圆的方程课件
发布时间:2023-05-06 方程课件圆的方程课件系列9篇。
上课前准备好课堂用到教案课件很重要,因此就需要我们老师写好属于自己教学课件。教案是教师教学升华的有效手段。在阅读的过程中小编找到了一篇很有用的“圆的方程课件”,希望本文能让您喜欢!
圆的方程课件 篇1
教学内容:
人教版课标教材小学数学第九册第四单元第53页、第54页“方程的意义”。 教学目标:借助生活情境理解方程的意义,能从形式上判断一个式子是不是方程;经历从生活情境到方程模型的建构过程,感受方程思想;培养学生观察、描述、分类、抽象、概括、应用等能力。
教学重点:
准确从生活情境中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。
教学难点:
理解方程的意义,即方程两边代数式所表达的两件事情是等价的。
教学过程 一、呈现情境,建立方程
1.师:(出示一台天平)请看,这是一台天平,在什么情况下天平会保持平衡呢?
教师在天平的一边放上两袋100克的食物,另一边放一个200克的砝码,这台天平保持平衡了吗?
提问:你能用一个式子表示这种平衡吗?(100+100=200或100×2=100)你怎么想到了用数学符号“=”来表示天平的平衡呢?(引导学生说出:这里的100+100表示的是天平左盘食物的质量,200表示的是天平右盘砝码的质量,正因为它们的质量相等,天平才会平衡,如果学生说成:食物的质量=砝码的质量,教师也给予肯定,然后问:现在已经知道这两袋食物的质量都是100克,砝码的质量是200克,那么上面的式子可以写成什么形式?)
2.(出示两小袋食品)将左盘的食物换成两袋30克的食物,天平还是平衡的吗?为什么?你能用一个式子表示这种不平衡吗?(30+30200)咱们班谁喜欢喝牛奶?你喝吧!问:这盒牛奶被喝掉多少克了?再问:这盒牛奶现在的质量可以怎么表示?(275-x)克。
3.再将这盒喝过的牛奶放在天平的左盘,可能会出现什么情况?可以怎么表示?写一写!点名汇报,(切忌一问一答!当学生答出一种情况,老师随机问这种情况表示的是什么情况)
当学生说出275-x>200、275-x=200、275-x200,275-x>200,275-X=200,275-x72,③y+24④5x+32=47,⑤2x+3)=34,⑥6(a+2)=42
(对不是方程的式子,一定要学生从本质上解释为什么不是方程)
学完方程后。小明又列了两个式子,却不小心被墨水给弄脏了,猜猜他原来列的是不是方程?
让学生明白,不管墨迹处是什么,第一个都是方程,第二个则可能是也可能不是,可小明说,他列的第二个式子也是方程,猜一猜,他列了个什么方程?
4.看来,大家对方程又有了更深刻的认识,其实,早在三千六百多年以前,人们就对方程有了自己的认识你知道吗?
课件出示(配以录音):早在三千六百多年前,埃及人就会用方程解决数学问题了,在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料,一直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
很多以前用算术方法解起来很难的问题,用方程能轻而易举地解出来。
设计意图:
动态平衡是为了加深对方程本质的理解判断题中对不是方程的式子的合理解释,进一步明晰了方程的表现形式有别于其他等式、不等式或代数式,为了让学生感知方程的多样性,防止学生把未知数狭隘地理解为一个或者狭隘地理解为z,在这一题里设计了有两个未知数的,也设计了含有未知数a、y的。
圆的方程课件 篇2
教学内容
方程的意义(人教版义务教育课程标准实验教材五年级上册第四单元第二小节解简易方程的第一课时)
教学理念
新课标要求数学课程的培养目标要面向全体学生,适应学生个性发展的需要,使得人人都获得良好的数学教育,不同的人在数学上得到不同的发展。让学生获得数学活动经验,培养学生在活动中从数学的角度进行思考,直观地、合情地获得一些结果。学会用图形思考、想象问题,能从“数”与“形”两个角度认识数学。
教学策略
本节课我根据盲生因视觉障碍,对事物缺少整体感知,不能准确地理解抽象的数学观念这一特点,我充分利用直观创设情境,恰当地构造数学问题,将抽象的数学关系具体化,调动学生的直观思维;让学生经历观察、感知、思考、猜想、验证、分类比较、归纳概括的过程。通过数形结合的方法实现抽象与具体之间的转变。
内容分析
方程的意义这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,从未知数只是结果到未知数参加运算,是学生学习数学方法的一次提升;也是学生又一次接触初步代数思想,是思维的一次飞跃。代数思维是数学学习的"核心思想",本课教学内容是学生从算术思维到代数思维的过渡。
教学目标
1.根据天平平衡的原理,理解等式。能用方程表示简单的数量关系,理解方程的意义,渗透符号意识,发展数感。
2.使学生在观察、感知、思考、猜想、验证、分类比较、归纳概括的过程中,经历从现实生活或具体情境中抽象出数学问题,用数学符号建立方程,表示数学问题中的数量关系,培养学生形成方程模型的思想,掌握研究问题的方法。
3.分类分层教学,在学生学习数学知识的同时,体会数学与生活的密切联系,提高对数学的兴趣和应用意识。
教学重点
结合具体情境理解方程的意义,用方程表示简单的等量关系。
教学难点
从算术思维到代数思维的过渡。
教学准备
玩具天平塑料香蕉小袋子多媒体课件、盲文及低视力卡片
教学过程
一、创设情境,抽象出等量关系
(一)依据天平,理解相等,
1.认识天平
同学们认识天平吗?知道天平是干什么用的吗?(称质量、比较物体的质量)那天平是根据什么来称量或者比较物体的质量?(平衡)让学生用玩具天平来感知一下平衡(低视生看,老师协助全盲生用手慢慢向上托,直到手掌触到物体)
再让学生用自己的身体仿照小猴子的样子来演示一下平衡。如果左边重呢?怎样演示?右边重呢?2.理解相等
低视力生看大屏幕,根据自己看到的画面,帮助全盲生把实物挂起来(天平左面有60克和40克的香蕉,右面有100克的香蕉)
天平此时的状态怎么样哪?(低视力生观察,全盲生感知。)天平平衡说明什么?(左右两边质量相等)
能用数学式子表示出来吗?
预设:40+60=100 60+40=100(板书)。
像这样含有等号的式子我们叫它等式。
3、让学生再说几个等式。
(二)依据天平,理解不相等 1.理解不相等
如果把左边40克的香蕉拿下去了,天平会怎样?(预设:左边轻,右边重。)
此时天平的状态又怎样哪?(不平衡。)低视生观察,全盲生感知。
让学生用一个数学式子表示。(预设:60<100,100>60 。
刚才相等的式子叫等式,这样不相等的呢?(预设:不等式,或不知道。)
2、让学生再说几个不等式。
(三)依据天平,理解含有字母的等式与不等式
1、猜想:如果把一个袋子放到天平的左边,天平会怎么样?可能会出现哪些情况?
2、交流。(预设:左边重,右边轻;右边重,左边轻;一样重。)
3、验证:低视力生协助全盲生操作验证(教师协助)
4、以小组为单位,低视生记录三种状态下的数学式子。预设(60+x=100;60+x>100;60+x
(四)依据心中的天平理解等量关系
1、谈话:看来这一个小小的天平帮我们记录了这么多的数学现象,现在我把天平藏起来了(把玩具天平收起来)
还有天平吗?(预设:没有。)
你心中的天平还有没有?(有)
2、出示课件:
3、低视力生看大屏幕,并叙述图意。
4、思考:用心里的小天平摆放一下:左面放?右面放?此时你的小天平是什么样的状态?说明什么?
5、让学生用数学式子表示出来。(预设:5x=800)并让学生说一说5x表示的意思。(预设:5x是5个苹果的质量)
6、说一说:5个苹果的质量为什么用5x来表示?(预设:因为一个苹果的质量不知道,可以用x表示,5个苹果的质量就用5x来表示。)
7、评价:真了不起,会用字母来表示不知道的数量,这个未知的数量也可以参与到我们的运算中来解决问题。
二、引导学生给式子分类,抽象概括出方程的意义
(一)式子分类,揭示方程的意义。
1、一小组为单位,让学生拿出自己的卡片,给刚才的式子分类。并思考分类标准。
2、学生交流(预设:
1、按是否是等式来分。
2、是否含有字母来分。
3、还有学生把60+x=100,5x=800单分一类)
3、教师揭示:象60+x=100,5x=800就是方程
4、让学生根据这两个式子的特点说一说什么叫方程?
5、教师点题:含有未知数的等式叫做方程
(二).探讨并揭示等式与方程的关系。
1、让学生试着说一说方程与等式的关系。
2、学生交流
3、教师引导:如果方程是一个大圆,方程应该是什么?(预设:一个小圆,在大圆中)
三、巩固拓展、应用概念
刚才我们认识了方程,你能判断什么是方程吗?
1.应用概念,判断方程
判断下面的式子是否是方程。(提问C类学生)
x+5 15+5=20 2x +3>10 36-x=9×3 2.应用概念,解决问题。
(1)课件出示:(提问B类学生)
(2)低视力生看大屏幕,并帮全盲生叙述图意。(3)谈话:能用方程表示出来吗?(预设:6a=24.6)(4)追问:6a表示什么?
(5)课件出示:(提问A、B类学生)
教法同上
(6)课件出示:(提问A类学生)
(7)先让低视生说说这幅图的意思?
(预设:1000毫升刚好能倒满2个大杯子和一个小杯子;2个大杯子和1个小杯子的盛奶量就是1000毫升。)(8)找等量关系,并列出方程
(9)评价:真棒!用字母表示未知数参与到运算中,找到了图中的等量关系。
四、回顾反思 总结提升这节课你学到了什么?
(结合学生的回答,小结)
五、作业:(1)练习十一第一题
(2)根据今天学习的知识,编一个关于方程的数学故事
教学内容:苏教版四年级(第八册)教学目标: (1)使学生理解方程概念,感受方程思想。 (2)经历从生活情景到方程模型的建构过程。
(3)培养学生观察、描述、分类、抽象、概括、应用等能力。
圆的方程课件 篇3
教学内容:
苏教版教科书第1~2页的内容。
教学目的:
⑴在具体的情景中,让学生理解等式、方程的含义,体会等式和方程的关系,能根据情景图正确地列出方程。
⑵在观察、分析、抽象、概括和交流的过程中,让学生经历将现实问题抽象成式和方程的过程,积累将现实问题数学化的经验,感受方程的思想方法及价值,发展抽象能力和符号感。
⑶学生在数学活动的过程中,养成独立思考、主动与他人合作交流等习惯,获得成功的体验,培养对数学的学习兴趣。
教学流程:
一、情景引入,初步展开新课。
⑴出示“天平”情景图,了解学情。
让学生说说,你知道了什么?
天平;两边是一样重的;指针在中间表示就表示相等等等。
⑵用等式表示天平两边物体的质量关系。
先写出等式;交流等式:50+50=100,交流这样列式的思考;揭示概念,象这样表示两边相等的式子就是等式。
二、继续出示情景图,深入展开新课。
⑴出示情景图,明确要求。
用式子表示天平两边物体的质量关系。
⑵独立思考,试写式子。
学生在书上独立填写。
⑶学情反馈,班级交流。
让学生自行上黑板写不同的式子。
可能会出现下面这些式子:x+50>100,x+50≠100, x+50=100+50,x+50<200,x+50≠200,x+x=200,2x=200等。
甄别确认正确答案。
⑷尝试分类,理解方程的意义。
明确要求——分类;为类别起名,等式,不等式;独立分类,等式:x+x=200,2x=200 ,x+50=100+50,50+50=100,不等式:x+50>100,x+50≠100,x+50<200,x+50≠200。
再分类,不等式感悟“>”和“<”比“≠”更准确;等式分类:等式中有一部分叫等式(含有未知数)。
⑸体会等式和方程的关系。
用符号表示等式和方程的关系,例如集合图等;用形象的情景表示等式和方程的关系,例如部分和总数等。
三、独立练习,进一步内化新知。
⑴完成练一练1。
确定用不同的符号表示方程和等式,确定寻找等式和方程的思路和方法;交流矫正。
⑵下面哪些是等式,哪些是方程?用线连一连。
9—x=3 20+30=50
80÷4=20 等式 x+17=38
x—15 方程 36+ x<40
7y=63 54÷x=9
⑶完成第2页试一试和看图列方程。
先独立列方程,再在小组里交流列式的思考。
⑷完成练习一1~3。
重点交流第2题。
圆的方程课件 篇4
教学目标:
1、结合具体情境,理解方程的意义,会用方程表示简单的等量关系。
2、借助天平让学生理解方程及等式的意义。
3、感受方程与现实生活的密切联系,唤起学生保护珍稀动物的意识。
教学过程:
一、 创设情境,激趣导入。
谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示)
我们应该保护这些濒临灭绝的珍稀动物,今天这节课,就以三种动物为话题,来研究其中的数学问题。
二、合作探究,获取新知。
(一)理解等式的意义。
找出白鳍豚这组资料的等量关系,用字母表示。
1、 师:我们先来看白鳍豚的这组资料,你从中发现了那些信息?
1980年比20xx年多300只,这句话中有几个数量?你能用一个式子表示出这三个数量之间的关系吗?让学生在练习本上写一写,进行板书。
1980年只数—20xx年只数=300只
1980年只数—300只=20xx年只数
20xx年只数+300只=1980年只数
2、请同学们根据这三个数量中的已知数和未知数,用含有字母的式子表示出20xx年只数+300只=1980年只数这个数量关系,小组进行讨论、交流。(教师进行巡视,参与讨论。)
3、分析a+300=400,等号左边表示1980年只数,等号右边也是1980年的只数,像这样表示左右两边相等的式子,我们通常简称为等式。(板书:等式)
4、借助天平来研究等式。
(出示天平)你对天平了解多少?谁给大家介绍一下?
师:你观察的真仔细,天平是一种用来称量物体质量比较精密的仪器,当指针指在标尺的中央,天平就平衡了。
师:如果左盘放10克砝码,右盘放20克砝码,天平会平衡吗?怎样用式子表示这种关系?(10
师:出示天平:左20克和x克,右50克,你能用一个等式表示天平左右两边的关系吗?(20+x=50)
师:我们知道一个等式可以表示出天平平衡时左右两边相等的关系,那在天平如何表示出x+300=400这个数量关系吗?(出示天平)
(二)理解方程的意义。
1、 找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。
师:继续看大熊猫的资料,你获得了哪些信息?根据这些信息,小组讨论以下三个问题:
(1) 找出人工养殖的只数与野生的只数的关系,用文字表示出来。
(2) 用含有字母的等式表示出这个关系。
(3) 在天平上表示出这个等式 。
小组合作探讨,汇报交流,得出 :人工养殖的只数x10=野生只数
10x=1600 ,1600÷x=10或1600÷10=x天平左盘放10个x只,右盘放1600
只 。我们通过分析它们之间的等量关系得出了等式10x=1600.
2、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。
师:继续看东北虎的资料,你获得了哪些信息?根据这些信息,你能像刚才那样提出数学问题吗?小组讨论解决,交流汇报。(1)20xx年只数×3+100=20xx年的只数。
(2) 3×+100=1000或1000-3×=100 (3)天平左盘3x和100,右盘1000.
我们通过分析它们之间的等量关系得出了等式3x+100=1000.
3、 揭示方程的意义
师:刚才我们研究出这么多的等式,下面给它们分分类,怎么分呢?(含字母,不含字母)
我们把含有字母的等式,叫方程。这就是方程的意义。(板书:方程的意义)
师:同学想一想x+5是方程吗?2+3=5是方程吗?说明理由。
师:判断是不是方程,你觉得应符合什么条件?(含未知数,还必须是等式)
师:请同学们再思考:式子、等式、方程,它们之间的关系是怎样的?
三、巩固练习,加强应用。
看来同学们已经掌握了今天所学的知识,下面老师来考考你。
课件出示课本自主练习1,2,3,4。
四、回顾反思,总结提升。
通过这节课的学习,你有什么收获?
圆的方程课件 篇5
教学目标
1、结合具体的题目,让学生初步理解方程的解与解方程的含义。
2、会检验一个具体的值是不是方程的解,掌握检验的格式。
3、进一步提高学生比较、分析的能力。
知识重点解方程的规范步骤
教学难点比较方程的解和解方程这两个概念的含义
教学过程教学方法和手段
引入
(1)上一节课,我们学习了什么?
复习天平保持平衡的规律及等式保持不变的规律。
(2)学习这些规律有什么用呢?(用于解方程)从这节课开始我们就会逐渐发现到它的重要作用了。
教学过程一、解决问题。
出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。
能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。
全班交流。可能有以下四种思路:
(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。
(2)利用加减法的关系:250-100=150。
(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。
(4)直接利用等式不变的规律从两边减去100。
对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。
二、认识、区别方程的解和解方程。
得出方程的解与解方程的含:
像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。
而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。
这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?
方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。
三、方程的检验
P58例1P59例2。
怎么判断X=6是不是方程的解?将x=6代入方程之中看左右两边是否相等,写作格式是:方程左边=x+3
=6+3
=9
=方程右边
所以,x=6是方程的解。
课堂练习独立完成练习十一第4题,强调书写格式。
小结与作业
课堂小结这节课你学到了什么?(1)解方程和方程的解有什么区别(2)解方程要按照什么样的格式来写?(3)如何检验呢?格式又是怎么样的?
课后追记
本课应用方程平衡原理来解方程,要注意的是检验方程的时候,最后一句话,所以××是方程的解(这里的××学生容易写成方程右边的值)
圆的方程课件 篇6
教学目标:
1、知识目标:在理解化学方程式意义的基础上,使学生掌握有关反应物、生成物质量的计算。
2、能力目标:掌握解题方法和解题格式,培养学生解题能力。
思想教育:
从定量的角度理解化学反应,了解根据化学方程式的计算在工、农业生产和科学实验中的意义,学会科学地利用资源。
教学重点:
由一种反应物(或生成物)的质量求生成物(或反应物)的质量。
情况分析:
通过前一节的学习,学生对化学方程式有了一定的了解。理解化学方程式的意义是根据化学方程式计算的关键,教师应紧紧结合化学方程式意义,引导学生对如何根据化学方程式进行计算这一问题进行探究。通过分析题意,理清解题思路,教给学生解题方法,培养学生分析解决计算问题的能力;通过解题训练,培养学生正确、简明地表达能力。
教学方法:
1、探究法:通过对问题的合理设计,使学生在教师的引导下逐步探究关于化学方程式计算的解题思路和解题格式。
2、边讲边练法:通过边讲边练,及时反馈信息,达到师生互动,争取在课堂40分钟解决本节课大部分问题。
教学辅助设备:小黑板、学生课堂练习资料。
教学过程:
教师活动
学生活动
教学意图
提问引入:
前面我们学习了化学方程式,化学方程式表示的意义是什么?试从定性和定量两个方面来说明。
请书写出氢气还原氧化铜的化学方程式,计算出反应物和生成物各物质之间的质量比,并指明该化学方程式所表示的意义。
过渡:根据化学方程式所表示的量的意义,我们可以在已知化学方程式中某物质的质量的情况下,计算别的物质的质量。这就是我们今天要探究的问题。
提出问题:同学们,我们现在用学过的知识试着去
解决下面的问题。
例题1:用足量的氢气还原氧化铜制取铜,如果得到128Kg的铜,至少需要多少氧化铜?(同时需要多少克氢气?)
让学生自己试着去解决该问题,教师作适当引导。并请一位学生上台演算。
引导提问:
你们是以什么样的思路去解决这个问题的呢?
让学生分组讨论一会儿,然后让学生对解题思路进行总结。
总结:
解题思路:
1、写出化学方程式
2、找出已知量、未知量(设为x),并根据化学方程式计算出已知量、未知量的质量比。分两行写在对应的化学式下面。
3、列出比例式,求解x。
巩固练习:
现在我们就用刚才总结的解题思路再来解决一个问题,并请同学们按照你们认为正确的解题格式将解题过程书写出来。
例题2:13g锌和足量的稀硫酸反应可制得多少克氢气?
问题深化:解答计算题应该有正确的书写格式,那么根据化学方程式计算的解题格式是怎样的呢?
让学生分组讨论,然后总结出解题格式,并请学生回答。
解题格式:
1、设未知量为x
2、写出化学方程式
3、找已知量、未知量,并计算其质量比
4、列比例式,求解未知量
5、简明地答
点拨:对解题格式中的相关事项作进一步强调。
现在我们就用刚学过的解题思路和解题格式知识,完成下列两个练习题。
巩固练习:
1、电解1.8g水可得多少克氢气?
2、在空气中燃烧多少克木炭可得22g二氧化碳?
让两位学生到台上演算。
引导:指导学生做课堂练习,随时纠正学生在练习中出现的问题,对于学习稍差的学生要进行个别的帮助。
解题辨析:
下题的两种计算的结果都是错误的,请指出其中错误,并进行正确的计算。
内容:略
(如果时间不够,则将该部分内容移到下节课进行。)
通过前面的学习,对根据化学方程式进行计算中应注意的事项,请同学们总结一下。
对学生的小结,教师作适当引导和补充。
小结:
本节课的主要内容可以用下面几句韵语加以记忆。
化学方程要配平,需将纯量代方程;关系式对关系量,计算单位不能忘;关系量间成比例,解设比答需完整。
课外练习:
教材习题。
根据提出的问题进行思考,产生求知欲。
学生书写化学方程式,并请一位学生上台书写,另请一位学生回答意义。
学生对以小黑板出示的例题略作观察,稍加思考。
可让一个学生上台来演算。
让学生思考、讨论一、两分钟,请一、两位学生回答。
学生仔细体会解题的思路过程。
学生进行练习,请一位学生上台演算,并写出解题过程。
学生在解题过程中注意使用正确的解题格式。
学生分析总结出解题格式,一、两位学生代表作答。
对照教师给出的解题格式,学生仔细体会,并和解题思路作比较。
依照例题,严格按计算格式完成课堂练习。
强化训练,巩固知识,提高技能。
学生积极思考,并指出其中错误。
学生总结解题注意事项,请一、两位学生作答。
理解记忆。
独立完成课外练习。
问题导思,激发学生学习兴趣。
让学生回忆化学方程式的意义,加深对化学方程式意义的理解。因为理解化学方程式的意义对本节课有根本性的重要意义。
以具体的问题引导学生进入学习新知识情景。
结合具体的实例教会学生分析题意,学会如何解计算题。
充分发挥学生的主体作用,让学生在探究问题中体会到成功的乐趣。
重点引导学生从思维的特点出发,养成正确地审题、解题习惯,找准解题的突破口。
加深巩固,进一步强化用正确的思路去分析、解答计算题。
培养学生严格认真的科学态度和书写完整、规范的良好学习习惯。
掌握解题格式和解题方法,培养学生分析问题和解决问题的能力。
通过练习加深巩固知识,强化计算技能。通过练习发现问题,及时纠正。
辨析解题正误,发现典型错误,避免学生犯类似错误。
让学生自主学习,培养学生分析问题解决问题能力;教师只作恰当及时点拨。
在轻松、愉快中学会知识,会学知识。
加深、巩固知识,反馈信息。
课后反思:
圆的方程课件 篇7
教学目标:
1、使学生进一步体会方程的意义和思想,会用等式的性质解一些简单的方程。
2、使学生进一步认识用字母表示数及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式,
3、培养学生抽象,概括的能力。
教学重点:
用字母表示数、解方程
教学难点:
解方程的依据、理解等式的性质
设计理念:
通过复习“用字母表示数”,引发学生对旧知的回忆,在独立思考的基础上积极参与对数学问题的讨论,敢于发表自己的观点。通过各种形式的讨论,也使学生在参与数学学习活动的过程中,养成独立思考、主动与人合作的习惯,从而获得成功的体验,产生了对数学的积极情感。
教学步骤教师活动学生活动
一、揭示课题我们在复习了整数、小数的概念,计算和应用题的基础上,今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,加深理解方程的概念,掌握解简易方程的步骤、方法,能正确地解简易方程。
二、整理与反思
复习用字母表示数
1、用含有字母的式子表示:
(1)求路程的数量关系。
(2)乘法交换律。
(3)长方形的面积计算公式。
提问:用字母表示数有什么作用?用字母表示乘法式子时要怎样写?
2、你能自己举出一些用字母表示数的例子吗?
长方形的周长C=2(a+b)
加法交换率a+b=b+a……
3、什么叫方程?方程与等式有什么联系和区别?
(1)教师引导:含有字母的等式叫方程。
(2)表示相等的式子叫等式。方程是含有字母的等式。
4、你知道等式有哪些性质?举例说一说。
强调:0除外
教师归纳:等式的两边同时加、减、乘、除以同一个数(除数不为0),等式的两边相等。
让学生写出字母式子,同时指名一人板演。指名学生说说每个式子表示的意思。
同桌互相举例,代表发言
同桌讨论,个别学生归纳
小组讨论,代表发言。
三、练习与实践
1、在括号里写出含有字母的式子
(1)一种贺卡的单价是a元,小英买5张这样的贺卡,用去()元;小明买n张这样的贺卡,付出10元,应找回()元。
(2)每千瓦时电费0。52元,每立方米水费2元。小明家本月用了a千瓦时电和b立方米水,一共要付水费()元。
2、完成“练习与实践”的第2题
(1)完成后交流,并让学生说出解每个方程的过程,分别运用了等式的哪些性质?
(2)说说解答每题时应注意什么?
3、根据题意列出方程。
(1)比一个数的'2倍多5是70。
(2)一个数加上它的1.2倍是13.2。
(3)20乘以4的积,减去一个数得11。
(4)一个数的2.5倍加上3个0.6是6.8。
指名学生口答,老师板书,并要求学生说一说列方程时是怎样想的。
说出式子的数量关系
独立完成后集体交流
学生独立完成
学生独立完成
四、总结质疑
通过这节课的复习,你有了哪些新的认识?还有哪些疑问?
五、课后点击
已知A+A+A+B+B=54
A+A+B+B+B=56,那么A=()B=()
留给有余力的学生课后讨论、完成
圆的方程课件 篇8
教学目标
知识目标
学生理解化学方程式在“质”和“量”两个方面的涵义,理解书写化学方程式必须遵守的两个原则;
通过练习、讨论,初步学会配平化学方程式的一种方法——最小公倍数法;
能正确书写简单的化学方程式。
能力目标
培养学生的自学能力和逻辑思维能力。
情感目标
培养学生实事求是的科学态度,勇于探究及合作精神。
教学建议
教材分析
1.化学方程式是用化学式来描述化学反应的式子。其含义有二,其一可以表明反应物、生成物是什么,其二表示各物质之间的质量关系,书写化学方程式必须依据的原则:
①客观性原则—以客观事实为基础,绝不能凭空设想、随意臆造事实上不存在的物质和化学反应。
②遵守质量守恒定律—参加化学反应的各物质的质量总和,等于反应后生成的各物质的质量总和,书写化学方程式应遵循一定的顺序,才能保证正确。其顺序一般为:“反应物”→“—” →“反应条件” →“生成物” →“↑或↓” →“配平” →“=”。
2.配平是书写化学方程式的难点,配平是通过在化学式前加系数来使化学方程式等号两边各元素的原子个数相等,以确保遵守质量守恒定律。配平的方法有多种,如奇偶法、观察法、最小公倍数法。
3.书写化学方程式为了能顺利地写出反应物或生成物,应力求结合化学方程式所表示的化学反应现象来记忆。例如,镁在空气中燃烧。实验现象为,银白色的镁带在空气中燃烧,发出耀眼的强光,生成白色粉末。白色粉末为氧化镁(),反应条件为点燃。因此,此反应的反应式为
有些化学方程式可以借助于反应规律来书写、记忆。例如,酸、碱、盐之间的反应,因为有规律可循,所以根据反应规律书写比较容易。例如酸与碱发生复分解反应,两两相互交换成分,生成两种新的化合物—盐和水。以硫酸跟氢氧化钠反应为例。反应方程式为:
教法建议
学生在学习了元素符号、化学式、化学反应的实质,知道了一些化学反应和它们的文字表达式后,结合上一节学到的质量守恒定律,已经具备了学习化学方程式的基础。
本节教学可结合实际对课本内容和顺序做一些调整和改进。注意引导学生发现问题,通过独立思考和相互讨论去分析、解决问题,创设生动活泼、民主宽松又紧张有序的学习气氛。
教学时要围绕重点,突破难点,突出教师主导和学生主体的“双为主”作用。具体设计如下:
1、复习。旧知识是学习新知识的基础,培养学生建立新旧知识间联系的'意识。其中质量守恒定律及质量守恒的微观解释是最为重要的:化学方程式体现出质量守恒,而其微观解释又是配平的依据。
2、概念和涵义,以最简单的碳在氧气中燃烧生成二氧化碳的反应为例,学生写:碳+氧气―→二氧化碳,老师写出C + O2 — CO2,引导学生通过与反应的文字表达式比较而得出概念。为加深理解,又以 S + O 2 — SO2的反应强化,引导学生从特殊→一般,概括出化学方程式的涵义。
3、书写原则和配平(书写原则:1. 依据客观事实;2. 遵循质量守恒定律)。学生常抛开原则写出错误的化学方程式,为强化二者关系,可采用练习、自学→发现问题―→探讨分析提出解决方法―→上升到理论―→实践练习的模式。
4、书写步骤。在学生探索、练习的基础上,以学生熟悉的用氯酸钾制氧气的化学反应方程式书写为练习,巩固配平方法,使学生体会书写化学方程式的步骤。通过练习发现问题,提出改进,并由学生总结步骤。教师板书时再次强化必须遵守的两个原则。
5、小结在学生思考后进行,目的是培养学生良好的学习习惯,使知识系统化。
6、检查学习效果,进行检测练习。由学生相互评判、分析,鼓励学生敢于质疑、发散思维、求异思维,以培养学生的创新意识。
布置作业后,教师再“画龙点睛”式的强调重点,并引出本课知识与下节课知识的关系,为学新知识做好铺垫,使学生再次体会新旧知识的密切联系,巩固学习的积极性。
教学设计方案
重点:化学方程式的涵义及写法
难点:化学方程式的配平
圆的方程课件 篇9
教学内容:
人教版小学数学教材五年级上册第62~63页及练习十四第1~3题。
教学目标:
1.借助天平及式子的分类操作,使学生初步了解方程的意义;能从形式上判别一个式子是否是方程;理清方程与等式的关系。
2.能根据简单的线段图、情境图列出方程,并能在教师引导下找到等量关系,经历利用等量关系进行方程模型建构的过程。
3.在对式子的分类、整理的教学活动中培养学生观察、描述、分类、抽象、概括及应用等能力。
教学重点:
抓住“等式”“含有未知数”两个关键词初步建立方程的概念。
教学难点:
方程与等式的关系;方程中等量关系的建立。
教学准备:
课件、写式子的卡片、磁钉。
教学过程:
一、认识天平,谈话铺垫
教师(出示天平图):这是什么?同学们知道天平的用途吗?
一般在称东西时,我们在天平的左边放上要称的东西,右边放上砝码。如果天平左右两边达到平衡,左边东西的质量就等于右边砝码的质量。这种平衡的状态如果用一个数学符号来表达,就是──等号。
二、探究新知
(一)天平演示,初步感知等与不等。
1.出示天平图1。
现在这种状态,你能用一个式子来表示吗?(板书:50+50=100)
2.(出示天平图2和图3)天平向左倾斜表示什么?如果水的质量用
g表示,那么杯子和水共重多少呢?(100+ )
3.如果老师在天平右边再加一个100 g的砝码,可能会出现什么样的情况?用式子来表示。
这三个式子体现在天平上分别是什么样的情况?咱们用手势来表示一下。
4.来看看究竟是哪种情况?(先出示天平图4,后出示天平图5)用式子来表示一下。
5.(出示教材第63页最上面的图)这样的图你能用一个式子表示它们的关系吗?
【设计意图】通过直观演示,感受等与不等。同时通过反馈和追问,帮助学生感受等式的意义。为下一环节中式子的分类及理解等式和不等式做好准备。从天平到式,再从式到天平图,在学生的头脑中利用天平建立左右相等的等式模型,为突破建立方程中的等量关系这一难点做好铺垫。
(二)分类整理,建构概念
1.观察黑板上出现的式子,尝试根据式子的特点进行分类(先请学生独立思考,再同桌进行交流。)
2.学生反馈,教师根据反馈在黑板上移动式子。
预设1:按左右相等和不等分类(补充等式和不等式);
预设2:按是否含有未知数分类。
注:教师在按照两种分类方式摆放式子时整理成如下表格所示:
含有未知数
不含有未知数
等式
不等式
3.(指表格)像这样,含有未知数的等式称为方程(揭题)。
4.写方程:根据你的理解写2~3个方程,写完之后给同桌看看其是否为方程(教师在巡视过程中选择一些学生到黑板上写一写。)
5.说说黑板上同学写的是否为方程,并说说判断理由(主要使学生明确,判断一个式子是不是方程,一看是不是等式,二看有没有未知数。)
(三)概念辨析,理清等式与方程之间的关系
1.“做一做”第1题:请学生说说哪些式子是方程,并说说为什么(可以选择其中几个不是方程的式子,请学生说说怎样改一下就可以将其变成方程。)
2.这两个式子是否是方程呢?
反馈分析:
(1)式1:一定是。为什么?
(2)式2:一定是等式,可能是方程。
(3)思考:等式和方程有什么联系呢?
(4)引导画集合图,并引导得出:方程一定是等式,等式不一定是方程。
【设计意图】方程与等式的关系是本节课的教学难点,教学时,先通过分类整理让学生对等式与方程的关系产生直观、正确的感知;然后通过被蘸了墨水的式子的判别,进一步体会两者的关系;最后,通过韦恩图帮助学生加以明确。不仅突破了教学的难点,而且渗透了初步的集合思想。
三、实践反思,巩固提高
1.“做一做”第2题及练习十四第2题:看图列出方程。
学生练习并进行反馈。
反馈侧重:使学生明确,可以根据量相等来列出方程。
2.练习十四第3题:看情境图,思考数量关系再列方程。
(1)从图上你知道了什么?
(2)你能根据你知道的数量关系列出方程吗?
(3)学生自行根据数量关系列出方程,并进行反馈。
【设计意图】能用方程表达简单情境中的数量关系,也是《义务教育数学课程标准(20xx年版)》对本内容的要求,为从数量关系到等量关系的转变做好准备,这对于学生理解和掌握方程的知识至关重要。
四、总结回顾,介绍历史
1.你对方程印象最深的是什么?(每个同学说一点,后面的同学要和前面同学不一样。)
2.教师介绍方程的相关知识。(课件出示教材第63页“你知道吗?”的内容)
【设计意图】把数学史融入课堂教学当中,一方面可以拓展学生的视野,让学生对方程的产生过程产生比较清晰的认识,知道数学是一个动态成长的科学,体会到数学的每一个理论和发展是一个漫长的过程。让学生在体会数学文化的价值的同时,产生探索的欲望。
yjs21.cOm更多幼师资料编辑推荐
圆与方程课件八篇
常言道,优秀的人都是有自己的事先计划。在平日里的学习中,幼儿园教师时常会提前准备好有用的资料。资料意义广泛,可以指一些参考素材。有了资料才能更好的在接下来的工作轻装上阵!那么,你知道幼师资料的主要内容是什么吗?以下是小编收集整理的“圆与方程课件八篇”,可能你会喜欢,欢迎分享。
圆与方程课件 篇1
一、教材分析
(一)教材的地位和作用
本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。
(二)教学重点、难点
1、教学重点:椭圆的定义及其标准方程
2、教学难点:椭圆标准方程的推导
(三)三维目标
1、知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。
2、过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。
3、情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。
二、教学方法和手段
采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。
“授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的'“再创造”过程。
三、教学程序
1、创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。
2、画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。
3、教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。
4、椭圆定义:注意定义中的三个条件,使学生更好地把握定义。
5、推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。
6、例题讲解:通过例题规范学生的解题过程。
7、巩固练习:以多种题型巩固本节课的教学内容。
8、归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。
9、课后作业:面对不同层次的学生,设计了必做题与选做题。
10、板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。
四、教学评价
本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。
圆与方程课件 篇2
教学目标:
1、系统地掌握有关用字母表示数、方程的基础知识,并用方程解决生活中的实际问题。
2、培养和提高学生的学习能力。
教具准备:
自制幻灯片课件。
教学过程:
一、创设情境。
1、(课件出示)学校买来个9足球,每个a元,买来b个篮球,每个58元。
2、让学生根据出示的信息,提出数学问题。
学生可能提出以下问题
(1)9个足球多少钱?
(2)b个篮球多少钱?
(3)篮球的单价比足球的单价多多少钱?
(4)篮球和足球一共多少钱?
3、学生说出怎样表达这些问题的结果。(教师板书)
4、引导学生观察黑板上的式子,看一看有什么特点?
二、系统整理
1、提问:我们除了学过用字母标示数量关系外,还学过用字母表示什么?
(让学生以小组为单位,合作整理学过的运算定律和计算公式。)
2、引导学生交流小组整理的结果。教师板书
a+b=b+a v=sh
a+(b+c)=(a+b)+c v=abh
a×b=b×c s=ab
a×(b×c)=(a×b) ×c s=ah
a×(b+c)=a×b+a×c ……
运算定律 计算公式
3、在书写数字与这字母相乘、字母与字母相乘时,应注意什么?
完成84页上做一做的内容。
4、启发学生谈一谈,用字母表示数、表示数量关系有什么作用?
5、在用字母表示数的过程中,我们黙认“x”表示什么样的数?
6、让学生填空:含有未知数的等式叫做( )
求“x”值的过程叫做( )
7、让学生说说解方程的依据是什么?
8、学生解方程并订正结果。
9、通过列方程和解方程,可以解决很多生活中的实际问题。下面请同学们看屏幕。
10、(课件出示)学校组织远足活动。计划每小时走3。8千米,3小时到达目的地。实际2。5小时走完了原定路程,平均每小时走了多少千米?
11、学生独立解决问题,教师课堂巡视,了解学生解决问题情况。
12、班内交流结果。并让学生将解题过程演板。
13、谈一谈在用方程解决问题的过程中,应注意什么?
三、归纳小结。
1、让学生说一说这节课我们对哪项知识做了复习和整理?
2、师:有一部分同学在解题的过程中,不习惯用方程解,老师建议大家,为了更好的与中学接轨,要多尝试用方程解,而且你一定会领悟到方程得简明和方便。
四、实践应用。
1、完成85页练习十五的习题。
2、 填空
(1)小华每分钟跑a米,6分钟跑( )米。
(2)三个连续的偶数,中间一个是M,另外两个是( )和( )。
(3)用字母表示三角形的面积计算公式是( )。如果a=4厘米,b=3厘米,则三角形的面积是( )。
(4)老王今年a岁,小林今年(a—18)岁,再过18年,他们相差( )岁。
(5)一堆煤,有a吨,烧了6天。平均每天烧b吨,还剩( )吨。
2、判断
(1)含有未知数的式子叫方程。( )
(2)方程一定是等式,等式一定是方程。( )
(3)6x=0是方程。( )
(4)因为a×6可以写成a·6,所以7×6可以写成7·6。( )
3、下面的式子中,哪些是方程?
(1)5x (2)6x+1=6
(3)15—3=12 (4)4x+1
4、解方程
2x+9=27 x—0。5= 8+0。3x=14
8x—3×9=37 22。3x+11x=66。6 x— x=12
(要求学生以竞赛的形式进行计算)
5、趣味数学城
(1)、一只青蛙一张嘴,两只眼睛四条腿。
两只青蛙两张嘴,四只眼睛八条腿。
三只青蛙三张嘴,六只眼睛十二条腿。
四只青蛙四张嘴,八只眼睛十六条腿。
N只青蛙( )张嘴,( )只眼睛( )条腿。
圆与方程课件 篇3
本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉和的基础知识比较多,教学内容分成三局部编排。
第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。
第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。
第12~14页全单元内容的整理与练习。
本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。
1?从等式到方程,逐步构建新的数学知识。
方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。
(1)
借助天平体会等式的含义。
等式是方程的生长点,同学在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让同学体会等式的含义。
天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让同学在天平平衡的直观情境中体会等式,符合同学的认知特点。例1在天平图下方出现“=”,让同学用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。
例2继续教学等式,教材的布置有三个特点:
第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。同学在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于同学初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对同学的要求由扶到放。圆圈里的关系符号都要同学填写,同学在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让同学填写,这是因为他们以前没有写过含有未知数的等式与不等式。
(2)
教学方程的意义,突出概念的内涵与外延。
“含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,同学陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知资料。教材首先告诉同学:
像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的一起特点是“含有未知数”,也是“等式”。这时,假如让同学对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么同学对方程是等式的理解会更深刻。教材接着布置讨论“等式和方程有什么关系”,并通过“练一练”第1题让同学先找出等式,再找出方程,理解等式与方程这两个概念之间的包括与被包括关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使同学对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求同学自身写出一些方程并相互交流,让它们在写方程时关注方程的实质属性,从而巩固方程的概念。
(3)
用方程表示直观情境里的相等关系。
第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养同学发现和理解实际情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:
一是直观情境的出现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,同学比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让同学看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充沛了,看天平图列方程能让同学初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。
在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个局部数相加是它们的总数。在几个局部数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,同学容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。假如少数同学列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于同学体会数量间的相等关系,对以后的教学也是有弊无利的。
2?利用等式的性质解方程。
在过去的小学数学教材里,同学是应用四则计算的各局部关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《规范》从同学的久远发展和中小学教学的衔接动身,要求小学阶段的同学也要利用等式的性质解方程。因此,本单元布置了关于等式性质的内容,分两段教学:
第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都和时让同学运用等式的性质解方程。
(1)
在直观情境中,按“形象感受→笼统概括”的方式教学等式的性质。
教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然坚持平衡。这种现象能形象地表示等式的性质,有利于同学的直观感受。
例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的`是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+()○20+()。同学在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。
另外,这道例题的8个等式中,有7个让同学在圆圈里填写“=”组成等式,这是引导同学切实关注等式有没有变化。右边的四个等式分别让同学在括号里填出同时加上或减去的数,有利于发现等式的性质。
例5教学等式的另一个性质。教材注意利用同学前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让同学写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意:
一是让同学正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点同学能够接受。因为前面的教学中,已经多次提到除数不能是0。
(2)
应用等式的性质解方程。
例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,同学先从图中能得到求x值的启示:
只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理:
等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让同学联系已有的解方程经验和有关的等式性质,考虑“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从同学实际动身,让同学主动学习的教育理念。另外,例4的编写还注意了三点:
一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必需严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导同学根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。
协助同学逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真考虑的问题。用好教材设计的两道题,能培养同学这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号,
引导同学正确应用等式的性质,体会解方程的战略和思路,理出解方程的关键步骤。同学在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,协助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后布置的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的考虑流畅、书写简便,从而提升解方程的能力。教学时要让同学体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以和为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。
圆与方程课件 篇4
今天我说课的内容是解简易方程。下面我从教材分析、教学方法、学法指导、过程分析等四个方面进行说课。
一、教材分析
1、教材的地位与作用
本节课是解简易方程的第一课时,是在学生学习的四则运算及四则运算各部分间的关系和等式的性质的基础上进行教学。而今天学习的内容又为后面学习解方程和列方程解应用题做准备。今后学习分数应用题、几何初步知识、比和比例等内容时都要直接运用。所以本节课起着一个承上启下的作用,是教材中必不可少的组成部分,是一个非常重要的基础知识,所以它又是本章的重点内容之一。
2、教学目标的确定
根据学生已有的认知基础和教材的地位与作用,参照课标确定本节课的.目标:
(1)?知道解方程的意义和基本思路。
(2)?会运用数量关系式或等式的基本性质对解方程的过程进行语言表述。
(3)?会对具体方程的解法提出自己解答的方案,并能与同学交流。
(4)?会独立地解答一、二步方程。
(5)?能够验算方程的解的正确性。
3、教学重点、难点、关键点
根据教材内容和教学目标,我认为本节课的重难点是解方程的两种方法及检验,解决重难点的关键是帮助学生确立解方程的一般思路。
二、说教法
1.演示操作法
借助媒体,激发学生的学习兴趣
2. 观察法
为了体现学生的主体性,培养学生的合作意识,通过四人合作、交流,自主探寻发现通过等量关系来列方程。
这些教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,
三、说学法
1、合作学习法
采用小组合作学习的形式,让学生经历一个观察、比较、交流、分析等过程,鼓励学生把发现的规律都说出来,有利于学生口语交际和解决问题能力的发展,这样既培养学生的合作意识,又能使学生在发现规律的同时获得成功的体验。
2、自主学习法
以学生自主学习为主,注重探索过程的教学,充分发挥学生的主观能动性,变被动听为自主学,学生积极动脑去思考、动口去表达。通过交流、猜测、验证、总结归纳,体验探索规律的过程,突破难点,提高效率。
四、过程分析
本节课我准备按以下几个环节进行教学:
(一)复习铺垫
巩固方程及等式的性质,为下面的学习做好铺垫。
(二)走进新课
1?汇集问题,寻找出路
用问题来提高学生的学习兴趣、探究的热情。
2?解决问题,形成方法(例1教学)
先通过学生仔细观察,回答下面的问题,把学生推向主体位置:
①你发现了哪些数学信息?
②能根据数学信息说出等量关系吗?
③请大家根据等量关系列出方程。
④这个方程的解是多少?你是根据什么得到的?
然后组内交流,班内展示,统一方法与答案。
① 解方程的格式(先提行,写下一个“解”字;为了美观,尽量使等号对齐,两边写式子。);
② 解方程的依据(等式的性质或四则运算各部分间的关系);
③自觉检验。
尝试练习:写出求解的过程和验算的过程,不会的可以问问同学和老师。
出示:20+x=30。
3?类比推广,深化探究。教学例2
学生写完后,互相交流,老师一一展示各组的解方程过程
方法一: 解3y-8=13 方法二:解 3y-8=13 方法三:解3y-8=13
3y=13+8 3y-8-8=13-8 3y-8+8=13+8
3y=21 3y=5 3y=21
y=21÷3 3y×3=5×3 3y÷3=21÷3
y=7 y=15 y=7
验算3×7-8=21 验算3×7-8=21
通过学生的自主探究,在学习方法的同时辨析渗透检验的重要性,培养学生自觉检验的习惯。
(三)练习巩固
强化重点,巩固新知,培养学生良好的学习习惯。
(四)回顾总结
梳理知识形成完整知识体系
(五)课堂检测
对所学知识进行检测,查缺补漏。
(六)布置作业
圆与方程课件 篇5
一、教材分析
1、教材的地位与作用
《圆的标准方程》是在学习《直线与方程》等知识的基础上对解析几何进一步深入认识,提高学生运用方程思想、等价转化思想、数形结合的思想研究解析几何的能力,为后来进一步学习圆锥曲线奠定基础。
2、学习重点、难点
学习重点:
圆的标准方程的求法及其应用。
学习难点:
如何运用坐标法研究圆的问题。
二、教学目标:
1、知识目标:
让学生理解圆的标准方程的推导,并能正确使用标准方程解决简单问题。
2、能力目标:
①进一步培养学生用坐标法研究几何问题的能力;
②使学生加深对数形结合思想和待定系数法的理解;
③通过运用圆的标准方程解决实际问题的学习,培养学生观察问题、发现问题及分析、解决问题的能力。
3、情感目标:
①培养学生勇于探究问题的能力, 学会在错误中反思并获得学习自信;
②增强学生学习的积极性,提高学习的乐趣。
三、教法、学法分析
1、学情分析
学习基础:学生在初中时对圆有了初步的认识,学生通过必修二的第三章“直线的方程”的学习,对解析法有了初步认识,但是对于解析几何的解题方法,学生接触不多;
学习障碍:对同一问题的不同分析方法形成思维的多样性较弱。
2、教法
学生为主体的探究性学习模式 。
四、教学过程
(一)创设情境(引入课题)
画一画:分别由两个学生在黑板上各画一个圆。
问题1:初中几何中圆的定义是什么?确定圆的要素有几个?
问题2:我们如何用坐标法来研究圆呢?(小组交流,学生代表到台前讲述)
(二)深入探究(探究圆的方程,获得新知)
方法一:坐标法:由两点间的距离公式,
方法二:图形变换法;
方法三:向量平移法
(三)应用举例(巩固提高)
I.直接应用(内化新知)
例1.写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M1(5,-7),M2(设计意图:几何法角度分析点与圆的位置关系:讨论圆心离原点的距离d与半径r的大小;
坐标法角度分析点与圆的位置关系:讨论将点的坐标代人方程的式子与II.灵活应用(提升能力)
例2.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线上,求圆心为C的圆的标准方程。
设计意图:这是课本中的例3,书中用几何法直接求得圆心C的坐标和半径大小,从而得出圆的方程。我们还可以让学生用坐标法(待定系数法)求圆的方程,在寻求待定系数法的等式时又有多种思考途径:圆的几何意义(半径相等或对称性);向量的运用(数量积相等或垂直向量内积为零)。
当学生的解法出现得较多时,引导学生归类:几何法与待定系数法。
解法归类后提出要求:书中例2你还有几种解法,课后小组内进行交流。
(四)反馈训练(形成方法)
练习:课本P120第4小题:已知△AOB的顶点坐标分别是A(4,0),B(0,3),O(0,0),求△AOB外接圆的方程。
练习的1,2,3小题课后独立完成,小组交流。
设计意图:由初中所学的不共线的三点唯一确定圆升华到可以唯一求得圆的标准方程,进一步巩固旧知并明确要求得圆的标准方程需要三个条件。
(五)小结反思(拓展引申)
1.课堂小结:
(1)圆心为C(a,b),半径为r 的圆的标准方程为:
当圆心在原点时,圆的标准方程为:
(2) 求圆的方程的方法:①待定系数法(坐标法);②几何法
2.分层作业:
(A)巩固型作业:课本P120练习1,2,3(独立完成后组内交流);
课本习题4.1A组2,3.B组1,2.(独立完成后教师阅
(B)思维拓展:
1.用平面几何知识证明:三角形三边中垂线交于一点.
2.已知圆的方程是,求经过圆上一点的切线的方程.
(C)预习:课本4.1.2圆的一般方程.
五、评价分析
设计理念:
1.数学课堂是学生学习数学知识、运用数学方法、体会数学思想的过程,教师的责任在于激发学生的主体意识,召唤学生的学习热情。
2.高效的数学课堂实际上是学生高效学习的一个历程,教师要善于帮助学习寻求适合的、高效的学习方法。
3.数学学习是一个思维碰撞的过程,教师设计出适合学生的情感体验节点,努力让学生心动而神动,营造出师生心灵共振的景象。
设计思路:
圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用坐标法研究圆的标准方程及其简单应用。首先,在已有圆的定义和求轨迹方程的一般步骤的基础上,引导学生探究获得圆的方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程确定的多样性激活学生思维、激发探究兴趣、领悟数学的灵动性。另外,为了培养学生的理性思维,我分别在探究圆的标准方程时和例1中,设计了由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.
本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、把探究活动层层展开、步步深入,充分体现以以学生为主体的指导思想。学生学习知识的过程是学生操作、观察、发现、分析、解决问题的过程,在解决问题的同时锻炼思维.提高能力、培养兴趣、增强信心。
圆与方程课件 篇6
本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉和的基础知识比较多,教学内容分成三局部编排。
第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。
第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。
第12~14页全单元内容的整理与练习。
本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。
1?从等式到方程,逐步构建新的数学知识。
方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。
(1)
借助天平体会等式的含义。
等式是方程的生长点,同学在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让同学体会等式的含义。
天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让同学在天平平衡的直观情境中体会等式,符合同学的认知特点。例1在天平图下方出现“=”,让同学用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。
例2继续教学等式,教材的布置有三个特点:
第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。同学在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于同学初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对同学的要求由扶到放。圆圈里的关系符号都要同学填写,同学在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让同学填写,这是因为他们以前没有写过含有未知数的等式与不等式。
(2)
教学方程的意义,突出概念的内涵与外延。
“含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,同学陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知资料。教材首先告诉同学:
像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的一起特点是“含有未知数”,也是“等式”。这时,假如让同学对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么同学对方程是等式的理解会更深刻。教材接着布置讨论“等式和方程有什么关系”,并通过“练一练”第1题让同学先找出等式,再找出方程,理解等式与方程这两个概念之间的包括与被包括关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使同学对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求同学自身写出一些方程并相互交流,让它们在写方程时关注方程的实质属性,从而巩固方程的概念。
(3)
用方程表示直观情境里的相等关系。
第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养同学发现和理解实际情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:
一是直观情境的出现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,同学比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让同学看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充沛了,看天平图列方程能让同学初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。
在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个局部数相加是它们的总数。在几个局部数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,同学容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。假如少数同学列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于同学体会数量间的相等关系,对以后的教学也是有弊无利的。
2?利用等式的性质解方程。
在过去的小学数学教材里,同学是应用四则计算的各局部关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《规范》从同学的久远发展和中小学教学的衔接动身,要求小学阶段的同学也要利用等式的性质解方程。因此,本单元布置了关于等式性质的内容,分两段教学:
第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都和时让同学运用等式的性质解方程。
(1)
在直观情境中,按“形象感受→笼统概括”的方式教学等式的性质。
教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然坚持平衡。这种现象能形象地表示等式的性质,有利于同学的直观感受。
例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+()○20+()。同学在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。
另外,这道例题的8个等式中,有7个让同学在圆圈里填写“=”组成等式,这是引导同学切实关注等式有没有变化。右边的四个等式分别让同学在括号里填出同时加上或减去的数,有利于发现等式的性质。
例5教学等式的另一个性质。教材注意利用同学前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让同学写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意:
一是让同学正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点同学能够接受。因为前面的教学中,已经多次提到除数不能是0。
(2)
应用等式的性质解方程。
例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,同学先从图中能得到求x值的启示:
只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理:
等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让同学联系已有的解方程经验和有关的等式性质,考虑“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从同学实际动身,让同学主动学习的教育理念。另外,例4的编写还注意了三点:
一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必需严格遵循;二是求得x=40后,通过“是不是正确答案”的.质疑,引导同学根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。
协助同学逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真考虑的问题。用好教材设计的两道题,能培养同学这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号,
引导同学正确应用等式的性质,体会解方程的战略和思路,理出解方程的关键步骤。同学在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,协助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后布置的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的考虑流畅、书写简便,从而提升解方程的能力。教学时要让同学体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以和为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。
圆与方程课件 篇7
1.教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.
2.学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3.教学目标
(1)知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题.
(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识.
(3)情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣.
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4.教学重点与难点
(1)重点:圆的标准方程的求法及其应用.
(2)难点:①会根据不同的已知条件求圆的标准方程;
②选择恰当的坐标系解决与圆有关的实际问题.
圆与方程课件 篇8
教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;
3、培养学生获取信息,分析问题,处理问题的能力。
教学难点均是从实际问题中寻找相等关系。
知识重点
教学过程(师生活动)设计理念
情境引入教师提出教科收第66页的问题,并用多媒体直观演示,同进出现下图:
问题1:从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)
教师可以在学生回答的基础上做回顾小结
问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)
教师可以在学生回答的基础上做回顾小结:
1、问题涉及的三个基本物理量及其关系;
2、从知的信息中可以求出汽车的速度;
3、从路程的角度可以列出不同的算式:
问题3:能否用方程的知识来解决这个问题呢?用多媒体演示的目的是使学生能直观地理解“匀速”的含义,为后面寻相等关系做准备。
培养学生读图的能力和思维的广阔性。
这样既可以复习小学的算术方法,又为后面与方程的比较打下伏笔。
提出问题:引出新课
学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.
如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米.
2、教师引导学生寻找相等关系,列出方程.
问题1:题目中的“汽车匀速行驶”是什么意思?
问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?
问题3:根据车速相等,你能列出方程吗?
教师根据学生的回答情况进行分析,如:
依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:
依据“王家庄至青山路段的车速=青山至秀水路段的车速”
可列方程:
3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.
4、归纳列方程解决实际问题的两个步骤:
(1)用字母表示问题中的未知数(通常用x,y,z等字母);
(2)根据问题中的相等关系,列出方程.渗透列方程解决实际问题的思考程序。
理解题意是寻找相等的关系的前提。
考虑到学生寻找关系的难度,教师在此处有意加以引导。
教师要根据课堂教学的情况灵活处理,不能把学生的思维硬往教材上套。
举一反三讨论交流1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.
列算式:只用已知数,表示计算程序,依据是间题中的数量关系;
列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?、
建议按以下的顺序进行:
(1)学生独立思考;
(2)小组合作交流;
(3)全班交流.
如果直接设元,还可列方程:
如果设王家庄到青山的路程为x千米,那么可以列方程:
依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:
,再列出方程=60
说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.通过比较能使学生学会到从算式到方程是数学的进步。
问题的开放性有利于培养学生思维的发散性。
这样安排的目的是所有的学生都有独立思考的时间和合作交流的时间。
初步应用
课堂练习1、例题(补充):根据下列条件,列出关于x的方程:
(1)x与18的和等于54;
(2)27与x的差的一半等于x的4倍.
建议:本例题可以先让学生尝试解答,然后教师点评.
解:(1)x+18=54;
(2)(27-x)=4x.
列出方程后教师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.
2、练习(补充):
(1)列式表示:
①比a小9的数;②x的2倍与3的和;
③5与y的差的一半;④a与b的7倍的和.
(2)根据下列条件,列出关于x的方程:
(1)12与x的差等于x的2倍;
(2)x的三分之一与5的和等于6.补充例题(练习)的目的一方面是增加列式的机会,另一方面介绍列代数式的有关知识。
小结与作业
课堂小结可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:
1、本节课我们学了什么知识?
2、你有什么收获?
说明方程解决许多实际问题的工具。
本课作业1、必做题:阅读教科书上70页的《阅读与思考》;第73页习题2.1第1,5题。
2、选做题:根据下列条件,用式表示问题的结果:
(1)一打铅笔有12支,m打铅笔有多少支?
(2)某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?
(3)根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本教学设计着力体现以下几方面特点:
1、突出问题的应用意识.教师首先用一个学生感兴趣的实际问题引人课题,然后运用算术的方法给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习.
2、体现学生的主体意识.本设计中,教师始终把学生放在主体的地位:让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳.
3、体现学生思维的层次性.教师首先引导学生尝试用算术方法解决间题,然后再逐步
引导学生列出含未知数的式子,寻找相等关系列出方程.在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性.
4、渗透建模的思想.把实际间题中的数量关系用方程形式表示出来,就是建立一种数
学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力.
圆的方程课件范本九篇
每个老师都需要在课前准备好自己的教案课件,本学期又到了写教案课件的时候了。要实施课堂教学,老师必须按照教案课件。如果您对“圆的方程课件”感兴趣不妨来看看这篇文章,如果你认为这份资料有用请将它分享给需要的人!
圆的方程课件(篇1)
【考点及要求】:
1.掌握直线方程的各种形式,并会灵活的应用于求直线的方程.
2.理解直线的平行关系与垂直关系, 理解两点间的距离和点到直线的距离.
【基础知识】:
1.直线方程的五种形式
名称 方程 适用范围
点斜式 不含直线x=x1
斜截式 不含垂直于x=轴的直线
两点式 不含直线x=x1(x1x2)和直线y=y1(y1y2)
截距式 不含垂直于坐标轴和过原点的直线
一般式 平面直角坐标系内的直线都适用
2.两条直线平行与垂直的判定
3.点A 、B 间的距离: = .
4.点P 到直线 :Ax+Bx+C=0的距离:d= .
【基本训练】:
1.过点 且斜率为2的直线方程为 , 过点 且斜率为2的直线方程为 , 过点 和 的直线方程为 , 过点 和的直线方程为 .
2.过点 且与直线 平行的直线方程为 .
3.点 和 的距离为 .
4.若原点到直线 的距离为 ,则 .
【典型例题讲练】
例1.一条直线经过点 ,且在两坐标轴上的截距和是6,求该直线的方程.
练习.直线 与两坐标轴所围成的三角形的面积不大于1,求 的取值范围.
例2.已知直线 与 互相垂直,垂足为 ,求的值.
练习.求过点 且与原点距离最大的直线方程.
【课堂小结】
【课堂检测】
1.直线 过定点 .
2.过点 ,且在两坐标轴上的截距互为相反数的直线方程是 .
3.点 到直线 的距离不大于3,则 的取值范围为 .
圆的方程课件(篇2)
教学内容:
教材第81页1--2题、做一做,练习十六第1---4题
教学目标:
1、理解用字母表示数的意义和方法,能用字母表示常见的数量关系。
2、能根据字母所取的数值,算出含有字母的式子的值。
3、能通过列方程和解方程解决一些实际问题。
教学重点:
能用字母表示常见的数量关系,理解方程的含义。
教学难点:
较熟练地解简易方程,并能解决一些实际问题。
教具准备:
多媒体课件
教学过程:
一、用字母表示数
1、用字母表示数的作用和意义?
用字母表示数可以简明地表示数量关系、运算定律和计算公式,为研究和解决问题带来许多方便。
2、说一说你会用字母表示什么?
3、说一说,在含有字母的式子里,书写数与字母、字母与字母相乘时,应注意什么?
【如】①a乘4.5应该写作4.5a; ②s乘h应该写作sh; ③路程、速度、时间的数量关系是s=vt.
4、你还知道哪些用字母表示的数量关系或计算公式?
如:【用字母表示运算定律】
加法交换律:____________________________________
加法结合律:____________________________________
乘法交换律:____________________________________
乘法结合律:____________________________________
乘法分配律:_____________________________________
【用字母表示公式】
长方形面积公式:_________________
正方形面积公式:_____________________
长方体体积公式:_________________
正方体体积公式:______________________
圆的周长:_______________________
圆的面积:____________________________
圆的方程课件(篇3)
本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉和的基础知识比较多,教学内容分成三局部编排。
第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。
第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。
第12~14页全单元内容的整理与练习。
本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。
1?从等式到方程,逐步构建新的数学知识。
方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。
(1)
借助天平体会等式的含义。
等式是方程的生长点,同学在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让同学体会等式的含义。
天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让同学在天平平衡的直观情境中体会等式,符合同学的认知特点。例1在天平图下方出现“=”,让同学用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。
例2继续教学等式,教材的布置有三个特点:
第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。同学在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于同学初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对同学的要求由扶到放。圆圈里的关系符号都要同学填写,同学在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让同学填写,这是因为他们以前没有写过含有未知数的等式与不等式。
(2)
教学方程的意义,突出概念的内涵与外延。
“含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,同学陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知资料。教材首先告诉同学:
像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的一起特点是“含有未知数”,也是“等式”。这时,假如让同学对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么同学对方程是等式的理解会更深刻。教材接着布置讨论“等式和方程有什么关系”,并通过“练一练”第1题让同学先找出等式,再找出方程,理解等式与方程这两个概念之间的包括与被包括关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使同学对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求同学自身写出一些方程并相互交流,让它们在写方程时关注方程的实质属性,从而巩固方程的概念。
(3)
用方程表示直观情境里的相等关系。
第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养同学发现和理解实际情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:
一是直观情境的出现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,同学比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让同学看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充沛了,看天平图列方程能让同学初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。
在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个局部数相加是它们的总数。在几个局部数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,同学容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。假如少数同学列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于同学体会数量间的相等关系,对以后的教学也是有弊无利的。
2?利用等式的性质解方程。
在过去的小学数学教材里,同学是应用四则计算的各局部关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《规范》从同学的久远发展和中小学教学的衔接动身,要求小学阶段的同学也要利用等式的性质解方程。因此,本单元布置了关于等式性质的内容,分两段教学:
第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都和时让同学运用等式的性质解方程。
(1)
在直观情境中,按“形象感受→笼统概括”的方式教学等式的性质。
教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然坚持平衡。这种现象能形象地表示等式的性质,有利于同学的直观感受。
例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+()○20+()。同学在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。
另外,这道例题的8个等式中,有7个让同学在圆圈里填写“=”组成等式,这是引导同学切实关注等式有没有变化。右边的四个等式分别让同学在括号里填出同时加上或减去的数,有利于发现等式的性质。
例5教学等式的另一个性质。教材注意利用同学前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让同学写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意:
一是让同学正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点同学能够接受。因为前面的教学中,已经多次提到除数不能是0。
(2)
应用等式的性质解方程。
例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,同学先从图中能得到求x值的启示:
只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理:
等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让同学联系已有的解方程经验和有关的等式性质,考虑“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从同学实际动身,让同学主动学习的教育理念。另外,例4的编写还注意了三点:
一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必需严格遵循;二是求得x=40后,通过“是不是正确答案”的.质疑,引导同学根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。
协助同学逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真考虑的问题。用好教材设计的两道题,能培养同学这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号,
引导同学正确应用等式的性质,体会解方程的战略和思路,理出解方程的关键步骤。同学在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,协助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后布置的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的考虑流畅、书写简便,从而提升解方程的能力。教学时要让同学体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以和为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。
圆的方程课件(篇4)
教学目标:
1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。
2、会用方程表示简单的等量关系,会列方程解决简单问题。
3、感受式与方程在解决问题中的价值,培养初步的代数思想。
教学重点:
明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。
教学难点:
找等量关系式,用方程解决实际问题。
教学过程:
一、导入
我们都记得这首儿歌
一只青蛙一张嘴,两只眼睛四条腿;
两只青蛙两张嘴,四只眼睛八条腿;
请你来接下句
三只青蛙_________;
五只青蛙呢?
N只青蛙呢?
一首小小的儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。
二、进行复习
1、用字母表示数
(1)同学们想一想,在数学中有哪些地方常用字母来表示?
生列举:数量关系(路程、速度、时间 即s=vt)
计算公式(长方形面积计算公式:s=ab 圆柱的体积公式:v=sh 等)
运算定律(加法结合律:a+b+c=a+(b+c)等)
(2)请同桌之间相互举两个这样的例子。
(3)你们知道为什么用字母表示数吗?
(4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的意义。
(5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?
算法有两种:其一:算术方法:160÷(5+3)=20
依据:总插秧数量÷时间=单位时间量
其二:列方程:x(5+3)=160
依据:单位时间量×时间=总插秧数量
观察比较:以上两种解法有哪些相同点和不同点?
相同点:都是根据数量间的相等关系列式。
不同点:解法一:以已知推出未知,是算术法。
解法二:把未知数用x表示,列出含有未知数的等式,即方程。
同学们想一想,等式和方程有什么联系和区别?
方程有哪些性质呢?(等式 、含有未知数)
2、方程
(1)判断下列哪些是方程(说明理由)
7+8=3×5 4a+5b a+12=89
4x=y 3+100>25+y 6+x=0.5×3
(2)你会解方程吗?从中选择一个试一试。
(3)如何判断方程的解是否正确?
(4)列方程解应用题的解题步骤是怎样的?
讨论后得出:①弄清题意,找出未知数,并用x表示;
②找出应用题中数量之间的相等关系,列方程;
③解方程;
④检验,写出答案。
3、列方程解决问题
(1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。
请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?
引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。
(2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。
(3)练习
①练一练1
②师展示习题:说出下面每组数量之间的相等关系。
(1)女生人数,男生人数,全班人数;
(2)苹果的重量,梨的重量,梨比苹果少的重量。
(3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?
(4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?
③课本练一练5
三、小结
说一说你今天的收获在哪里?
圆的方程课件(篇5)
本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉和的基础知识比较多,教学内容分成三局部编排。
第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。
第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。
第12~14页全单元内容的整理与练习。
本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。
1?从等式到方程,逐步构建新的数学知识。
方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。
(1)
借助天平体会等式的含义。
等式是方程的生长点,同学在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让同学体会等式的含义。
天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让同学在天平平衡的直观情境中体会等式,符合同学的认知特点。例1在天平图下方出现“=”,让同学用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。
例2继续教学等式,教材的布置有三个特点:
第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。同学在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于同学初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对同学的要求由扶到放。圆圈里的关系符号都要同学填写,同学在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让同学填写,这是因为他们以前没有写过含有未知数的等式与不等式。
(2)
教学方程的意义,突出概念的内涵与外延。
“含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,同学陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知资料。教材首先告诉同学:
像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的一起特点是“含有未知数”,也是“等式”。这时,假如让同学对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么同学对方程是等式的理解会更深刻。教材接着布置讨论“等式和方程有什么关系”,并通过“练一练”第1题让同学先找出等式,再找出方程,理解等式与方程这两个概念之间的包括与被包括关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使同学对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求同学自身写出一些方程并相互交流,让它们在写方程时关注方程的实质属性,从而巩固方程的概念。
(3)
用方程表示直观情境里的相等关系。
第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养同学发现和理解实际情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:
一是直观情境的出现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,同学比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让同学看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充沛了,看天平图列方程能让同学初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。
在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个局部数相加是它们的总数。在几个局部数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,同学容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。假如少数同学列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于同学体会数量间的相等关系,对以后的教学也是有弊无利的。
2?利用等式的性质解方程。
在过去的小学数学教材里,同学是应用四则计算的各局部关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《规范》从同学的久远发展和中小学教学的衔接动身,要求小学阶段的同学也要利用等式的性质解方程。因此,本单元布置了关于等式性质的内容,分两段教学:
第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都和时让同学运用等式的性质解方程。
(1)
在直观情境中,按“形象感受→笼统概括”的方式教学等式的性质。
教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然坚持平衡。这种现象能形象地表示等式的性质,有利于同学的直观感受。
例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+()○20+()。同学在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。
另外,这道例题的8个等式中,有7个让同学在圆圈里填写“=”组成等式,这是引导同学切实关注等式有没有变化。右边的四个等式分别让同学在括号里填出同时加上或减去的数,有利于发现等式的性质。
例5教学等式的另一个性质。教材注意利用同学前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让同学写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意:
一是让同学正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点同学能够接受。因为前面的教学中,已经多次提到除数不能是0。
(2)
应用等式的性质解方程。
例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,同学先从图中能得到求x值的启示:
只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理:
等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让同学联系已有的解方程经验和有关的等式性质,考虑“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从同学实际动身,让同学主动学习的教育理念。另外,例4的编写还注意了三点:
一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必需严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导同学根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。
协助同学逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真考虑的问题。用好教材设计的两道题,能培养同学这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号,
引导同学正确应用等式的性质,体会解方程的.战略和思路,理出解方程的关键步骤。同学在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,协助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后布置的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的考虑流畅、书写简便,从而提升解方程的能力。教学时要让同学体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以和为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。
圆的方程课件(篇6)
课前准备
教师准备 多媒体课件
教学过程
⊙谈话揭题
1.谈话导入。
我们学过了关于方程的哪些知识?(结合学生的回答板书)
预设
生1:方程的意义。
生2:方程与等式的关系。
生3:解方程的方法。
生4:用方程知识解决实际问题。
……
2.揭示课题。
同学们说得很全面,这节课我们就来系统地复习有关方程的知识。(板书课题:方程)
⊙回顾与整理
1.方程。
(1)什么是方程?它与算术式有什么不同?
明确:
①含有未知数的等式叫作方程。
②算术式是一个式子,由运算符号和已知数组成。方程是一个等式,在方程里的未知数可以参与运算,并且只有当未知数为特定的数值时,方程才成立。
(2)什么是方程的解?
使方程左右两边相等的未知数的值,叫作方程的解。
(3)什么是解方程?
求方程的解的过程叫作解方程。
(4)解方程的依据是什么?
①等式的性质。
②加减法和乘除法各部分之间的互逆关系。
(5)课件出示教材80页“回顾与交流”3题。
①组织学生分组讨论解方程的步骤和方法,以及哪些地方需要注意。
②指名到黑板前进行板演。
③全班交流并说一说自己是怎么解的。
2.列方程解决实际问题。
(1)列方程解应用题的步骤。
学生小组交流并集体汇报,然后教师明确:
①弄清题意,确定未知数并用x表示;
②找出题中数量间的相等关系;
③列方程,解方程;
④检验并写出答语。
(2)列方程解应用题的关键及找等量关系的方法。
①列方程解应用题的关键是什么?
列方程解应用题的'关键是找出题中的等量关系,根据等量关系列方程解答。
②你知道哪些找等量关系的方法?
预设
生1:根据关键性词语找等量关系。
生2:根据常见的四则混合运算的意义及各部分之间的关系找等量关系。
生3:根据常见的数量关系找等量关系。
生4:根据计算公式找等量关系。
(3)课件出示教材80页“回顾与交流”4题。
教师引导学生先找出各题的等量关系,再列方程自主解决问题。
圆的方程课件(篇7)
四年级(下册)用字母表示数教学含有字母的式子,学生初步学会了写式子的方法。五年级(下册)方程教学了方程的意义、用等式的性质解一步计算的方程,学生能够列方程解答简单的实际问题。本单元继续教学方程,要解类似于axb=c、axbx=c的方程,并用于解决稍复杂的实际问题。教学内容的编排有以下特点。
第一,把解方程和列方程解决实际问题的教学融为一体,同步进行,这是和以前教材的不同编排。在例1里,解2x-22=64这个方程是新知识,用它解答实际问题也是新知识。在例2里,解方程x+3x=290是新授内容,解决的实际问题也是新授内容。这两道例题,既教学解方程的思路与方法,又教学列方程的相等关系和技巧。这样编排,能较好地体现数学内容和现实生活的联系。一方面分析实际问题里的数量关系,抽象成方程,形成知识与技能的教学内容;另一方面,利用方程解决实际问题,使知识技能的教学具有现实意义,成为数学思考、解决问题、情感态度有效发展的载体。
第二,突出思想方法,通过举一反三培养能力。全单元编排的两道例题、两个练习,涵盖了很宽的知识面。先看解方程。例 1教学ax-b=c这样的方程,练习一里还要解ax+b=c、a+bx=c这些形式的方程。从例题到习题,虽然方程的结构变了,但应用等式的性质解方程是不变的。也就是说,解方程的策略是一致的,知识与方法的具体应用是灵活的。再看列方程。例1把一个数比另一个数的2倍少22作为相等关系,练一练和练习一里陆续出现一个数比另一个数的几倍多几、三角形的面积计算公式以及其他的相等关系。实际问题变了,寻找相等关系是解题的关键步骤始终不变。在例2和练习二里也有类似的安排。无论教学解方程还是列方程,例题讲的是思想方法,以不变的思想方法应对多变的实际情况,有利于形成解决问题的策略,培养创新精神和实践能力。
全单元内容分成三部分,例1和练习一教学一般的分两步解的方程;例2和练习二教学特殊的需两步解的方程;整理与练习回忆、整理、应用全单元的教学内容,反思、评价教学过程和效果。
圆的方程课件(篇8)
教学目标:
1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。
2、通过观察比较,使学生认识含有未知数的等式是方程,感受等式与方程的练习与区别,体会方程是特殊的等式。
教学重点:
理解等式的性质,理解方程的意义。
教学难点:
利用等式性质和方程的意义列出方程。
教学准备:
课件
教学过程:
一、预习测试
直接写出得数:
5x+4x=8y-y=7x+7x+6x=7a×a=15x+6x=5b+4b-9b=
二、自主学习
1、交流预习作业,指名学生口答
2、出示天平
知道这是什么吗?你长大它是按照什么原理制造的`吗?
说说你的想法。
如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡呢?
3、教学例1,出示例1图。
你会用等式表示天平两边物体的质量关系吗?
50+50=100(板书)
说说你是怎样想的?
(1)指出等式的左边,等式的右边等概念。
(2)等式有什么特征?(等式的左边和右边结果相等:等式用等号连接)
能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)
教学例2,出示例2图
天平往哪一边下垂说明什么?(哪一边物体的质量多)
你能用式子表示天平两边物体的质量关系吗?
学生独立完成填写,集体汇报。
板书:
x+50>100X+50
如果让你把这四个式子分类,应分为几类?为什么?
指出:左右两边相等的式子叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)
知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)
说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)
4、讨论:等式与方程有什么关系?
小组讨论。
指出:方程一定是等式,但等式不一定是方程。
方程是特殊的等式。他们的关系可以用集合圈表示。
5、教学试一试
独立完成,完成后汇报方法。
让学生说一说,每题中的方程哪个更简洁一些?
指出:像500÷2=x。20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。
三、多层练习
1、完成“练一练”第1题
独立完成判断后说说想法
2、完成“练一练”第2题,第3题
交流所列方程,说说你为什么这样咧?你是怎么想的?
3、完成练习一第1题。
能说说每个线段表示的意思吗?方程怎样列呢?
小组中交流列式。
4、完成练习一第2题
理解题意,说说数量关系式怎样的?
列出方程并交流
5、完成练习一第3题
四、课堂总结
通过学习,你有哪些收获?
五、作业
完成《补充习题》42、每日一题
写出一些方程,并在小组里面交流
六、板书设计
方程
50+50=100x+50>100x+50=150
X+50
圆的方程课件(篇9)
五年级数学上册《简易方程》教学设计
教学内容
教材50—51页,用等式表示等量关系。
教学提示
本节课的教学让学生结合具体情境进一步理解方程的意义,并会用等式表示等量关系。再通过层层的递进的练习,加深理解所学知识,并应用所学知识解决问题。整节课以学生为主体,以学生为本,培养学生积极思考、主动探究、归纳总结的能力。
教学目标
知识与能力
结合操作活动进一步理解方程的意义。
过程与方法
会用含有未知数的等式表示等量关系。
情感、态度与价值观
感受方程与现实生活的密切联系,体验数学活动的探索性。
重点、难点
重点
理解方程的意义,会用含有未知数的等式表示等量关系。
难点
理解方程的意义。
教学准备
教师准备:
多媒体
学生准备:
练习本
教学过程
(一)新课导入:复习导入
1.出示:下面式子哪些是方程,并说明理由?
6+x=14 36-7=29 60+23>70 8+x
x+4<14 ÷18=3 3x-12 5x+2x=63
2、写一个方程,然后在小组里交流,说说什么是方程。进一步巩固理解方程的意义。
设计意图:整理上节课学习的知识,进一步巩固学生对方程意义的理解。
(二)探究新知:
1.联系实际,应用拓展
师:看来同学们理解了方程的意义,掌握了方程的特征,其实方程就隐含在我们的生活中,人们发现在我们的衣食住行中,有很多问题都能用方程的方法来解决。试试看!(出示)
衣:妈妈带50元钱给我买了一件T恤后,还剩下26元。
食:小强去麦当劳,买了一袋薯条和一个l0元的汉堡,一共用了l5元。
住:同学们参加社会实践活动,3个人住一个房间,多少个房间能住102人?
行:公交车上有一些人到谢家湾站时,有13人下车,18人上车,车上还剩36人。
师:你想试哪一个?
生1:我想试“衣”。(生读题)
师:能用方程来表示吗?先写在练习本上,再想一想未知数代表的是什么?
生2:x+26=50
生3:50-x=26
师:这是方程。
生4:X代表T恤的价钱。
生5:我想试“食”。 我是这样写的X+10=15,X代表的是一袋薯条的.价钱。
生6:我想试试“行”。
师:你能直接口答吗?
生7:X-13+18=36,X代表的是车上原有的人数。
生7:我想说最后一个“住”。102÷3=X,X代表的是房间数。
师:习惯上都把未知数写在等号的左边。也可以这样表示3X=102
师:刚才我们用方程表达了日常生活中的衣食住行问题,同样,也可以用日常生活来描述方程。
2.(出示)结合生活中的事例解释方程。
①+19=54
②X-14=36
③Z-13十15=37
师:选择自己喜欢的来说。
生1:我想说第2个,我有一些钱,买学习用品花了14元,还剩36元。
师:真是个爱学习的好孩子。
生2:我想说第1个,我有一些零花钱,妈妈又给了我19元,一共有54元。
师:要学会合理使用零花钱。
生3:我想说第3个,公交车上有一些人到百货大楼站时,有10人下车,12人上车,车上还剩30人。
师:先下后上,文明乘车。
……
师:听了同学们的描述,老师认为大家确实理解了方程的意义,会把生活和数学联系起来学习了,很好!
设计意图:将数学知识与生活相联系,是学习数学的目的所在。也使学生学习数学的过程中形成技能。在教学中要保证每个学生参与学习活动,针对学习目标和教学重点,具有层次性和开放性,注重教学的实效性。
(三)巩固新知:
1.出示情境图,学生独立完成。说说列出方程的等量关系。
小丽背80首古诗,小芳背x首古诗,小芳说:你比我少背5首
学生能够列出:小芳背古诗首数-5=小丽背古诗首数
或:小芳背古诗首数-小丽背古诗首数=5
即:x-5=80
或:x-80=5
学生同桌交流,说说自己的想法,然后,全班订正。
2.出示自主练习3。
这是一个结合具体情境理解方程意义的题目。
先让学生独立填写等量关系式并列出方程,交流时,重点引导学生结合示意图说说数量关系。
设计意图:加深理解所学的知识,应用所学的知识灵活解决实际问题。
(四)达标反馈
1.下列各式那些是等式?
①45+32=77 ②5÷X=12 ③3X-4=22 ④2×21=42
⑤a+b=90 ?⑥÷6
2.按要求写一写。
2025椭圆的标准方程课件六篇
作为一名教职工,通常会被要求编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编精心整理的数学《椭圆及其标准方程》教学设计,希望能够帮助到大家。
椭圆的标准方程课件 篇1
一、教材分析
(一)教材的地位和作用
本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。
(二)教学重点、难点
1、教学重点:椭圆的定义及其标准方程
2、教学难点:椭圆标准方程的推导
(三)三维目标
1、知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。
2、过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。
3、情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。
二、教学方法和手段
采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。
“授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。
三、教学程序
1、创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。
2、画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。
3、教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。
4、椭圆定义:注意定义中的三个条件,使学生更好地把握定义。
5、推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。
6、例题讲解:通过例题规范学生的解题过程。
7、巩固练习:以多种题型巩固本节课的教学内容。
8、归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。
9、课后作业:面对不同层次的学生,设计了必做题与选做题。
10、板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的'强度,便于掌握。
四、教学评价
本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。
椭圆的标准方程课件 篇2
教学目标:
(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.
(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.
(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.
教学重点:椭圆的定义和椭圆的标准方程.
教学难点:椭圆标准方程的推导.
教学方法:探究式教学法,即教师通过问题诱导启发讨论探索结果,引导学生直观观察归纳抽象总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.
教具准备:多媒体课件和自制教具:绘图板、图钉、细绳.
教学过程
(一)设置情景,引出课题:
1.对椭圆的感性认识.通过演示课前老师和学生共同准备的有关椭圆的实
物和图片,让学生从感性上认识椭圆.
2.通过动画设计,展示椭圆的形成过程,使学生认识到椭圆是点按一定规律运动的轨迹。
提问:点M运动时,F1、F2移动了吗?点M按照什么条件运动形成的轨迹是椭圆?
下面请同学们在绘图板上作图,思考绘图板上提出的问题:
1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?
2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?
3.当绳长小于两图钉之间的距离时,还能画出图形吗?
(二)研讨探究,推导方程
1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?
椭圆的标准方程课件 篇3
一、概说
1.教材分析:
椭圆及其标准方程是圆锥曲线的基础,它的学习方法对整个这一章具有导向和引领作用,直接影响其他圆锥曲线的学习。是后继学习的基础和范示。同时,也是求曲线方程的深化和巩固。
2.教学分析:
椭圆及其标准方程是培养学生观察、分析、发现、概括、推理和探索能力的极好素材。本节课通过创设情景、动手操作、总结归纳,应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生掌握坐标法的规律,掌握数学学科研究的基本过程与方法。
3.学生分析:
高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。
基于上述分析,我采取的是教学方法是“问题诱导--启发讨论--探索结果”以及“直观观察--归纳抽象--总结规律”的一种研究性教学方法,注重“引、思、探、练”的结合。
引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。
我设定的教学重点是:椭圆定义的理解及标准方程的推导。
教学难点是:标准方程的推导。
二、目标说明:
根据数学教学大纲要求确立“三位一体”的教学目标。
1.知识与技能目标:
理解椭圆定义、掌握标准方程及其推导。
2.过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。
3.情感、态度和价值观目标:
(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。
(2)进行数学美育的渗透,用哲学的观点指导学习。
三、过程说明:
依据“一个为本,四个调整”的'新的教学理念和上述教学目标设计教学过程。“以学生发展为本,新型的师生关系、新型的教学目标、新型的教学方式、新型的呈现方式”体现如下:
(一)对教材的重组与拓展:根据教学目标,选择教学内容,遵循拓展、开放、综合的原则。教材中对椭圆定义尽管很严密,但不够直观,所以增加了影音文件:海尔波谱彗星的运行轨道图,最后,让学生交流用几何画板画椭圆以及5个探究性问题,作为对教材的拓展。
(二)在教学过程中的体现:
1.新课导入:以影音文件“海尔波谱彗星的运行轨道示意图”导入,呈现方式具有新异性,激发学习兴趣;画板画图,增强动手操作意识,直观形象从而引入椭圆定义,进而研究椭圆标准方程。
2.新课呈现:
学生通过观看文件、动手操作,然后自己总结椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力。然后,进行推导椭圆的标准方程,培养运算能力,进而探讨标准方程的特点。教师作为热烈讨论的平等氛围中的引导者,鼓励学生大胆探究、勇于创新,积极谈论和参与体验,培养严谨的逻辑思维,抽象概括的能力,渗透数学美学教育,掌握数形结合的重要数学思想,最后的几个探究性问题鼓励学生积极探索,敢于探究,转变学习方式。
3.巩固应用
根据定义及其标准方程,设计三组九道练习题,引导学生联系、思考、讨论、反馈、矫正,增强运用能力。
4.继续探究:
(1)观察椭圆形状,不同原因在哪里;
(2)改变绳长或变换焦点位置再画椭圆,发现关系;
(3)用几何画板交流画图,观察形状变化;
(4)如何描述形状变化?
引导学生探究欲望,开展研究性学习。
四、评价说明
本节课的学生评价坚持形成性评价和阶段性评价相结合的原则。
(一)形成性评价:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做的精彩有创新,教师给予学生充分的鼓励,从而进一步激发学生创造的潜能,提高他们的创新能力。
(二)阶段性评价:从单元测试、期中测试等方面对学生的阶段性学习成果进行测试。评价结果以每次测试成绩和学生平时的综合表现为依据。同时要进行学生的自我评价以及教师对行动的综合性评价。
(三)教师自我反思评价:本课充分体现了“一个为本,四个调整”的新课程理念。
五、说课总结
这节课使用计算机网络技术,展现知识的发生过程,是学生始终处于问题探索研究状态之中,激情引趣。注重数学科学研究方法的掌握,是研究性教学的一次有益尝试。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。
椭圆的标准方程课件 篇4
一、教学内容分析(简要说明课题来、学习内容、这节课的价值以及学习内容的重要性)
本节课是高中新课程人教A版数学选修1—1第二章第一单元《椭圆及其标准方程》的第一课时.
本节的内容是继学习圆之后运用 “曲线和方程”理论解决具体二次曲线的又一实例.从知识上说,它是对前面所学的运用坐标法研究曲线的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,推导椭圆的标准方程的方法对双曲线、抛物线方程的推导具有直接的类比作用,因此,这节课有承前启后的作用,是本节乃至本章的重点。
二、教学目标(从知识与技能、过程与方法、情感态度与价值观三个维度对该课题预计要达到的教学目标做出一个整体描述)
基于新课标的要求,结合本节内容的地位,我提出教学目标如下:
(1)知识与技能:
①了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型的过程; ②使学生理解椭圆的定义,掌握椭圆的标准方程及其推导过程.
(2)过程与方法:
①让学生亲身经历椭圆定义和标准方程的获取过程,掌握求曲线方程的方法和数形结合的思想; ②学会用运动变化的观点研究问题,提高运用坐标法解决几何问题的能力.
(3)情感态度与价值观:
①通过主动探究、合作学习,感受探索的乐趣与成功的喜悦;培养学生认真参与、积极交流的主体意识和乐于探索创新的科学精神.
②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨,
③通过椭圆知识的学习,进一步体会到数学知识的和谐美,几何图形的对称美;提高学生的审美情趣.
三、学习者特征分析(说明学习者在知识与技能、过程与方法、情感态度等三个方面的学习准备(学习起点),以及学生的学习风格。最好说明教师是以何种方式进行学习者特征分析,比如说是通过平时的观察、了解;或是通过预测题目的编制使用等)
1.能力分析
①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱。
2.认知分析
①学生已初步熟悉求曲线方程的基本步骤,②对曲线的方程的概念有一定的了解。
3.情感分析
学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。
改变学生的学习方式是高中课改追求的基本理念。遵循以学生为主体,教师为主导,发展为主旨的现代教育原则。我采用了通过创设情境,充分调动学生已有的学习经验,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题;以学生主动探索、积极参与、共同交流与协作为主体,在教师的引导下,学生“跳一跳”就能摘得果实;于问题的分析和解决中实现知识的建构和发展。通过不断探究、发现,让学生的学习过程成为心灵愉悦的主动过程,使师生的生命力在课堂上得到充分的发挥。激发学生的学习兴趣和创新能力,帮助学生养成独立思考积极探索的习惯。
四、教学策略选择与设计(说明本课题设计的基本理念、主要采用的教学与活动策略)
椭圆的标准方程共两课时,第一课时所研究的是椭圆标准方程的建立及其简单运用,涉及的数学方法有观察、比较、归纳、猜想、推理验证等,我校学生基础差、底子薄,数学运算能力,分析问题、解决问题的能力,逻辑推理能力,思维能力都比较弱,所以在设计课的时候往往要多作铺垫,扫清他们学习上的障碍,保护他们学习的积极性,增强学习的主动 。在教法上,主要采用探究性教学法和启发式教学法。以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习
五、教学重点及难点(说明本课题的重难点)
基于以上分析,我将本课的教学重点、难点确定为: ①重点:椭圆定义和标准方程 ②难点:椭圆的标准方程的推导。
六、教学过程(这一部分是该教学设计方案的关键所在,在这一部分,要说明教学的环节及所需的资源支持、具体的活动及其设计意图以及那些需要特别说明的教师引导语)
一. 创设问题情境:
情境1:给出椭圆的一些实物图片:天体运行图(月亮绕地球,地球绕太阳旋转)、汽车油罐的横截面,立体几何中圆的直观图?
实物:圆柱形杯倾斜后杯中水的形状。
情境2:校园内一些椭圆形小花坛
问题 学校准备在一块长3米、宽1米的矩形空地上建造一个椭圆形花园,要尽可能多地利用这块空地,请问:如何画这个花园的边界线?
(学生现在还不能解决,只有通过今天这节课的学习才能解决这个问题)
这是实际生活中图形,数学中我们也遇到这一类图形:归结为到两定点距离之和为定值的点的轨迹问题。如何用现有的工具画出图形?(启发学生用画圆的方法试着画图)
教师与学生一起找出上述问题的解决方案,并一同用给的工具画出图形,与上述图形相似——椭圆
问题情境的创设应有利于激发学生的求知欲。为了学习椭圆的定义,我设计如下两个学生熟悉的情境:
通过情境1,让学生感受到椭圆的存在非常普遍。小到日常生活用品,大到建筑物的外形,天体的运行轨道。
通过情境2,让学生主动思考如何画椭圆及椭圆的定义。
通过问题,要求学生以小组为单位进行实验、观察、猜想,激发学生探索的欲望和浓厚的学习兴趣,使学生的主体地位得到体现。
二. 探求椭圆方程
如何选取坐标系?
方案1:以一个定点为原点,两定点的连线为X轴
回顾圆的方程的建立过程,首先是做什么? (提问学生) 如何选择适当的坐标系来建立椭圆的方程呢?
学会建立适当的坐标系,构造数与形的桥梁,学会用解析的方法来解决问题,渗透数形结合的数学思想。
方案2:以两定点的连线为X轴,其垂直平分线为Y轴
学生可能有很多种建系方法,根据课堂的实际情况进行处理。不能否定学生的方法,让学生自己讨论那种建系方法更为合适,我想学生通过这些活动能够建立几种常见的坐标系,并列出相应的代数方程。我认为这样有利于培养学生的动手实验,分析比较,相互协作等能力。让学生体验到知识的产生过程。
三. 标准方程比较
(让学生讨论,归的标准方程有何异同) (1)相同点纳出这两种形式的标准方程有何异同)
(1)相同点
①方程中x,y表示椭圆上任意一点 ②关于x,y的二元二次方程;
③焦点位置的判定:焦点在较大分坐标;
(2)不同点
①方程形式 ②图形 ③焦点坐标
由于化简两个根式的方程的方法特殊,难度较大,估计学生容易想到直接平方,这时可让学生预测这样化简的难度,从而确定移项平方可以简化计算。为此,我首先启发学生如何去掉根号较好,让学生动手比较,最后得出移项平方化简方程比较简单,这样有利于培养学生的分析比较能力。
七、教学评价设计(创建量规,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价)
椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力
八、板书设计(本节课的主板书)
一.定义
二. 标准方程比较
1)相同点 ①方程中x,y表示椭圆上任意一点的坐标; ②关于x,y的二元二次方程; ③焦点位置的判定:焦点在较大分母对应的变量的坐标轴上
2)不同点 ①方程形式 ②图形 ③焦点坐标
九.教学反思
椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。
椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。
椭圆的标准方程课件 篇5
椭圆的标准方程课件 篇6
一、教学目标
(1)知识与能力目标:学习椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。
(2)过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。
(3)情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。
二、教学重点、难点
(1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。
(2)教学难点:椭圆标准方程的建立和推导。
三、教学过程
(一)创设情境,引入概念
1、动画演示,描绘出椭圆轨迹图形。
2、实验演示。
思考:椭圆是满足什么条件的点的轨迹呢?
(二)实验探究,形成概念
1、动手实验:学生分组动手画出椭圆。
实验探究:
保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?
思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?
2、概括椭圆定义
引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。
教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。
思考:焦点为的椭圆上任一点M,有什么性质?
令椭圆上任一点M,则有
(三)研讨探究,推导方程
1、知识回顾:利用坐标法求曲线方程的.一般方法和步骤是什么?
2、研讨探究
问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点M,有
,尝试推导椭圆的方程。
思考:如何建立坐标系,使求出的方程更为简单?
将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。
方案一方案二
按方案一建立坐标系,师生研讨探究得到椭圆标准方程
=1(),其中b2=a2-c2(b>0);
选定方案二建立坐标系,由学生完成方程化简过程,可得出=1,同样也有a2-c2=b2(b>0)。
教师指出:我们所得的两个方程=1和=1()都是椭圆的标准方程。
(四)归纳概括,方程特征
1、观察椭圆图形及其标准方程,师生共同总结归纳
(1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;
(2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;
(3)椭圆标准方程中三个参数a,b,c关系:;
(4)椭圆焦点的位置由标准方程中分母的大小确定;
(5)求椭圆标准方程时,可运用待定系数法求出a,b的值。
2、在归纳总结的基础上,填下表
标准方程
图形a,b,c关系焦点坐标焦点位置
在x轴上
在y轴上
(五)例题研讨,变式精析
例1、求适合下列条件的椭圆的标准方程
(1)两个焦点的坐标分别是,椭圆上一点P到两焦点距离和等于10。
(2)两焦点坐标分别是,并且椭圆经过点。
例2、(1)若椭圆标准方程为及焦点坐标。
(2)若椭圆经过两点求椭圆标准方程。
(3)若椭圆的一个焦点是,则k的值为。
(A)(B)8(C)(D)32
例3、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向x轴作垂线段,求线段中点M的轨迹。
(六)变式训练,探索创新
1、写出适合下列条件的椭圆标准方程
(1),焦点在x轴上;
(2)焦点在x轴上,焦距等于4,并且经过点P;
2、若方程表示焦点在y轴上的椭圆,则k的范围。
3、已知B,C是两个定点,周长为16,求顶点A的轨迹方程。
4、已知椭圆的焦距相等,求实数m的值。
5、在椭圆上上求一点,使它与两个焦点连线互相垂直。
6、已知P是椭圆上一点,其中为其焦点且,求三解形面积。
(七)小结归纳,提高认识
师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。
(八)作业训练,巩固提高
课本第96页习题§8。1第3题、第5题、第6题。
课后思考题:
1、知是椭圆的两个焦点,AB是过的弦,则周长是。
(A)2a(B)4a(C)8a(D)2a2b
2、的两个顶点A,B的坐标分别是边AC,BC所在直线的斜
率之积等于,求顶点C的轨迹方程。
2、与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线?
教学设计说明
椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。
椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。
椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。
设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。