加一位数(不进位)和两位数加整十数的计算方法。本节课学生将利用这些所学,通过知识的综合、迁移,自主探究两位数加一位数的进位加法的计算方法。由于学生的个体差异性,每位学生所用的时间长短和方法会有所不同,需要老师的点拨、引导和积极鼓励。
4、教学目标:
(1)知识目标:让学生经历探索两位数加一位数(进位)的计算方法,理解进位的原理,能比较熟练的口算两位数加一位数的加法。
(2)能力目标:初步培养学生的动手操作能力、语言表达能力和运用知识迁移的学习能力。
(3)情感目标:在师生活动交流中,培养学生的良好学习习惯,获得成功体验,增强学习信心。
教学重点:使全体学生掌握两位数加一位数(进位)的口算方法。
教学难点:两位数加一位数(和是非整十数)的算法多样化及优化。
二、教法学法
新课标指出,数学教学是数学活动的教学。而教师在教学活动中的作用是组织活动,关注活动中的学生,使学生在数学思想方法迁移过程中,探索性地解决新问题,亲历探索的过程。情境教学法、操作法、发现法是我本节课采用的教学方法和手段。
一年级的孩子在数学学习中,他们更喜欢生动有趣的学习情境,形象具体的直观操作,丰富多彩的活动来吸引他们的注意,激起他们参与学习活动的热情。孩子们在这节课中将通过操作实践,观察分析,合作探究等学习方法,主动参与获取知识的过程。
通过学生动手操作、合作交流的教学环节,为学习提供主动参与、自主探究的机会。通过语言表达、边摆边说的教学环节,从中体验两位数加一位数(进位)的口算方法,培养学生良好的学习习惯,体验成功的快乐。
三、教学过程
第一环节,复习铺垫
课前两分钟先进行20以内进位加法和两位数加整十数、一位数的口算训练,并复习24+3的口算方法是:先算4+3=7,再算20+7=27。通过复习,有效唤醒学生对旧知的记忆,为促进知识的迁移,学习新知作铺垫。
第二环节,探索新知
1、创设情境
利用主题图,创设三个小朋友交流收集画片的情境,学生主动搜集信息:小明有9张画片,小亮有24张画片,小红有6张画片。请学生选择其中的两个条件,提出加法问题。指名回答时,老师将学生所选的两个条件进行连线,渗透既不重复也不遗漏的有序思考思想,并依次进行板书:9+6,24+6,24+9。哪一题算起来最简单?6+9=15最简单,另外两题就是我们今天要学习的——两位数加一位数。
2、教学例1
24+6的得数是多少?估计有不少学生已经会算了,得数是30,这时可以充分利用学优生的资源,提出关键问题:24的十位上是2,表示2个十,加上6等于30,2个十变成了3个十,这是怎么回事?哪位小朋友能来当小老师,用小棒来说明,为什么会多出来1个十?因为4根小棒和6根小棒合起来是10根小棒,10根小棒要捆成1捆。如果没有了小棒的帮助,你能不能来说说24+6的思考过程,先算4+6=10,再算20+10=30,接着组织全班各种形式来说思考过程。最后进行对比小结,24+6和刚才的24+3有什么不同?完整揭示课题——两位数加一位数(进位)。
教学例1时,充分发挥学生的主体作用,让学生自主探索算法,再讨论交流,确认算法,并通过实物操作演示来突破本节课的重点难点。
3、教学例2
刚才我们计算了24+6=30,现在请你来估计一下,24+9的得数是几十多?说说你的理由。得数到底是三十几呢?提出关键问题:先算什么?先算4+9=13,再算什么?再算20+13=33。哪位小朋友能用小棒来验证、解释一下我们刚才的思考方法。接着组织全班各种形式来说思考过程。
除了这种方法外,还有不一样的方法吗?也可以用小棒来把你的方法介绍给大家。估计可能有的方法:一种是,从9根中拿出6根和24根合起来凑成30根,先算24+6=30,再算30+3=33;另一种是,从24根中拿出1根和9根合起来凑成10根,先算1+9=10,再算23+10=33。三种方法,你最喜欢哪一种方法?老师最喜欢第一种方法,在下面的做题过程中,你会越来越感觉到它的优点。
各种算法都要鼓励,但“个位加个位”的方法思路更好些。它有三个优点:一是和不进位的两位数加一位数以及24+6的思路是一致的,相对稳定的思路易于学生掌握;二是已经熟练掌握的20以内进位加法口算,能支持这种思路的运行;三是与笔算法则一致,有利于以后竖式计算的教学。所以,在练习中要逐步优化这一种算法。
4、对比小结
观察24+6和24+9两题,有什么相同和不同,都是进位加法,以前学的24+3是不进位加法。
第三环节,巩固深化
1、先圈一圈,再计算
先圈一圈,帮助学生明白两位数加一位数(进位)的算理,在理解算理的基础上,通过写思考过程来进一步巩固算法。请学生把不同圈法表现出的不同思考过程进行全班交流,提醒孩子注意思考过程应与圈的方法相对应。
2、算一算,比一比
三组题,每组都以一道20以内进位加法带出3道两位数加一位数的进位加法。通过对比,沟通新旧知识之间的联系,让学生体会到一位数加一位数是基础,是两位数加一位数的第一步计算;二是引导优化算法。
3、拓展应用
这一题,题目已知信息多,要解决的问题多,思考过程比较复杂。要根据问题找到画面中的人,再阅读他说的话,再从货摊上找到他所购买的商品及对应的价格,才能列式计算。题目更接近生活现实,增加搜集信息和整合信息的难度,增加问题的挑战性,提供更多独立思考的机会,以不断提高学生解决实际问题的能力。
第四环节,课堂小结
今天我们学习了什么知识?方法是?
在整节课的教学中,我没有把计算方法简单教给孩子,而是力求在生动的情景中让每个孩子根据自身已有的知识和经验主动加以建构,亲身探索了算法的过程,理解了“个位相加满十,向十位进1”的算法,体会计算方法的多样性。孩子们在这节课中将通过操作实践,观察分析,合作探究等学习方法,轻松愉快的学习新知。
两位数加两位数进位教案【篇4】
教学内容:义务教育课程标准实验教科书(北师大版)三年级下册P29-30。
教学目标:
1.结合整理书的问题情境,探索两位数乘两位数(不进位)的乘法,经历估算与交流算法多样化的过程,
2.会进行两位数乘两位数的乘法计算,并能解决一些简单的实际问题。
教学重、难点:
探索两位数乘两位数(不进位)的乘法,会进行两位数乘两位数的乘法计算。
教学过程:
一.情境感知、导入新课
师:同学们,淘气他们学校的图书馆又来了一批新书,图书管理员准备将这些书放在新买来的书架上,瞧,这就是新买来的书架!(师出示情境图)
师:你能从图中获得什么信息?
师:图上向我们提出了哪些问题?(师板书问题)
二.教学两位数乘两位数(不进位)
1.列式
师:小女孩提出的这个问题你能解决吗?应该怎样列式?
(师板书:1811=)
2.估算
师:小男孩也问了我们一个问题:200本书放得下吗?
你能用估算的方法先估一估吗?(生估算)
反馈:你觉得放得下吗?谁来说说你估算的结果?你是怎么估算的?
3、独立计算
师:这个书架到底能放得下200本书吗?请同学们算一算。
4.交流算法
师:谁来说说你算出来的结果?(198)
师:请在4人小组里说说你是用什么方法计算出来的?
4人小组交流
师:谁来说说你是用什么方法计算的?(师展示学生的算法)
5.重点介绍列竖式的方法(请列竖式的学生介绍)
师:18为什么要和11对齐?(数位要对齐)接着你怎么想?
师:18乘11十位上的1,为什么得180,而不是18呢?
师:谁再来说说你是怎么想的?(多请几名生说说列竖式的步骤,理解每一步所表示的含义。)
三.练习:
1.试一试
第1小题让生用自己喜欢的方式进行计算,
第2、3小题让生用竖式算法计算,并请几名学生上台板演,师巡视指导。
2.口算
3.计算
先估算,再选择自己喜欢的算法计算,在小组内交流、反馈计算的结果。
4.解决问题
生独立完成,再全班交流。(提倡算法多样化。)
5.思考题
生独立思考,再交流、反馈。(生发现的规律若有价值性,应给予充分的鼓励。)
四.总结
师:今天,你有什么收获?你最喜欢解决哪种问题?
两位数加两位数进位教案【篇5】
教学内容:
义务教育课程标准实验教材一年级下册第74页的例题和第75页“想想做做”的1、2、3、4题。
教学目标:
(1)让学生经历、探索两位数加一位数(进位)的计算方法的过程,发展解决问题的策略。能理解两位数加一位数(进位)的算理,掌握其计算方法,并能正确计算。
(2)通过操作实践,培养学生的思维,初步建立一定的数感。
(3)在探索和运用数学知识的过程中使学生获得成功的体验,产生学习数学的兴趣。
教学重点
掌握两位数加一位数进位加法的口算方法。
教学难点
使学生理解进位的原理。
教学过程:
一、复习铺垫
小朋友们,我们今天来进行一次抢答比赛,考考你们前面的知识学得怎么样?
课件出示口算题:25+4 25+40
(要求学生说说思考过程)
看来大家对前面学的知识掌握得真不错!今天愿意和老师一起迎接新的挑战吗?
二、创设情境
场景描述,提出问题:春天到了,到处花红柳绿,景色怡人。小明、小亮和小红到公园游玩。休息时,他们打算欣赏各人所带的画片。瞧,从图中你知道了什么数学信息?根据这些信息,你能提出用加法计算的问题吗?
根据学生提出的问题,依次呈现如下的算式:
9+6 24+6 24+9 9+24+6
提问:这些算式中,哪些是已经学过的,你能很快算出得数?哪些你觉得口算有些困难,需要想一想?
9+6是我们已经学过的算式,9+24+6涉及三个数相加,留待以后学习。今天,我们主要来研究24+6和24+9的口算方法。
三、探索新知
(1)独立思考,动手操作(24+6)
a.24+6是怎样计算的呢?我们可以借助小棒摆一摆。
操作提示:
①先想一想你准备怎样摆?
②自己动手摆一摆。
③同桌互相说一说自己是怎样摆的,怎样算的?
b.交流24+6的算法,请同学上台边演示边说。
师:哪位同学上来摆一摆,说说自己是怎样算的?(投影仪)(教师准备好30几根小棒)
说得真好!老师奖励你一颗智慧星,继续加油!
c.演示课件,探索算法(出示课件)
师:谁能结合摆小棒的过程,再来说说我们是怎么算的?
(边说边演示课件)
因为他先用4根小棒加6根小棒,所以老师把先算的圈起来。(边说边演示课件)
(相机问)师:谁能想一个好办法,让我们一眼看出这里有10根小棒呢?
(捆成一捆)(教师课件出示)(请学生捆小棒)
这里可以把4根小棒和6根小棒相加满十后,捆成一捆。也就是将10个一看做一个十。然后放到前面的2捆里面。
师:现在我们能清楚地看出一共有多少根小棒吗?
你是怎么知道的?(20+10=30)
追问:结果为什么多了一捆?(4根小棒和6根小棒相加满了十,捆成了一捆。所以结果变成了3捆)
d.板书演示、抽象算理
师:如果不借助小棒,我们能看算式说说先算什么?再算什么?
教师结合学生回答、板书演示。
师生共同小结:计算24+6时,一般先算4+6=10,再算20+10=30。
追问:24里面只有2个十,为什么加了6以后,得数里多了一个十?(因为个位数4和6相加时,满十要向十位进一,所以得数里多了一个十。)
(2)深入探究,动手操作(24+9)
刚才小朋友们学得这么主动,认真,老师心里很开心!你们还想继续探究24+9的计算方法吗?有没有信心?
a估计24+9等于几十多呢?谁能猜一猜等于多少呢?
b.24+9到底等于多少,是怎样计算的呢?你会用圈一圈,算一算的方法来证明自己的猜测吗?
发小棒图,用笔圈一圈你想先算的部分。然后写一写先算什么,再算什么。
c.交流24+9的算法,请同学上台边演示边说。
师:哪位同学上来演示一下,并说说自己是怎样算的?(投影仪)
d.板书演示、抽象算理
师:如果不借助小棒,我们能看算式说说先算什么?再算什么?
教师结合学生回答、板书演示。
师生共同小结:计算24+9时,一般先算4+9=13,再算20+13=33。
追问:得数为什么多了一个十?(巩固什么是进位加法)
e.探索其它算法,演示算理
还有谁有不同的方法?你是怎样摆的?
让几名学生上台摆摆,说说他们各是怎样计算24+9的。(教师板书其过程)
(3).新旧知识对比,抽象概括
师:今天我们学了两道算式24+6和24+9,这两道算式是几位数加几位数呢?(两位数加一位数) 观察24+6和24+9,跟我们以前学的两位数加一位数的口算24+5有什么不同?(进位)出示课题:两位数加一位数的进位加法
四、巩固练习
过聪明桥
小明他们欣赏完画片,准备去植物园看看,可是却被聪明桥挡住了去路,原来公园有规定,要完成桥上的题目才能过桥。你想和他们一起过聪明桥吗?
算一算,比一比(完成在数学书上)
2、植物园给小树苗看病
终于过了聪明桥,小明几个来到植物园,发现有几棵小树苗生病了,心里可着急了,怎么办呢?让我们来帮帮他们吧!
真是些优秀的小医生,我替小树苗谢谢你们了!
3、数学宫有奖竞猜活动
给小树苗看好病,小明几个心里可开心了,从植物园出来,他们看到数学宫围满了人,那儿在干什么呢?去看看吧!原来数学宫里在进行有奖竞猜活动呢!
小亮转到了小熊和小老鼠,他得了( )分。
小明得分最高,他最多得了( )分.
小红共得了32分,她可能转中了什么?
4、小亮他们参观完数学宫又兴致勃勃准备去智慧城堡玩,你想去吗?
仿照24+9的样子,你能在27+( )=3()的括号里填另一个数字,并算出新算式的得数吗?比比谁编出的算式又对又多!(学生完成在自己的练习本上)
观察一下,十位上的2为什么都变成了3呢?(因为个位上的数相加满十,向十位进了1,所以十位上的2变成了3。)
五、全课小结
今天小朋友学得开心吗?你学会了什么?
两位数加两位数进位教案【篇6】
一、教学内容
人教版《义务教育课程标准实验教科书数学》三年级下册P65两位数乘两位数(进位)。
二、教学准备
多媒体课件、学习评价卡
三、教学目标与策略选择
在两位数乘两位数(不进位)计算中,学生已经理解了笔算的算理,知道乘的顺序及积的书写位置,因此,本节课主要利用学生已有的认知经验进行迁移,让学生自主建构两位数乘两位数(进位)的计算过程。在认真分析教材,深入了解学生的实际认知水平后,我将本节课的教学目标定位如下:
⑴结合讲成语故事这一富有趣味性的情境,体会两位数乘两位数(进位)的计算是伴随着解决问题而产生的;
⑵运用已有经验对问题情境进行探索,得出自己计算两位数乘两位数(进位)的方法,通过与同伴的交流,体验计算方法的多样化,并通过比较,完善自己的方法;
⑶经历两位数乘两位数(进位)的计算过程,掌握笔算乘法的方法;
⑷在故事情节中渗透德育,让学生懂得做任何事情都要持之以恒、专心致志。
由好的服装=好的布料+好的式样+好的工艺联想到好的教学效果=好的教材内容+好的呈现形式+好的教学方法,在本节课的设计中,我尝试从以下几个方面进行探索:
一、创造自己的吸引子,先声夺人。孩子是听故事长大的。本节课我由一个源于围棋的成语故事引入,巧妙地将要解决的数学问题融于其中,引发学生愉快、主动地去探究它。
二、经历发现知识的过程。授人以鱼不如授之以渔场,课堂上我给学生提供了充分积极思考、合作交流的渔场,让他们在交流中不断地反思自我、完善自我。
三、注重过程评价,使学生在学习数学的过程中通过正确的评价,不断调整自我。纸上得来终觉浅,绝知此事要躬行,心中悟出始知深。本节课结束时,我给每个学生发一张评价卡,让学生简单反思自己本节课中所学的知识和情感体验,树立学好数学的信心。
四、教学流程设计及意图
教学流程
设计意图
一、引入
1、(出示卡片)专心致志
师:大家知道成语专心致志是什么意思吗?关于专心致志这则成语的来历还有一个小故事呢!
2、(电脑呈现下围棋画面)教师讲成语故事--专心致志。
师:大约战国初期,有位名叫弈秋的人特别喜欢下围棋。由于棋术高明,当时有很多家长把自己的孩子送去跟他学棋。其中有两个孩子特别聪明,一个六岁,已经会计算棋盘的总交叉点数,听老师讲棋时注意力非常集中,秋老师给他取名叫弈实;另一个孩子八岁,志向远大,决心要成为象秋老师一样的大国手,秋老师给他取名叫弈虚。开始讲课时,实和虚都能够认真地听讲,掌握了围棋的基本知识,学会了下棋的基本着法。一段时间后,弈虚因为水平比弈实高就觉得自己很了不起,小尾巴翘了起来,听讲的时候不用心,心里想着会飞来鸿鹄,自己可以拿弓箭把它射下来。不久,弈实的水平大大地超过了弈虚。
师:同学们,听完这个故事,你有什么想对大家说的吗?
生:下围棋时要专心,要不然就学不到真本领。
师:是啊,这个故事告诉我们干任何事情都要持之以恒、专心致志。
3、提出问题
师:同学们,弈实六岁时就已经会计算棋盘的总交叉点数,
那大家会计算吗?
(电脑呈现棋盘图,使学生了解到:围棋的棋盘面由纵横19道线交叉而成。)
棋盘上一共有多少个交叉点?
请学生说一说用什么方法解决这个问题,从而列出算式:
1919
4、猜一猜:
⑴学生先猜一猜大约有多少个交叉点,并说一说你是怎样猜测的?
生:因为1920xx20=400所以大约有400个。
⑵想一想有什么方法能说明你猜测的数较正确?学生说出需要计算1919=?
二、展开
1、独立思考,尝试解决问题
师:独立思考2分钟,你能想出几种方法计算1919=?
2、梳理思路,小组合作交流
师:刚才很多同学不止用一种方法计算出了结果,接下来,请把你的想法和小组同学交流一下,在交流中有两个要求:⑴请你注意听小组内每位同学的意见、方法;⑵小组长每人发一张活动记录卡,请你边听边记下你们小组的活动情况。下面开始交流。
3、整理成果,全班汇报
⑴各小组长派代表将自己组的研究成果写在黑板上。
⑵小组代表说说他们的想法,其他小组可以补充。
①我们组的方法是:1910=190199=171190﹢171=361
②19+19+...+19=361(19个19相加)
③我们组是把1919看成20xx,20xx=380,再从380中减去19,380-19=361
④列竖式:19
19
171
19
361
⑤我们组也是用竖式计算,但结果不同。
19
19
91
19
271
(揭示矛盾,突破进位这一教学难点。)
4、反思各种计算方法。
⑴教师提问:还有不同算法吗?那我们先来看这两个竖式计算:大家觉得他们的方法对吗?你对他们的方法有什么疑问吗?
①学生当小记者对用竖式计算组的同学进行现场采访,重点讲清进位8。
②师:同学们,智慧宝宝刚才也听到了大家精彩的发言,我了奖励大家,下面他要给大家讲个故事,想听吗?(电脑随录音逐一动态显示画面)
附:录音内容
数字妈妈有一对非常可爱的双包胎姐妹。有一天,数字姐姐19来到草地上,看到美丽的大自然,不由得坐下来欣赏起来,这时,数字妹妹19也来到这里,也被这景色吸引住了,她想坐下来和姐姐一起欣赏,可是究竟坐哪儿呢?姐姐看出了她的心思,就提醒她说:我的1是十位,9是个位。妹妹高兴地说:噢,我知道了,我们应相同数位对齐。突然,9和9说话了,对不起,我们坐不下了。我们相乘满十了,要向前进8。她们的前一位友好地收下了各自的新朋友。
学生主动学习,肯定来自于内部需求;如果没有这个需求,学生不会无缘无故地进行主体参与。因此,课堂伊始,我先创设讲成语故事这一情境吸引学生,然后从故事中引出需要解决的问题,使自主探究变成学生的一种需求。这样,在短时间内就将学生的注意引内容,让他全身心地走进数学的门槛。
学生间出现了不同的解题策略,在独立思考到达一定的程度时,教师教给学生必需的合作技能,接着,小组内每一个同学讲述了自己的解题方法,并对其他同学的解法充分发表自己的看法。通过这个过程,培养学生数学交流的能力,体验算法多样化,并在交流中学会倾听,学会换位思考。
学生当小记者采访用竖式计算的小组,向他们提出自己还不清楚的问题,这样就把单向的言说,变成了多向的对话。在交流中,学生不仅理解了算理,也解决进位这个教学难点。
数字姐妹赏春这一环节的设计,把数字拟人化,更拉近了学生与数学知识的距离,他们在静心聆听故事中小数字对话的同时,使知识进一步得到了巩固,而且不容易忘却。
⑵教师提问:以上几种计算方法中,你觉得哪种方法比较简便?哪种方法更适合你?
大部分学生说喜欢第①种,有学生说喜欢第④种,也有学生说喜欢第③种。
师:第②种方法是用加法计算,比较基本,但计算比较麻烦。第③种方法计算比较简单,不过不容易理解。第①种和第④种都是把一个两位数转化为两位数乘整十数、两位数乘一位数来解决,只是一个横式表达,一个竖式表达。竖式这种表达方式也是我们今天要重点掌握的。
⑶教师小结:刚才你们通过动脑思考,计算出棋盘上共有361个交叉点,这个结果是正确的。围棋棋诀第一句就提到棋之盘,方十九,三百六十一叉点。(电脑呈现)
三、巩固应用
1、数学小门诊。
2、小组接力赛:摘苹果。
(比赛规则:每一组都有一张这样的苹果图片,每个苹果上都有一道题,小组合作,往下传着写,直到把苹果上的题全部作完,做得又对又快的小组就是冠军。)
3、先计算下面各题,然后将结果填入短文中,使短文成立。
围棋小资料
围棋古代叫作弈,它还有许多
有趣的名称,比如坐稳和手谈。
《左传》是世界上最早讲到围棋的书籍,
书中提到的围棋时间是公元前_____年。
围棋是中国的传统棋种,早在春秋战国
时期就广为流传。现代,大家比较熟悉
的聂卫平爷爷就是我国的围棋高手。他_____年8月出生于河北,10岁开始学棋,_____年被授予棋圣的称号。
四、总结评价
1、这节课我们的学习过程是怎样的?你有什么收获吗?
师:同学们,俗话说条条道路通罗马,解决同一个问题的方法很多,比如说从学校到老师家有很多路可以走,我可以走最近的那条路,也可以绕个弯再回到家。数学学习也一样。今天大家通过自主探索和交流,研究出计算两位数乘两位数(进位)的方法,真了不起!希望大家今后也能多思考,运用所学的知识去解决好你身边的数学问题。
2、请学生拿出评价卡:
首先让每个学生根据自己这节课的感受给评价卡上的我画上表情,然后再请你周围的同学或老师再给自己一个评价。
请学生把这张评价卡保存在你自己的成长记录里。
(以上活动可延伸到课外,只要求学生当天完成就可以了。)
在反思各种计算方法的过程中,感受到各自方法的特点,通过比较,体验到方法是否优劣,悟出属于自己的最佳方法,达到培养学生优化意识的目的。
练习设计融知识性、趣味性于一体,巧妙地将3道算式和一段介绍围棋小知识的文字结合起来,既用到了过去学过的年月日的知识,又需要一些推理,不但巩固了两位数乘两位数(进位)计算,而且拓展了学生的知识面。题目还配上古人下围棋的画面,激发起学生浓厚的学习兴趣。
新课程评价强调自评与他评相结合,实现评价主体的多元化。本节课在充分肯定、激励性评价为主的同时,强化了学生的自主评价。如,鼓励学生自己概括、总结本节课的收获;让学生完成评价卡。以上活动,使学生在学习数学的过程中通过正确的评价,不断调整自我。
两位数加两位数进位教案【篇7】
一教材分析
1、教学内容
义务教育课程标准实验教科书数学(苏教版)一年级下册第六单元《两位数加一位数(进位加)》
2、教材简析
《两位数加一位数(进位加)》是在学生掌握了“20以内进位加法”和“100以内不进位加法”的基础上学习的,是今后学习万以内的进位加法和四则混合运算的重要基础。教材提供的情景是由学生身边的活动实例引出计算问题,并呈现了两种计算方法,设计有摆小棒和交流计算方法的内容,让学生通过动手、动口的学习活动,理解、掌握两位数加一位数进位加的计算方法。算法的多样化,增加了学生思维的含量,给学生提供了创新的机会。
在此之前,学生已经掌握了两位数加一位数(不进位)和两位数加整十数的计算方法。计算能力较强。
3、学情分析
在此之前,学生已经掌握了两位数加一位数(不进位)和两位数加整十数的计算方法。计算能力较强。本节课学生将利用这些知识自主探究两位数加一位数进位加法的计算方法。在探究的过程中,学生可能会出现多种算法,作为教师要积极鼓励。
4、教学目标
结合学生的实际,根据学段目标及本节课的教学内容,我制定了以下教学目标:
(1)知识目标:让学生经历探索两位数加一位数进位加的计算方法,理解进位的原理,能比较熟练的口算两位数加一位数的加法。
(2)能力目标:初步培养学生的动手操作能力、语言表达能力和运用知识迁移的学习能力。
(3)情感目标:体验数学与日常生活的密切联系。激发学生的学习兴趣。
教学重点、难点:理解、掌握两位数加一位数进位加法的口算方法。
二、教法学法
1、说教法
课标指出:数学教学是数学活动的教学。而教师在教学活动中的作用是组织发现活动,关注活动中的学生,使学生在探索中学习新知,亲历探索过程。
情景教学法操作实验法发现法成为了我本节课的采用的教学方法和手段。
2、说学法
一年级的孩子在数学学习中,他们更喜欢生动有趣的学习情境,形象具体的直观操作,丰富多彩的游戏来吸引他们的注意,激起他们参与学习活动的热情.
孩子们在这节课中将通过操作实践,观察分析,合作探究等学习方法,主动参与获取知识的过程。
三、说教学过程
围绕教学目标,依据学生的实际情况,本课时教学过程我分四大环节:
第一环节,复习铺垫,导入新课:我先出示一组口算题,请学生回答,并说说24+5的计算过程,这是我就说:前面我们已经学了两位数加一位数的不进位加法,今天我们将继续学习两位数加一位数的计算。
通过复习,唤起学生对已有知识的记忆,为促进知识的迁移,学习新知作铺垫。第二环节,创设情境,探索新知:这里将分三个层次来组织学生探索新知.
1、观察画面,提出问题:
教材创设了三个孩子玩画片的情境,他们分别有24张、6张、9张画片。让学生根据这些信息提出加法问题,并列出算式。把这些算式根据已有认知基础进行了分类板书,9+6,24+6,24+9,24+6+9.计算9+6时请生谈谈自己的算法。24+6+9可以留待学生掌握了两位数加一位数的进位加法后再解决。这里通过多媒体创造出生动的生活情境中提取例题,符合学生的年龄、认知特征,既激发了学生的学习兴趣,又使学生感受到数学与生活的密切联系,容易为学生所感知,所接受。从学生列举出的4个等式中筛选出这节课要学习的内容,为学生认识新知提供了背景。
2、教学24+6:
提问:24+6等于多少呢?有困难可以请小棒来帮忙。学生先独立操作、思考,再交流。交流时可请学生上台边操作边讲解、述:先算4+6=10,即将4根和6根小棒捆成一捆,再算10+20=30,即1捆和2捆合起来一共3捆。最后再请学生复述一下计算过程。
这里我充分发挥学生的主体作用,让学生自主探索算法,再讨论交流,进行算法整合,确认算法,并通过动手操作解决了本节课的重点和难点。
3、教学24+9:
提问:你能算出24+9的和吗?请学生分小组讨论,先摆小棒,再讨论算法,接着请学生边演示边讲述计算过程。这里有不同的算法,既可以先算24+6=30,再算30+3=33;也可以先算4+9=13,再算20+13=33。教师将这两种算法都予以肯定。这里让学生经历动手操作—感性认识—理性认识过程,进一步掌握两位数加一位数进位加的计算方法。
4、对比总结:
观察24+6和24+9这两题与复习中的“24+5”一题作比较计算时有什么不同?得出:今天学的两位数加一位数,个位上的数相加满十,需要向十位上进一,这种加法是进位加法,并揭示课题。接着请学生解决24+6+9这一题。
这一环节孩子们通过摆小棒自主探究解决了遇到的新问题,建构了数学知识的意义,接着又让他们在合作交流的过程中共享学习成功的喜悦,学习的主动性和积极性得到充分的发挥。使枯燥的计算学习,变得生动有趣,形象直观了。
第三环节,巩固深化,拓展应用:
1 、先圈一圈,再计算:
让孩子圈了以后说一说为什么要这样圈?然后根据圈的过程算出每题的得数.让孩子明白两位数与一位数相加的算理,并在理解算理的基础上,再通过计算练习来进一步巩固计算方法。让学生把由不同圈法表现出不同的计算思路向全组交流,在交流中体会不同算法的不同特点。
2、出示三组题,每组都以一道20以内的进位加法带出3道两位数加一位数的进位加法。学生先独立计算,再把每组4题进行比较,通过对比,沟通20以内的进位加法与两位数加一位数的进位加法之间的联系,从而提高学生的计算能力。
3、创设购物情境,拓展应用:
在大屏幕上用多媒体显示玩具商店一些玩具及价格:玩具熊9元,玩具娃娃16元,小汽车25元,皮球4元,积木38元。三个孩子分别购买了不同的物品,请学生帮助他们计算各自应付的价钱。这样安排不但激发了孩子的学习热情,也进一步巩固了本课所学知识
第四环节,课堂小结:
师:今天我们计算的题目和以前计算的两位数加一位数的题目有什么不同?(个位相加满十了)这样的加法叫什么?(进位加法)
师:进位加法的得数有什么特点?(原来十位上的数增加了1)为什么?(个位相加满十了,送给十位1个十,所以十位上的数就多了1个)让学生自己说说。
在整节课的教学中,我没有把计算方法简单教给孩子,而是力求在生动的情景中让每个孩子根据自身已有的知识和经验主动加以建构,亲身探索了算法的过程,理解了“个位相加满十,向十位进1”的算法,体会计算方法的多样性。孩子们在这节课中将通过操作实践,观察分析,合作探究等学习方法,轻松愉快的学习新知。
两位数加两位数进位教案【篇8】
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)一年级上册第64页。本节课教学的是两位数加一位数和整十数不进位的情况,它的基础是整十数加一位数、整十数加整十数和10以内的加法。教材创设了学生写字的情境,根据两位同学的写字情况,自然引出两个数学问题,一个是两位数加一位数,一道是两位数加整十数,借助小棒教具的动手操作,直观理解相同数位上的数相加的道理,通过比较的方法,更加强调了计算的本质,这是后面学习两位数、多位数、乃至小数、分数计算的基础。
(二)核心能力
通过本节课的学习,让学生经历学习的过程,探究加法的计算方法,培养运算技能力。
(三)学习目标
1.通过动手操作小棒,理解两位数加一位数、整十数(不进位加)的算理,掌握计算方法,并会正确地进行口算。
2.学生通过小组合作,探索两位数加一位数、整十数的计算方法,掌握口算方法。
3.通过2道例题的对比,发现两位数加一位数、整十数的计算方法的联系,并会解决简单的数学问题。
(四)学习重点
理解并掌握两位数加一位数、整十数(不进位)的计算方法。
(五)学习难点
建立数位的概念,懂得只有相同数位上的数字才能相加。
(六)配套资源
《两位数加一位数、整十数》课件、小棒等。
二、学习设计
(一)复习旧知
口算,说一说你是怎么算的。
20+20= 60+30= 30+50=
20+7= 40+5= 30+8=
前面我们学习了整十数加、减整十数,整十数加一位数的口算,在口算时应该注意什么?
(二)互动新授
1.出示主题图,创设情境。
师:小朋友们认真看一看,图上画的是什么?这两个小朋友在说些什么?你能读一读吗?
师:从两位同学的对话中你知道了什么信息?
生:小林写了25个字,还要再写2个;小红写了20个字。
师:你能提出数学问题吗?
生1:小林要写多少个字?
生2:小林和小红已经写了多少个字?
……
2.探究算法。
(1)探究25+2=□的计算方法
我们先来解决小林写了多少个字的问题。
师:你想怎样解决呢?
生列式:25+2
师:怎样计算25+2=□的问题呢?想必有的同学已经算出了结果,不要着急,请同学们利用小棒来摆一摆,边摆边想你是怎么算的。
师:谁愿意把自己的想法和大家交流?
生:先把单根的合起来,5+2=7,再把整捆的和单根的合起来,20+7=27。
师:为什么先把单个的合在一起?能直接合吗?
课件演示,理解算理
师:看课件演示,想操作过程,并结合操作过程说一说计算过程。
师:谁能结合小棒的操作来说一说25+2应该怎么计算?先算什么,再算什么?
师:这就是我们今天要学习的内容:“两位数加一位数、整十数”。(板书课题)
【设计意图:借助学生熟悉的练字这个情景,引出两位数加一位数、整十数(不进位)。选取富有童趣的学习素材,激发学生的学习兴趣,借助动手操作,经历口算过程,理解算理,从具体到抽象,使学生的思维过程更清晰、有条理。】
(2)探究“25+20”的计算方法。
师:刚才我们研究了25+2的计算方法,知道了先把个位上的5和2合起来,再把个位和十位合在一起。接下来我们解决小林和小红一共写了多少个字的问题。谁会列式?
生:25+20
师:该怎样计算呢?请你们动动小脑筋,可借助小棒来说明你计算的方法,再和小组的同学一起讨论一下吧。
四人小组讨论算法,请小组派代表回答。
生:2捆加2捆是4捆,就是40根,再用40根加5根就是45根。
师:谁来说一说25+20的计算方法?
师:谁有问题要问吗?
(3)比较“25+2”和“25+20”算法的相同点和不同点。
师:“25+2”和“25+20”它们的计算方法是怎样呢?结果又是多少呢?同学们想一想,然后同桌交流一下。(教师巡视)
学生讨论,教师小结。
不同点:“25+2”是两位数加一位数,先算个位上的数加个位上的数;而“25+20”是两位数加整十数,先算十位上的数加十位上的数,然后再加上个位上的数。
相同点:先把相同数位上的数相加。即几个十加几个十、几个一加几个一。
【设计意图:从写字的情景出发引出两个实际问题,列出两个有联系的加法算式后,让学生通过操作理解算理,探索算法。教材在编写上也采用了左右对比的编排方式,演示算理的小棒图和表示口算过程的算是对照,使学生“理清算明”。最后在通过比较计算时的不同,再一次体会相同数位上的数才能直接相加。】
(3)巩固练习
①看图列算式。
师:从图中你知道了什么?
师:怎么解决一共有多少根小棒的问题?怎么计算呢?同桌互相说一说。
两位数加一位数
②小青蛙过河
师:小青蛙要过到河的对岸去找小鸭子玩,你能帮帮它吗?一定要认真计算哟。
③填一填。
师:通过计算这两组题你想提醒同学们注意什么?
④解决问题
师:快来利用今天学习的知识解决这个班有多少名学生的问题吧。
(三)课堂小结
教师:这节课我们学了两位数加一位数、整十数的(不进位)加法,把你学到的好方法说给我们听一听,好吗?学生个别汇报。
两位数加两位数进位教案【篇9】
教材分析:
人教义务教育课程标准实验教科书数学第二册第64页第一课。让学生经历两位数加一位数和整十数不进位加法的计算方法的形成过程,体验由具体到抽象的数学思想和方法。教育学生养成良好的计算习惯。
学情分析:
通过近一年的学习,学生对于数的计算已有了初步的了解。会计算整十数加一位数、整十数加整十数。而两位数加一位数或整十数(不进位加法)的基础是整十数加一位数、整十数加整十数,学生对计算算理和算法也有了一定的了解。
教学目标:
1.使学生理解并掌握两位数加一位数、整十数(不进位)的口算方法,正确熟练地进行口算。
2.初步培养学生的动手操作能力和说算理的习惯。
3.使学生感受数学与生活的联系,培养学生用数学的意识。
教学重点:
掌握两位数加一位数和整十数不进位加法的计算方法,会正确进行口算。
教学难点:
区分两位数加一位数和两位数加整十数的口算方法。
突破方法:
通过学生自主探究,相互交流和练习训练来加强算理的理解,并能正确的计算。
教学方法:
引导探究法。
教学具准备:
CAI课件、实物投影仪、小棒、口算卡片。
教学过程:
一、对口令游戏,巩固旧知
师:下面口算,看谁听完后反应快,说的对?
(1)20+30,2+3,30+5,3+5,40+50,4+5.
(2)5+2+30,20+40+6.(先算5+2=7,再算7+30=37;先算20+40=60,再算60+6=66)
我们班的小朋友反应真快啊!听算能力有进步啊!
二、创设情境、兴趣导入
新学期回来的第一天,老师总会送给每位同学一份礼物,它是我们的好朋友,能带我们遨游知识的海洋,这礼物是什么呢?(新书本)
1、课件演示情景图。(画外音:老师给小朋友发新书了)
2、引导学生认真观察情景图,弄清图意,说说可以提出哪些数学问题。如:
①数学书有多少本?
②语文书有多少本?
③一包数学书和一包语文书有多少本?
④零散的语文书和数学书有多少本?
3、思考解决问题的方法。
①学生独立从画面上寻找解决问题的所需的数据与信息,每组分别列出一个问题的算式。(35+330+835+308+3)
②教师:哪几个算式的计算已经学过,哪几个没有学?你能把上面的算式分类吗?
4、35+3、35+30分别得多少呢?这节课我们就一起来研究这种类型的题目。(板书课题:两位数加一位数和整十数)
三、合作交流、探索算法
(1)探讨35+3的算法
35+3的结果可以通过哪些方法得出?(学生独立思考,分组交流计算方法)预设学生可能想到的方法:
①利用学具帮助解答。
先摆3捆小棒和5根小棒,再摆3根小棒,5根和3根结合起来得到8根小棒,再和3捆小棒合起来就是38.
先在十位上拨3颗珠子和个位上拨5颗珠子,再在个位上拨3颗珠子,5颗加3颗就是8颗,再和十位上的3颗珠子合起来就是38.
②不利用小棒直接计算。
用数位的方法:先算个位5+3=8,把8写在个位上,再算十位3+0=3,把3写在十位上,结果就是38.
用点数的方法:往后数3个数:36、37、38.
用数的组成法:35可以分成30和5,先用5+3得8,再用8+30=38.
小结:我们在计算像35+3这样的算式时,十位上的数不变,只需个位上的数和个位上的数相加。
1.探讨35+30的算法
两位数加一位数同学们已经学会了,那像35+30这样的两位数加整十数该怎么算呢?
①利用小棒帮助解答:先摆3捆小棒加3捆小棒是60,再和5根小棒合起来是65;用小棒点数的方法算:35、45、55、65.
②用计算的方法:先计算十位上30+30=60,再计算60+5=65.
教师引导学生得出:在计算像35+30这样的算式时,个位上的数不变,只需要先把十位上的数和十位上的数相加。
(3)比较算法,加深理解。
①组织学生小组讨论:刚才我们算的35+3和35+30,它们的计算过程有什么不同呢?(同桌交流,再汇报)
②小结计算两位数加一位数和整十数的方法:相同数位上的数相加,就是个位的数加在个位上,十位的数加在十位上。
师:今天我们学习的就是两位数加一位数和整十数,像这样的两题在算法上有什么不同?
生1:35加3是先算5加3,35加30是先算30加30。
生2:35加3是先把个位相加,35加30是先把十位相加。
集体反馈后
师:两位数加一位数,计算时是先几加几,再几十加几。
两位数加整十数,计算时是先几十加几十,再几十加几。
四、趣味练习、拓展延伸
(1)争当小老师:同桌互相出计算题考一考,并说出你是怎样计算的。
(2)完成数学书64页做一做。完成后同桌之间选两题互相交流计算方法。
(3)小组比赛:完成练习的第1、2、3、4题。小组汇报订正。
五、课堂小结
这节课,同学们有哪些收获呢?(学生自由说说)
两位数加两位数进位教案【篇10】
教学内容:
苏教版小学数学一年级下册第74、75页(两位数加一位数进位加法)。
教学目标:
1、经历进位加口算方法的过程,理解进位加的算理,掌握两位数加一位数进位加法的口算方法,并能正确地进行口算。
2、从现实情境中提出问题和探索口算方法的过程中,发展提出问题、解决问题的能力,进一步感受探寻口算方法的策略,发展形象思维和抽象、概括的思维能力,以及口算能力。
3、在学习过程中能积极思考、交流、倾听,产生对数学活动的兴趣,培养交流、合作的意识。
教学重点:
两位数加一位数进位加的算法。
教学难点:
理解两位数加一位数进位加的算理。
教学过程:
一、复习铺垫,谈话导入
小朋友,你们已经学习了两位数加一位数的口算是吗?谁来出一道这样的口算题考考大家?板书:24+5是多少?你是怎么算的?
今天余老师和大家一起继续来学习两位数加一位数,比比谁学得最棒。
二、创设情景,激发兴趣
(一)教学“24+6”
1、春天到了,我们小朋友都会去春游,今天,也有三个小朋友去游玩,看,他们在草地上数画片呢!
师:从图中你知道了哪些数学信息?
师:你能根据这些数学信息,提一个用加法计算的问题吗?
生:(1)小明和小红一共有多少张?
(2)小亮和小明一共有多少张?
(3)小亮和小红一共有多少张?
师:解决第(1)个问题需要哪些条件?如何列式?(板书:9+6=)
师:第(2)(3)个问题如何列式?(板书:24+6=,24+9=)
问:这些算式,哪些是我们学过的?(9+6=15(张))
24+6怎么算?
自主学习要求:
(1)先自己思考,可以用小棒摆一摆。
(2)再和同桌说一说。
生先摆后交流,指名生边摆边介绍。
师:他先把几根和几根合在一起?这10根我们可以捆一捆,把它换成一捆小棒,这样我们就可以清楚地看到有几捆小棒?也就是几根?(随机板书)
3、如果我们没有小棒,你知道计算的时候要先算几加几,再算几加几吗?小组里面说一说。
汇报。板书:
4+6=10
20+10=30
(个答——互说——全班说——个答)
先算几加几,再算几十加一十。
(二)教学“24+9”
大家真棒!那24+9怎么算呢?
自主学习要求:
(1)先自己思考,填一填。
(2)再和同桌说一说先算什么,再算什么。
(个答——互说——全班说——个答)
(三)对比提升
比较前面学习的“24+5”与今天学习的“24+6”与“24+9”,有什么相同与不同?
生先独立思考,再同桌讨论交流。
小结:
相同:都是先把个位数字相加,再用得数加上几十;
不同:今天的学习的个位相加得数满十,向十位进一了。
完善板书(“进位”)
三、巩固练习
1、想想做做第一题
让学生说说打算怎样填。学生独立填写。反馈学生作业、总结。
2、想想做做第二题
观察比较每一组题里的算式有哪些相同的地方,哪些不同的地方?
小结:两位数加一位数,个位数加一位数,再用得到的结果加上十位数。
3、口算。
计时完成,指名说说2——3题的口算过程。
4、想想做做第四题
生读题,说说条件和问题分别是什么?生独立列式解答。
师:为什么用加法?
四、课堂小结
小朋友,学了这节课你有什么收获?