五年级解方程课件
发布时间:2023-10-08 五年级解方程课件 解方程课件五年级解方程课件(精选10篇)。
以下是编辑为您整理的“五年级解方程课件”的深度详细解析报告,为了日后参考方便,记得珍藏本页面链接。作为老师,每堂课都需要备好精心设计的教学课件,此乃教师日常的首要工作。编写教案时,不仅要考虑教师的教学态度,还要体现其教学风格。
五年级解方程课件 篇1
教学内容:教科书第6页第7-12题
教学目标:1、进一步理解并熟练应用等式的这一性质解简单的方程。
2、理解解方程过程的简化书写,并且解题时适当运用简化书写。
3、培养良好的作业习惯,自觉进行检验。
教学重点:理解并熟练应用等式的这一性质解简单的方程
教学难点:理解并熟练应用等式的这一性质解简单的方程
教学过程:
一、基础练习
1、说出下面的式子哪些是方程,哪些不是,为什么?
20+17=3712-Y=4a+12=35
21-b<14x=14+2316+a=27+b
2、解方程
X+125=370520+X=710X-4.9=6.4
120-X=257.8+X=2.5X+8.5=12
学生独立完成,指名学生板演。
选3题让学生说说想的过程。
集体订正,帮有错的同学分析错误原因,使其明白。
二、完成第6页的7~12题。
第7题:
(1)学生独立完成后指名回答,让学生说说是怎样想的。
(2)这里的方程与前面所学解方程的过程比较有什么不同?
省略了什么?
这样写有什么优点?
在解方程时,先在头脑中想好方程两边应同时加上或减去什么数,但书写时可以省略。同学们在解方程时可以照这种方法解。
使学生明白:根据等式的性质让含有未知数的一边只剩下未知数,就能很快知道
最后的结果。
第9题:
先由学生独立完成。
指名学生说:错在哪里,帮他分析一下,可能是什么原因造成的?怎样改正,我
们在做题时要注意一些什么?
第8题:
(1)学生独立完成,要按照上一题的方法适当省略,简化过程。
教师要特别关注前面解题还有错的学生,争取人人过关。
指名板演。
(2)集体订正,说说自己的解题思路。分析错误原因。
第10题:
(1)学生独立完成。
(2)在小组中交流,每人选择一题说思考方法。
(3)错误汇报。
说说错误的原因与正确方法。
第11题:
1、学生看图列式。
提问:什么是等式?什么是方程?
2、解出上述方程。
学生板演,并说明怎么解?
3、教学解方程的简化书写。
X10+10、X3.5+3.5结果是多少?
介绍解方程的简化书写,并板书。
学生试做,板演,讲评。
第12题:
学生读题后独立思考解决问题的方法。
小组内交流。
全班交流,只要学生说出的方法是有道理的,教师都要给于肯定。
也可以提示:两人用去的钱同样多什么意思?
你能用一种方法来表示题中的相等关系吗?
(1本练习本+3枝铅笔=7枝铅笔)
你看出了什么?(1本练习本相当于4枝铅笔)
三、课堂总结
通过本节课的练习,你有什么收获?
你认为解决数学问题时,方程用处大吗?
习题超市:
一、数学小诊所
1、2.8+X=9.5改正:
解:X=9.5+2.8
X=12.3()
2、X-43=156改正:
解:X=156+43
X=199()
二、当x=18时,是下面哪几个方程的解。
18+x=1818-x=0x+15=33
X-10=8x-18=18x+3=18+3
三、解方程并检验
X+350=600150+X=725X-60=950
7.8+X=12.30.8+X=7.6X-3.5=6.4
教材简析:
帮助学生逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真思考的问题。用好教材设计的两道题,能培养学生这方面的能力。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后安排的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容:
x-20+20=30+20,直接写出x=30+20。这样做能使解方程的思考流畅、书写简便,从而提升解方程的能力。教学时要让学生体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以及为什么。
五年级解方程课件 篇2
解方程
【学习内容】人教版小学数学五年级上册第五四单元67——68页例
1、例2 【课程标准描述】
能用等式的性质解简单的方程。【学习目标】
1.通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。2.能结合解方程的过程,正确表达“方程的解”和“ 解方程”的含义,知道解方程是求方程的解的一个过程,而方程的解是一个数。【学习重、难点】
通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。【评价活动方案】
1.通过练习十五第1题,关注学生是否能正确判断括号中哪个X的值是方程的解,以评价目标1。
2.通过做一做P68第1题(前两栏)和练习十五第3题,关注学生是否能正确求出方程的解,能否自觉检验,以评价目标2。【学习活动方案】
一、通过演示操作,根据等式的性质解方程(X±a=b)(评价目标1)1.出示一个不透明盒子,学生猜测里面小球的数量。
引导:能准确说出小球个数吗?我们可以用什么来表示?(引导学生用字母X表示)
(课件出示例1)根据图中信息,列出方程。
2.通过演示操作,理解天平平衡的原理。独立思考:盒子里有几个球?X的值是多少? 小组内交流:你是怎样想的?
全班汇报:X的值是多少?你是怎样想的? 预设一:利用加减法的关系计算:9-3=6。预设二:想6+3=9,所以x=6。
预设三:把9分成6和3,想x+3=6+3,所以x=6。
预设四:在方程两边同时减去3,就得到x=6。
思考:前三种都是利用的加减法的关系得到的答案,第四种有什么不同?明确第四种 是根据等式的性质。
引导:他的想法正确吗?我们来验证一下。同时拿走3个球,天平会怎么样?
一名学生借助天平(左边是一个不透明盒和3个球,右边是一个透明盒里9个球,天平平衡)演示操作,两边同时拿走3个球,天平平衡。学生看到左边盒子里确实和右边盒子一样也有6个球。学生复述刚才的操作过程,教师用课件演示。
思考:天平的两边为什么要同时拿走3个球呢?难道同时拿走1个、2个不平衡吗? 明确:只有同时拿走3个,才能让天平的左边只剩下X,这样右边刚好就是X的值。3.规范解方程的书写格式。
学生尝试用算式表示刚才的操作过程。
教师边示范边强调:⑴第二行要写个“解“字;⑵为了清晰美观,每一步的等号都要对齐。
4.思考:在以前计算加减乘除的算式后,我们都要验算。那方程该怎样检验算地对不对呢?
学生交流后汇报,教师根据学生的回答板书检验过程。
二、结合解方程的过程,理解“方程的解”和“解方程”的含义(评价目标2)结合例1明确:像上面x=6这样使方程左右两边相等的未知数的值,叫做方程的解。而求方程的解的过程叫做解方程。(括起解方程的过程,板书:解方程)
(课件出示“方程的解”和“解方程”的定义)说一说这两个概念有什么不同。
小结:方程的解是使方程左右两边相等的未知数的值,是一个数;而解方程是求方程的解过程,是一个计算过程。
三、根据例1的方法,使用等式的性质解方程(形如aX=b、X ÷a=b)(评价目标1)出示例2(3X=18),学生尝试解方程。
一名学生板演到黑板上讲解,并与其他同学进行交流。交流的内容是:
解这个方程的依据是什么? 两边为什么要同时除以3?
(课件演示例2的操作过程,帮助理解为什么要同时除以3)全班口述检验过程。
四、通过练习,进一步巩固解方程的方法(评价目标1、2)1.练习十五第1题。独立判断括号中哪个X的值是方程的解。
2.做一做P68第1题(前两竖栏)。独立解方程,并书面检验第二竖栏。3.练习十五第3题。独立列方程并解答。
五、回顾总结
今天是利用什么知识来解方程的? 解方程大体有几个步骤?应该注意什么? 步骤:1.写“解“;
2..等式的性质求方程的解; 3.检验。
注意:1.“=”要对齐;2.X表示一个数值,后面不写单位名称。
五年级解方程课件 篇3
解方程(第一课时)
大庄小学:薛兵珍
一、教学内容
(人教版)小学《数学(第九册)》第57、58页的内容.二、教学目标
1、初步理解“方程的解”、“解方程”的含义,能用等式的性质解简易方程.并掌握检验的方法。
2、关注由具体到一般的抽象概括过程,培养学生初步的代数思想.3、重视良好学习习惯的培养.三、教学重、难点
1、“方程的解”和“解方程”之间的联系和区别.2、利用天平平衡的道理理解比较简单的方程的解法.四、教学准备
多媒体课件
五、教学过程
1、复习铺垫
2.探究新知
(一)理解“方程的解”和“解方程”两个概念
(1)、看图写方程
(2)、求方程中的未知数
(3)、引出方程的解和解方程两个概念
(二)教学例1
强调解方程的格式和步骤,检验的方法。
3、提炼升华
解方程 X一2=15(课件显示)
4、巩固练习
5、课堂总结
六、布置作业。
五年级解方程课件 篇4
五年级数学《解方程》教学教案
十东小学
授课教师:徐国
栋
(一)教学内容
教材第57页内容。
(二)教学目标 知识与技能
⑴初步理解方程的解与解方程的含义。⑵会检验一个具体的值是不是方程的解。过程与方法
经历方程的解和解方程的认识过程,提高学生比较、分析的能力。情感态度与价值观
在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验学习习惯。
(三)教学重点与难点
重点:“方程的解”和“解方程”的含义。突破方法:通过比较理解二者的区别。难点:会检验方程的解。
突破方法:小组讨论,练习体验。
(四)教法与学法
教法:设置设置问题,引导学生。
学法:观察理解,讨论交流,练习体验。
(五)教学过程
一、复习引入
⑴在上节课的学习活动中,我们探究了哪些规律。
在小组中组织相互交流,说一说:①什么是方程,②如何判断方程,③方程的性质是什么?
⑵学生回顾天平平衡的规律,结合天平的平衡规律对我们学习方程有什么作用?这节课我们开始学习如何解方程。
上一节课我加了一些水在天平里,添加了砝码,让天平平衡,同时得到方程100+X=250,但到现在我们都还不知道那些水的质量到底是多少?那我们今天就来解决这个问题,看看水到底是重。这就是我们今天将要学习的——解方程。
[板书课题:解方程。]
二、研究新知
⑴投影出示昨天所做的课题教材P57天平称一标水的画面。学生回忆昨天教学时的情景画面,交流。
师根据学生汇报板书:方程100+X=250。⑵教师:你知道方程100+X=250中的未知数X等于多少吗?你是怎么知道的?
组织学生讨论,交流,然后汇报。可能出现以下几种方法:
*根据数感经验得到X=150 *利用算式100+150=250,得到X=150。
*利用一个加数=和—另一个加数,得到X=150。
*利用天平平衡规律,两边同时减少100,得到X=150。
„„
师:同学们非常聪明,想到了这么多的方法求出了X=150,(同时,也可能没有学生能说出来,教师相机点拨,引出解方程所要运用的规律。)
⑶引导学生检验方程的解的方法,根据学生回答板书:
当X=150时,方程左边=100+150
=250
=方程右边
⑷认识、区别方程的解和解方程。教师:使方程左右两边相等的未知数的值,叫做方程的解。刚才,X=150就是方程的解100+X=250的解。而求方程的解的过程叫做解方程。刚才同学们想出办法求出X=150的过程就是解方程。
教师边讲解边板书:使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程就叫解方程。
②方程的解与解方程有什么不同呢?组织学生议一议,使学生明确:
方程的解是一个数值,而解方程是求方程解的过程。刚才我们把X=150代入方程中,得到方程左边=右边,说明X=150是方程100+X=250的解。(板书:所以,X=150是方程的解)
三、巩固练习
⑴教材P57页“做一做”。
教师:怎样判断X=3是不是方程的解呢?X=2呢?
组织学生将X=3代入方程中进行检验。教师指名一名学生板演。⑵教材P63练习十一第4题。
组织学生先独立完成,再在小组中相互交流。
四、课堂小结
教师:通过这节学习,你有什么收获?
什么叫方程的解,什么叫解方程。学会了检验一个未知数的值是不是方程的解。学生畅谈。
板书设计 100+X=250 X=150 当X=150时,使方程左右两边相等的未知数。
方程左边=100+150的值,叫做方程的解 =250 =方程右边 求方程的解的过程叫做解方程。所以,X=150是方程的解。课时作业: 一判断。
⑴含有未知数的式子叫方程。()⑵X=36是方程X3=12的解。()
二、X=15是方程42-X=28的解吗?X=14呢?
三、X=12是下列哪些方程的解?把这些方程标出来。
X+18=30 4X=50 X÷3=5 72÷X=6 64-X=5 2X-9=5
五年级解方程课件 篇5
教学内容:教科书第6页的7~12题。
教学目标:1、通过练习,使学生进一步体会方程的含义。
2、进一步理解等式的性质,能根据等式的性质正确地解方程。
教学重点与难点:能根据等式的性质正确地解方程。
教学流程:
一、基础练习
1、说出下面的式子哪些是方程,哪些不是,为什么?
20+17=3712-Y=4a+12=3521-b<14x=14+2
2、解方程
X+125=370520+X=710X-4.9=6.4
120-X=257.8+X=2.5X+8.5=12
学生独立完成,指名学生板演。
选3题让学生说说想的过程。
二、完成第6页的7~12题。
第7题学生独立完成后指名回答,让学生说说是怎样想的。
第9题指名学生说:错在哪里,帮他分析一下,可能是什么原因造成的?怎样改正,我们在做题时要注意一些什么?
第8题学生独立完成,指名板演。
第12题学生读题后独立思考解决问题的方法。
小组内交流。全班交流,只要学生说出的方法是有道理的,教师都要给于肯定。
三、课堂作业
第6页的第10、11题。
五年级解方程课件 篇6
教学过程:
一、导入新课
前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。
二、新知学习
(一)教学例1
出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9
要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?
抽答。
方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3
化简,即得:x=6
这就是方程的解,谁再来回顾一下我们是怎样解方程的?
左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。
追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。
板书:方程左边=x+3
=6+3
=9
=方程右边
所以,x=6是方程的解。
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。
(二)教学例2
利用等式不变的规律,我们再来解一个方程。
出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。
抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。
展示、订正。
通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?
(三)反馈练习
1、完成做一做的第1题,先找到等量关系,再列方程,解方程。集体评讲。
2、思考想一想:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。
试着解方程:x-2.4=6x9=0.7(强调验算)
(四)课堂作业:做一做第2题。
三、课堂小结。
这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?
四、作业:练习十一57题。
教学内容:数学书P58-P59及做一做,练习十一第5-7题。
教学目标:
1、结合具体图例,根据等式不变的规律会解方程。
2、掌握解方程的格式和写法。
3、进一步提高学生分析、迁移的能力。
教学重难点:掌握解方程的方法。
五年级解方程课件 篇7
教学过程:
一、导入新课
上一节课,我们学习了什么?
复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。
二、新知学习。
1、解决问题。
出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。
能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。
全班交流。可能有以下四种思路:
(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。
(2)利用加减法的关系:250-100=150。
(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。
(4)直接利用等式不变的规律从两边减去100。
对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。
2、认识、区别方程的解和解方程。
得出方程的解与解方程的含:
像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。
而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。
这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?
方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。
3、练习。(做一做)
齐读题目要求。
怎么判断X=3是不是方程的解?将x=5代入方程之中看左右两边是否相等,写作格式是:方程左边=5x
=53
=15
=方程右边
所以,x=3是方程的解。
用同样的方法检查x=2是不是方程5x=15的解。
二、作业。
独立完成练习十一第4题,强调书写格式。
三、小结。
通过这节课学到了什么?还有什么问题?
教学内容:数学书P57,及做一做,练习十一第4题。
教学目标:
1、结合具体的题目,让学生初步理解方程的解与解方程的含义。
2、会检验一个具体的值是不是方程的解,掌握检验的格式。
3、进一步提高学生比较、分析的能力。
教学重难点:比较方程的解和解方程这两个概念的含义。
五年级解方程课件 篇8
师:解方程的第二步,方程两边同时进行计算,得出的值。左边+3-3,等于什么?
生:等于。
师:(板书:)右边9-3呢?
生:等于6。
师:(板书:=6)天平在变化的过程中,始终保持平衡,说明解方程时,得到的每一步都是等式,要求大家把所有的等号对整齐。为了把等号对整齐,一般要把解写到前面一点。
师:=6是不是这个方程的解?验算一下就知道了!把=6代入方程中,看方程的两边是否相等。我们一起来写验算过程。
师:先看方程左边,(板书:方程左边=+3)把=6代入方程中,+3就变成了几加3?
生:6+3
师:(板书:=6+3)6+3等于9。(板书:=9)方程左边等于9。再看看方程右边等于几?
生:等于9。
师:也是等于9。方程左边等于9,方程右边也等于9,说明了什么?
生:方程左边等于方程右边,=6是这个方程的解。
师:(板书:=方程右边)最后,下结论:所以,=6是方程的解。(板书:所以,=6是方程的解。)
师:验算的过程就写完了。现在,请同学们把课本打开,翻到58页,请小组的同学一边对照书中解方程的过程,一边讨论:解方程需要注意什么?(小组讨论)
师:现在,请同学们说一说:解方程需要注意什么?
生:......
师:还有没有要补充的?
生:......
师:把刚才几位同学说的,合起来就很完整了。会解方程了吗?
生:会了。
师:那就试一试!(解方程+7=10)
师:哪位同学愿意到黑板上来做?请你来吧!
(学生做题)
师:都做完了吗?一起来看看这位同学做的!你们觉得他做得好不好?
生:他全部都做对了。
生:我觉得有一点不好,他把等号没有对整齐!......
师:刚才这位同学给你提的意见能接受吗?
生:能!
师:有错就改就是好孩子!解方程不仅要注意方法,还要注意书写格式。做完后还要养成验算的好习惯。
师:老师还有一个问题想请教一下:为什么要在方程的两边同时减去7?
生:左边减去7是为了是方程左边只剩,右边减去7是为了使方程两边仍然相等!
师:说得很好!这道题你们都解对了吗?
生:解对了!
师:你们真聪明!一下子都学会了!老师还想考考大家,出一个和它们不一样的方程:-3=9
你们会做吗?
生:会!
师:这题也会呀!那好,试试看吧!请同学们先独立完成,然后在小组内进行交流。(点一名学生板演)
师:一起来看看黑板上的作业!他做得怎样?
生:做得很好,......
师:谁来说说:为什么要在方程的两边同时加上3?
生:是为了使方程左边只剩而有保持两边仍然相等!
师:你们同意他的说法吗?
生:同意!
师:看来,你们已经掌握解方程的方法了!
三、拓展应用
师:解方程还能帮助我们解决很多生活中的问题呢!
请看大屏幕:(课件出示)能解决吗?
师:能!
师:开始吧!(注意:可以不写出演算的过程,但是要进行口头验算。)
学生做题后汇报交流!
四、课堂小结
师:同学们真不了不起,不但学会了解方程,还学会了用解方程的方法解决问题!
今天的课就上到这里,下课!
五年级解方程课件 篇9
教学内容
解方程:教材P69例4、例5。
教学目标
1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。
2.进一步掌握解方程的书写格式和写法。
3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。
教学重点
理解在解方程过程中,把一个式子看作一个整体。
教学难点
理解解方程的方法。
教学过程
一、导入新课
我们上节课学习了解方程,这节课我们来继续学习。
二、新课教学
1.教学例4。
师:(出示教材第69页例4情境图)你看到了什么?
生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。
师:你能根据图列一个方程吗?
生:3x+4=40。
师:你是怎么想的?
生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。
师:说得好,你能解这个方程吗?
学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的`困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)
师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?
生:先算出3个铅笔盒一共多少支,再加上外面的4支。
师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。
让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。
2.教学例5。
师:(出示教材第69页例5)你能够解这个方程吗?
生1:我们可以参照例4的方法,先把x-16看作一个整体。
学生解方程得x=20。
生2:我们也可以用运算定律来解。
师:2x-32=8运用了什么运算定律?
生:运用了乘法分配律。然后把2x
看作一个整体。
学生解方程得x=20。
师:你的解法正确吗?你如何检验方程是否正确?
生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。
三、巩固练习
教材第69页“做一做”第1、2题。
第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。
这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。
四、课堂小结
1.在解较复杂的方程时,可以把一个式子看作一个整体来解。
2.在解方程时,可以运用运算定律来解。
五、布置作业
教材第71页“练习十五”第6、8、9.题。
五年级解方程课件 篇10
教学内容:
教科书57页
教学目标:
1、学生通过观察、猜测等数学活动,能够理解方程的解及解方程。
2、培养学生的数学思想。
重点难点:
学生理解方程的解及解方程这两个定义。
教学过程:
一、练习导入
判断下列各式是不是方程,并说出你的理由。
X+24=573X梅8
X=028<16+14
师:今天,我们继续学习关于方程的知识。
二、新授
1、教师板书:100+X=250
问:X=?
2、小组讨论
有几种求X=?的方法?
3、全班交流
X的值是多少?你是怎么求出的?
此环节给学生提的要求是:讲清解题过程,语言表述完整、清楚。
4、教师要根据学生的回答适当板书求X的过程。
(1)想:100+()=250
(2)250鈥?100=(利用鈥溂邮?=和鈥?加数鈥澱飧龉叵凳健#?/p>
(3)让两边同时减去100,就能得出X=150
5、讨论
(1)X=150是100+X=250这个方程的什么?
(2)以上板书的3种方法为了求X的值,我们可以把求X的值的过程叫作什么?
6、读定义(书57页):方程的解
解方程
三、练习
1、教科书57页做一做
2、教科书63页4题
四、全课总结
这节课,我们学习了什么?
Yjs21.coM更多幼师资料延伸读
解方程课件
老师会对课本中的主要教学内容整理到教案课件中,因此就需要老师自己花点时间去写。教案是教育教学改革的重要推动力,写教案课件时需要注意哪些方面?经过仔细筛选栏目小编选出了一篇非常好的“解方程课件”,请了解以下相关信息!
解方程课件 篇1
今天我说课的内容是五年级数学上册第四单元《解简易方程》。下面我从教材分析、教学方法、学法指导、过程分析等四个方面进行说课。
本节课是解简易方程的第三课时“解方程(一)”,是在学生学习方程的意义和等式的性质的基础上进行教学。而今天学习的内容又为后面学习列方程解应用题做准备。今后学习多边形的面积、植树问题等内容时都要直接运用。所以本节课起着一个承上启下的作用,是教材中必不可少的组成部分,是一个非常重要的基础知识,所以它又是本章的重点内容之一。
根据学生已有的认知基础和教材的地位与作用,参照课标确定本节课的目标:知识与技能:
过程与方法:
体验迁移、分析、合作交流的学习方法。
情感态度与价值观:
感受方程与生活中的联系,激发学习兴趣,培养仔细认真的良好学习习惯。
根据教材内容和教学目标,我认为本节课的重难点是理解解方程的方法及检验,解决重难点的关键是引导学生确立解方程的一般思路。
为了体现学生的主体性,培养学生的合作意识,通过同桌合作、交流,自主探寻发现通过等式的性质来解方程。初步理解方程的解和解方程的含义。
这些教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学。
采用小组合作学习的形式,让学生经历一个观察、比较、交流、分析等过程,鼓励学生把发现的规律都说出来,有利于学生口语交际和解决问题能力的发展,这样既培养学生的合作意识,又能使学生在发现规律的同时获得成功的体验。
以学生自主学习为主,注重探索过程的教学,充分发挥学生的主观能动性,变被动听为自主学,学生积极动脑去思考、动口去表达。通过交流、猜测、验证、总结归纳,体验探索规律的过程,突破难点,提高效率。
上节课的学习中,我们探究了哪些规律?
巩固方程及等式的性质,为下面的学习做好铺垫。
(二)认准目标,指导自学。
1、那我们学习解方程就要充分利用等式的两个基本性质。
2、学生自学教材67~68页例1、例2、例3内容,让学生初步掌握用等式的性质解方程的原理,学完后记录疑问。
(三)合作学习,引导发现。
1、出示课件例1,你了解了哪些信息?怎样列方程?
2、如何解这个方程呢?课件出示利用等式的性质分析的图示。
学生观察图画,同桌交流自己的观察结论,并通过讨论明确解方程的方法。
3、点名学生汇报,其他同学可以补充。
老师归纳:解方程实质就是把方程转化成x=a的形式,要注意解方程步骤的规范书写。
4、认识、区分方程的解和解方程并学会验算方程的解。
5、学生独立完成例2、例3的内容,并相互检验对方的结果。
老师再次强调要注意解方程和验证步骤的规范书写。
(四)变式训练,反馈调节。
课本67~68“做一做”。
强化重点,巩固新知,培养学生良好的学习习惯。
(五)分层测试,效果回授。
1、课本练习十五第1题。
2、课本练习十五第4题。
解方程课件 篇2
一、教材研读。
1、教材编排。
(1)逻辑分析:
(2)语言信息及价值分析:
本课教材的三幅情境图,由浅入深,由具体到抽象,层层递进。第一幅情境借助平衡,让学生领悟等式;第二幅情境完成数量关系向等量关系的转化;第三幅情境引发学生思考,让学生从不同角度找到多种等量关系,列出方程。
2、教学目标。
(1)结合具体情境,建立方程的概念。
(2)在简单情境中寻找等量关系,并会用方程表示。
(3)经历从生活情景到方程模型的建构过程,进一步感受数学与生活之间的密切联系。
3、教学重难点:
(1)重点:在简单具体情境中寻找等量关系,并会用方程表示。抓住“含有未知数”和“等式”两个核心关键词建立方程的概念。
二、学情分析:
学生原有的认知经验是用算术方法来解决问题,算术思维是更接近日常生活的思维。由于从算术思维到代数思维的认识发展是非连续的,所以列算式求答案的习惯性思维转向借助等量关系列方程的新思维方式比较困难。列算式时以分析数量关系为主,知与未知,泾渭分明;在代数法中,辩证地处理知与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。
三、流程设计:
为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:
(一)引“典”激趣,诱发思考。
引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。
(二)探究新知,建立概念。
1、借助天平,启发思考。
我将教材情境动态化,通过FLANSH课件,让学生充分感知当天平两端都没放物品的时候天平左右两边是平衡的。当我们往天平的一端放上物品而另一端不放的时候,或者两端放的物品质量不等的时候,天平的两臂不平衡,表示两边物体的质量不相等。这时候左边大于右边,或右边大于左边。当我们经过调整,天平两臂再次平衡时,表示两边的物体质量相等,即左边=右边。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。同时,对情境中数据也进行了分批给出的处理。先给出了左边鱼食和小砝码的重量,让学生用一个数学表达式来表示天平左边的质量,再给出天平右边的质量,让学生列出等式。这样就较好地避免了学生习惯性的使用算术的思维方式,同时也顺利地进行了用数字表示向用符号表示的转化。在这一情境的教学中,借助天平这一载体,启发学生理解了平衡,认识了等式。
第二个主题图是本节课教学的核心内容。首先,我引导学生在情境中找出文字信息“4块月饼的质量一共是380克”。然后引导学生结合情境图,把这一信息转化为等量关系。4块月饼的质量是如何表示的呢?用数量关系“每块月饼的质量×4”来表示,“每块月饼的质量×4”表示的是4块月饼的质量,380克也表示4块月饼的质量,所以他们相等。从而完成数量关系向等量关系的转化,算术思想向代数思想的转化,改变学生的长达4年的惯性思维方式。
3、变换角度,深入思考。
第三幅情境图隐含着多样的等量关系,也正是引发学生数学思考的最佳情境。根据学生认识的深入程度,可适当让学生体会到等式的“值等”和“意等”,并放手让学生探究,根据不同的认识找到不同的等量关系,列出等量关系不同的同解方程。在教学中,先引导孩子发现情境中的基本相等关系:2瓶水的水量+一杯水的水量=一壶水的水量,并且列出等式2z+200=,在此基础上,再引导孩子发现其他的等量关系。在这一过程中,充分激发孩子探求知识的欲望,调动孩子思考的主动性和灵活性,从而找到多样化的等量关系,并进一步提高孩子解决数学问题的能力。
4、建立概念,判断巩固。
(三)生活应用,提高能力。
数学应该服务于生活,紧接着我让同学们根据直观图象列方程。这些题目都来自于生活实际,并且分别以现实情境图、线段、文字叙述、综合拓展为顺序,层层递进。学生在用方程表示直观情境里的相等关系后,他们在写方程时会更加关注方程的本质属性,从而巩固方程的概念。练习强调学生在按照“数量关系—等量关系—方程”这样一个过程,通过想一想,找一找,说一说,写一写等不同的形式学会用方程来表示生活中的实际问题,并体会到方程的作用,为以后运用方程解决实际问题打下坚实基础。
解方程课件 篇3
学习目标:
1、让学生初步认识“方程的解”、“解方程”的意义。
2、结合课文图例,根据等式的基本性质,解方程。
3、掌握解方程的格式和写法。
4、进一步提高学生分析、迁移的努力。学习重难点:掌握解方程的方法 教学过程: 重申目标 学情调查
1.把等式的基本性质补充完整。
等式两边同时
(或)
的数,两边仍然
。等式两边同时
(或)
的数,两边仍然。
2、判断下列那些式子是方程?(是的在后面打“∨”)
35+65=100
X–14﹥5.8
y+24
6(a+2)=42
c=1.8 问题汇总
1、什么是“方程的解”、“解方程”?
2、“方程的解”、“解方程”有啥区别和联系?
3、解方程的格式是怎样的?
4、方程的解怎么验算?
精讲点拨
一、请同学们学习课本第57页内容。
1、以小组为单位,根据教材57页内容合作学习,并回答问题。
100+X=250。X的值是()?
2、小组讨论,认识探索X的值。
(1)各小组展示自己推算的方法及依据。
(2)学生自己验证X的值是否正确。
3、像这样能使方程左右两边相等的未知数的值,人们给它起了一个名称叫(程解的过程叫()。()是一个数,()是计算过程。
教师板书:
+
X
=
250
第一个加数
第二个加数
和
第二个加数
=
和
所以 :X=150
方程的解
+ X
= 250 100 + X
= 100 + 150
X
= 150
(数的组成)
4、完成57页“做一做”.二、根据教材58页主题图,认识解方程。
(1)从图中可以获取哪些信息?图中表示了什么样的等量关系?
盒子中的皮球与外面的3个皮球加起来共有()个,列方程:((2)要求盒子中一共有多少个皮球,也就是求x等于什么?
我们看看教材是怎么利用等式的基本性质来求出方程的解呢?,求方)。1)
方程两边同时减去了(),左右两边仍然相等,化简后x=(),这就是方程的解。
(3)左右两边同时减去的为什么是3,而不是其它数呢?
因为,两边减去3以后,左边刚好剩下一个(),这样,右边就刚好是()。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。(4)教师强调说明:
x=6带不带单位呢,x在这里只代表一个(数),因此不带单位。(5)检验x=6是不是正确的答案,还需要验算。
方程左边 = x +3 = 6 +3 = 9 =方程()边
所以,x=6是方程的()。
(6)教师板书解方程的过程,强调写“解:”,等号对齐。课堂检测:
1.把下面的话补充完整。
方程两边同时
(或)
的数,两边仍然
。方程两边同时
(或)
的数,两边仍然
。2.填空:
X+1.6=3.2
X–0.47=1.25 X+1.6–()=3.2–()
X–0.47+()=1.25+()X=()
X=()X+12=45
X–2.6=5.4 X+12–()=45–()
X–2.6+()=5.4+()
X=()
X=()2.解方程:
X+2.3=8.6
X–12.4=5.8
小结:
通过这节课的学习,我们知道了在方程左右两边同时减去或加上一个相同的数,左右两边仍然相等。需要注意的是,在书写的过程中写的都是等式,而不是梯等式。为了保证解题的正确,我们还要学会验算。作业:
1、后面括号里哪个X值是方程的解?
(1)X+32=67
(X=44,X=108)(2)12-X=4
((X=16),(X=8))
2、解方程。
X+3.2=4.6
X–1.8=4
X-2=15
X+0.3=1.8
3+ X=5.4
X–6=7.6
3、课后探讨如何解下面的方程。
7-X=1.2 下一课时导学案:
1、填空:
4X=6.4
X÷0.5=1.25 4X÷()=6.4÷()
X÷0.5×()=1.25×()X=()
X=()
5X=0.75
X÷6=13
5X÷()=0.75÷()
X÷6×()=13×()
X=()
X=()
2、根据题意,在横线上把下列各题的数量关系补充完整,并分别列方程解答。
1.王老师买了1本单价是2.8元的笔记本和2本相同单价的童话书,共用去22.6元。童话书每本多少元?
+
=总金额(22.6元)解:设。
列方程:
答:。
还可以这样想:。
解:设。
列方程:
答:。
2.妈妈买了甲、乙两箱不同牌子的饮料。每箱饮料中的盒数相同,每盒重量分别是0.23㎏和0.19㎏,甲箱比乙箱要重0.64㎏。每箱中有多少盒饮料?
-
=甲箱比乙箱重的千克数 解:设。
列方程:
答:。
还可以这样想:
=甲箱比乙箱重的千克数。解:设。
列方程:
答:。
解方程课件 篇4
列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。
一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。
设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如相等、是、比多、比少、是的几倍、的总和是、与的差是等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。
列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值,列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程。而找出等量关系又在于熟练运用数量之间的各种已知条件。掌握了这两点就能正确地列出方程。
(1)列方程解应用题的一般步骤是:
1)弄清题意,找出已知条件和所求问题;
2)依题意确定等量关系,设未知数x;
3)根据等量关系列出方程;
4)解方程;
5)检验,写出答案。
(2)初学列方程解应用题,要养成多角度审视问题的习惯,增强一题多解的自觉性,逐步提高分析问题、解决问题的能力。
(3)对于变量较多并且变量关系又容易确定的问题,用方程组求解,过程更清晰。
例1 某县农机厂金工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。
如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦 如果仔细分析题意,会出现除了上面提到的加工甲、乙、丙三种零件的人数为未知数外,还有甲、乙、丙三种零件各自的总件数也未知。而题目中又有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数又在中间起媒介作用。所以如用间接未知数,设已种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,从而找出等量关系,即按均衡生产推算的总人数,列出方程 解 答
设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。
答:应安排加工甲、乙、丙三种零件工人人数分别为12人、5人和60人。
例2 牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?
这是以前接触过的牛吃草问题,它的算术解法步骤较多,这里用列方程的方法来解决。
设供25头牛可吃x天。
本题的等量关系比较隐蔽,读一下问题:每天牧草都匀速生长,草生长的速度是固定的,这就可以发掘出等量关系,如从供10头牛吃20天表达出生长速度,再从供15头牛吃10天表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。
设供25头牛可吃x天。
每头牛每天吃的草200草的生长速度20+每头牛每天吃的草150-草的生长速度10
因此,设每头牛每天吃的草为1,则草的生长速度为5。
例3 某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?
设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程
设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。
由灰砖有220米3,推知修建住宅(220-40)30=6(座)。
同理,也可设有红砖x米3。留给同学们练习。
例4 两个数的和是100,差是8,求这两个数。
这道题有两个数均为未知数,我们可以设其中一个数为x,那么另一个数可以用100-x或x+8来表示。
解法一:设较小的数为x,那么较大的数为x+8,根据题意它们的和是100,可以得到:
也可以设较小的数为x,较大的数为100-x,根据它们的差是8列方程得:
解方程课件 篇5
1.教材内容和地位:
《解方程(二)》是 北师大版数学四年级下册第五单元解方程这部分知识,通过天平游戏,让学生发现等式两边都乘一个数(或除以一个不为零的数),等式仍然成立的性质。利用探索发现的等式的性质,解决简单的方程,培养学生分析、推理你能力。学生通过天平游戏,经历了从生活情境的方程模型的建构过程。探究等式的性质,让学生体会数学的价值,激发学生学习数学的兴趣。
2.学情分析:
为了使教学设计更贴近学情,有效的完成教学目标,我在课前对学生的知识基础和学习经验进行调研,从调研结果可以看出学生对解方程是有一定认识的。
3.教学目标:
根据教材和学情我制定以下三个教学目标:
(1)能根据具体情境,灵活运用解决生活中一些简单的问题,使学生感受到数学与生活的.密切联系。
(2)培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
(3)培养学生合作意识和主动探求知识的学习品质和实践能力。
4.教学重点:知道等式两边同时乘以一个数(或除以一个不为0的数),等式仍然成立 。
新课标指出:学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。我采用的教学方法:采用操作和演示、讲练相结合的教学方法。以突破教学的重难点。
新课标明确指出:数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考,教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发和因材施教,为学生提供充分的数学活动机会。教无定法,贵在得法,通过有效的措施,启发学生思考,引导学生自主探索,鼓励学生合作交流,使学生正在理解和掌握基本的数学知识与技能、数学思想与方法,得到必要的数学思维训练,获得广泛的数学活动经验。为让学生能轻松愉快地学,积极主动探索、根据学生实情,我主要选用讨论法、以手动操作,自主探索,合作交流,直观演示等方式为主,再加上老师的适时点拨,学生间的互相补充、评价,完成教学目标。
为有效的落实教学目标、突破教学重点、难点、在本节课中,我共设计了四个环节:
(四)归纳总结,回顾整理,
在课前与学生谈话,通过掌声和笑容来缓解师生的紧张情绪,从而带着愉悦心情走进新课学习,可见教师在努力向幽默型教师转化,为形成良好的师生关系进行自我调整。
“问答式”“师生一问一答”的形式比较多,根据课题研究我以学生为主,在设计教学时,以课堂提问和追问为主,激发学生上课回答问题的兴趣和积极性。如:
师:等式两边都乘一个数(或除以一个不为零的数),等式还成立吗?先独立思考,再在小组内交流自己的想法。
1) 师:既然我们有两种不同的答案,那我们来做个实验验证一下好吗?左侧放的砝码的质量用X表示,右边放5克的砝码,天平两边平衡。
师:左边加2个x克砝码,右边也加2个5克的砝码,你们发现了什么?(平衡)
师:左边加6个x克砝码,右边也加6个5克的砝码,还会平衡吗?(平衡)
师:通过刚才的观察和你所列的算式,谁能用一句话概括出以上的规律?
师:那同学们想一想,如果两边都除以一个数,等式还会成立吗?下面同学们用天平验证一下。
师:左边去掉一半的质量,右边也去掉一半的质量,天平仍然平衡,用算式如何表示变化过程?
小结:追问是老师在学生回答问题的过程中或者回答问题结束之后的进一步引导,它的目的是进一步发现问题、解决问题,使问题的交流走向深入。成功的追问本质上是一种高效点拨。追问是一种教学策略,追问的问题一定是有意义的、有趣的,同时也是有挑战性的。让学生抓住数学的本质,为后续学习打好基础。
“含有未知数的等式叫方程”,这是方程的定义。本节课在通过不断地摆天平中建立方程的模型。在对“未知数”的处理上,教师没有局限于未知数,而是多方式表达,如可以用文字,也可以用图形、符号、字母等等,这样就可以起到良好的建模。学生不再向以往学生那样,认为“含有字母的等式”才是方程。但此处教师能够在几种方式中再进行优化,让学生体验到由于文字不简洁、图形符号具有局限性等因素,而字母更具有优势,于是在通常情况下我们都采用字母来表示未知数。对于这方面,我在课后进行的修补,但能够融入到新授课中就比较合适。
在教学重点难点基本突破后,让学生及时巩固,然后全班交流。
1、基础练习,完成课后1、2题, 习题设计体现层次性、典型性、探究性,突出教学生活化的教学理念。
3、在计算中总结规律并感受学习数学的魅力和价值。
在一节课即将结束时,我引导学生回顾整个学习的过程,学习时运用数学的思想,使学生在一节课的学习中不仅有知识上的积累,还能在学习方法上有多收获,使学生感受到学习数学的快乐和价值。
最后说板书:
为了唤起学生的注意力,增强学生对新知进一步记忆和理解,板书如下:板书设计简洁,抓住重点方程式,简单明了,重点突出,清晰易记。并用不同色彩粉笔标出易错点,引起学生注意。
解一元一次方程课件(精选11篇)
学生们在课堂上能够获得生动有趣的教学体验,这离不开教师辛勤准备的教案。如果教师没有及时完成教案的准备工作,那么课堂教学就会受到影响。学生对课堂的积极反应可以反映教学的吸引力。那么从哪个角度去设计教案和课件呢?如果你不知道该看什么有用的文章,我建议你阅读一下“解一元一次方程课件”。相信它会对你的学习和工作有所帮助!
解一元一次方程课件【篇1】
1.了解一元一次方程的概念。
1.解下列方程:
2.去括号法则是什么?“移项”要注意什么?
如44x+64=328 3+x=(45+x) y-5=2y+l 问:它们有什么共同特征?
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。
强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。
掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。
2、难点:求各分母的最小公倍数,去分母时,有时要添括号。
1.去括号和添括号法则。
解一元一次方程有哪些步骤?
一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。
1.解一元一次方程有哪些步骤?
2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。
使学生灵活应用解方程的一般步骤,提高综合解题能力。
1、一元一次方程的解题步骤。
分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。那么怎样化简呢?引导学生分析,并求出方程的解。交流体会。
例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整数)
分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。
三、巩固练习。
根据公式V=V0+at,填写下列表中的空格。
四、小结。
若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。
教学目的:
理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。
1、什么叫一元一次方程?
2、解一元一次方程的理论根据是什么?
二、新授。
例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?
检验所求出的解是否合理。 培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。
例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了1400块,问初一同学有多少人参加了搬砖?
1.题目中有哪些已知量?
(1)参加搬砖的初一同学和其他年级同学共65名。
(2)初一同学每人搬6块,其他年级同学每人搬8块。
(3)初一和其他年级同学一共搬了1400块。
2.求什么?
初一同学有多少人参加搬砖?
3.等量关系是什么?
列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。
解一元一次方程课件【篇2】
第一课时
教学目的
1.了解一元一次方程的概念。
2.掌握含有括号的一元一次方程的解法。
重点、难点
1.重点:解含有括号的一元一次方程的解法。
2.难点:括号前面是负号时,去括号时忘记变号。
教学过程
一、复习提问
1.解下列方程:
(1)5x-2=8 (2)5+2x=4x
2.去括号法则是什么?“移项”要注意什么?
二、新授
一元一次方程的概念
如44x+64=328 3+x=(45+x) y-5=2y+l 问:它们有什么共同特征?
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。
例1.判断下列哪些是一元一次方程
x= 3x-2 x-=-l
5x2-3x+1=0 2x+y=l-3y =5
例2.解方程(1)-2(x-1)=4
(2)3(x-2)+1=x-(2x-1)
强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。
补充:解方程3x-[3(x+1)-(1+4)]=l
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
三、巩固练习
教科书第9页,练习,l、2、3。
四、小结
学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。
五、作业
1.教科书第12页习题6.2,2第l题。
第二课时
教学目的
掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的`过程和自觉检验方程的解是否正确的良好习惯。
重点、难点
1、重点:掌握去分母解方程的方法。
2、难点:求各分母的最小公倍数,去分母时,有时要添括号。
教学过程
一、复习提问
1.去括号和添括号法则。
2.求几个数的最小公倍数的方法。
二、新授
例1:解方程(见课本)
解一元一次方程有哪些步骤?
一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。
补充例:解方程 (x+15)=- (x-7)
三、巩固练习
教科书第10页,练习1、2。
四、小结
1.解一元一次方程有哪些步骤?
2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。
五、作业
教科书第13页习题6.2,2第2题。
第三课时
教学目的
使学生灵活应用解方程的一般步骤,提高综合解题能力。
重点、难点
1、重点:灵活应用解题步骤。
2、难点:在“灵活”二字上下功夫。
教学过程
一、 一、 复习
1、一元一次方程的解题步骤。
2、分数的基本性质。
二、新授
例1.解方程(见课本)
分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。那么怎样化简呢?引导学生分析,并求出方程的解。交流体会。
例2.解方程(见课本)
例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整数)
分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。
三、巩固练习。
根据公式V=V0+at,填写下列表中的空格。
VV0at02848314155476137
四、小结。
若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。
五、作业 。
解一元一次方程课件【篇3】
教学目标:
1、 使学生会列一元一次方程解有关应用题。
2、 培养学生分析解决实际问题的能力。
复习引入:
1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:
(1)__________ (2)_________ (3)_________
人们常规定工程问题中的工作总量为______。
2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的工作效率是_______。
一件工作,甲单独做20小时完成,乙单独做12小时完成。
(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。
2、练习:
有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?
解一元一次方程课件【篇4】
一、课题名称:3.3解一元一次方程(二)——去括号与去分母
二、教学目的和要求:
1、知识目标
(1)通过对比运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力;
(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。
2、能力目标
(1)通过学生观察、独立思考等过程,培养学生归纳、慨括的能力;
(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。
3、情感目标
(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;
(2)培养学生严谨的思维品质;
(3)通过学生间的相互交流、沟通,培养他们的协作意识。
三、教学重难点:
重点:去分母解方程。
难点:去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。
四、教学方法与手段:
运用引导发现法,引进竞争机制,调动课堂气氛
五、教学过程:
1、创设情境,提出问题
问题1:我手中有6,x,30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快有对。
学生思考,根据自己对一元一次方程的理解程度自由编题。
问题2:解方程5(x-2)=8
解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。
问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少20xx度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
2、探索新知
(1)情境解决
问题1:设上半年每月平均用电x度,则下半年每月平均用电____度;上半年共用电____度,下半年共有电_____度。
问题2:教室引导学生寻找相等关系,列方程。
根据全年用电15万度,列方程,得6x+6(x-20xx)=150000.
问题3:怎样使这个方程向x=a的形式转化呢?
6x+6(x-20xx)=150000
↓去括号
6x+6x-12000=150000
↓移项
6x+6x=150000+12000
↓合并同类项
12x=162000
↓系数化为1
x=13500
问题4:本题还有其他列方程的方法吗?
用其他方法列出的方程应怎样解?
设下半年每月平均用电x度,则6x+6(x+20xx)=150000.
(学生自己进行解决)
归纳结论:方程中有带括号的式子时,根据乘法分配率和去括号法则化简。(见“+”不变,见“—”全变)
去括号时要注意:
(1)不要漏乘括号内的任何一项;
(2)若括号前面是“—”号,记住去括号后括号内各项都变号。
(2)解一元一次方程——去括号
例题、解方程:3x—7(x—1)=3—2(x+3)。
解:去括号,得3x—7x+7=3—2x—6
移项,得3x—7x+2x=3—6—7
合并同类项,得—2x=—10
系数化为1,得x=5
3、变式训练,熟练技能
(1)解下列方程:
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);
(2)3(2-3x)-3[3(2x-3)+3]=5;
(3)2 (x+1)+3(x+2)-3=-4(x+3).
(2)学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?
(3)学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分的路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?
4、总结反思,情意发展
(1)本节课你学习了什么?
(2)本节课你有哪些收获?
(3)通过今天的学习,你想进一步探究的问题是什么?
可以归纳为如下几点:
①本节主要学习用去括号的方法解一元一次方程。
②主要用到的思想方法是转化思想。
③注意的问题:括号前是“—”号的',去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项;在实际问题中,要会找等量关系。
5、布置作业
(1)必做题:课本第98页习题3.3第
1、2题。
(2)选做题:
①解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)。
②杭州新西湖建成后,某班40名同学划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?
六、课后小结:
本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开
思考、讨论,进行学习。
强调学生主体意识的体现,在设计中,教师始终把学生放在主体的地位,让学生通过尝试得到解决,归纳出去括号解方程的特点,让学生通过合作与交流,得出问题的不同解答方法。
从设计上体现学生思维的层次性。教师首先引导学生尝试列出含未知数的式子,寻找相等关系列出方程。
解一元一次方程课件【篇5】
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察潜力,提高他们分析问题和解决问题的潜力;
3.使学生初步养成正确思考问题的良好习惯.
一元一次方程解简单的应用题的方法和步骤.
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题.
例1某数的3倍减2等于某数与4的和,求某数.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并透过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们明白方程是一个内含未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中带给的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就透过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原先有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原先重量-运出重量=剩余重量)
3.若设原先面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原先重量=运出重量+剩余重量;原先重量-剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原先重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,能够任意选取其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的状况,教师总结如下:
(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.那里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有好处.
例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)
3x+9=5x-(5-4),
其苹果数为3×5+9=24.
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.
1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?
2.我国城乡居民1988年末的储蓄存款到达3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.
3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.
2.列一元一次方程解应用题的方法和步骤是什么?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答状况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选取变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;
1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?
2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?
4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?
5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数
解一元一次方程课件【篇6】
一、教学目标
(一)知识与技能
会利用合并同类项解一元一次方程。
(二)过程与方法
通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。
(三)情感态度与价值观
开展探究性学习,发展学习能力。
二、重、难点与关键
(一)重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程。
(二)难点:会列一元一次方程解决实际问题。
(三)关键:抓住实际问题中的数量关系建立方程模型。
三、教学过程
(一)、复习提问
1、叙述等式的两条性质。
2、解方程:4(x—)=2
解法1:根据等式性质2,两边同除以4,得:
x— =
两边都加,得x=
解法2:利用乘法分配律,去掉括号,得:
4x— =2
两边同加,得4x=
两边同除以4,得x=
(二)、新授
公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程。这本书的拉丁文译本取名为《对消与还原》。对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题。
问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?
分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台。
题目中的相等关系为:三年共购买计算机140台,即
前年购买量+去年购买量+今年购买量=140
列方程:x+2x+4x=140
如何解这个方程呢?
2x表示2x,4x表示4x,x表示1x。
根据分配律,x+2x+4x=(1+2+4)x=7x。
这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0
下面的框图表示了解这个方程的具体过程:
x+2x+4x=140
合并
7x=140
系数化为1
x=20
由上可知,前年这个学校购买了20台计算机。
上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数。
例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数。
分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人。
问:本题中相等关系是什么?
答:甲组人数+乙组人数+丙组人数=60。
解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:
2x+3x+5x=60
合并,得10x=60
系数化为1,得x=6
所以2x=12,3x=18,5x=30
答:甲组12人,乙组18人,丙组30人。
请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60。
(三)、巩固练习
1、课本第89页练习。
(1)x=3、
(2)可以先合并,也可以先把方程两边同乘以2、
具体解法如下:
解法1:合并,得(+)x=7
即2x=7
系数化为1,得x=
解法2:两边同乘以2,得x+3x=14
合并,得4x=14
系数化为1,得x=
(3)合并,得—2、5x=10
系数化为1,得x=—4
2、补充练习。
(1)足球的表面是由若干个黑色五边形和白色六边形皮块围成的`,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?
(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)
解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个。
列方程3x+2x=32
合并,得8x=32
系数化为1,得x=4
黑色皮块为43=12(个),白色皮块有54=20(个)
(2)设全书共有x页,那么第一天读了(x+2)页,第二天读了(x—1)页。
本问题的相等关系是:第一天读的量+第二天读的量+还剩23页=全书页数。
列方程:x+2+ x—1+23=x。
四、课堂小结
初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和。这是一个基本的相等关系。
合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或—x的系数分别是1,—1,而不是0。
五、作业布置
1、课本第93页习题3、2第1、3(1)、(2)、4、5题。
2、选用课时作业设计。
合并同类项习题课(第2课时)
一、解方程。
1、(1)3x+3—2x=7;(2)x+ x=3;
(3)5x—2—7x=8;(4)y—3—5y=;
(5)— =5;(6)0。6x— x—3=0。
二、解答题。
2、育红小学现有学生320人,比1995年学生人数的少150人,问育红小学1995年学生人数是多少?
3、甲、乙两地相距460千米,A、B两车分别从甲、乙两地开出,A车每小时行驶60千米,B车每小时行驶48千米。
(1)两车同时出发,相向而行,出发多少小时两车相遇?
(2)两车相向而行,A车提前半小时出发,则在B车出发后多少小时两车相遇?相遇地点距离甲地多远?
4、甲、乙二人从A地去B地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达B地,求A、B两地之间的距离。
5、一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米;乙练习长跑,平均每分钟跑250米,两人同时、同地、同向出发,经过多少时间,两人首次相遇?
答案:
一、1、(1)x=4(2)x=4(3)x=—5(4)x=—(5)x=30(6)x=11
二、2、705人,设育红小学1995年学生人数为x人,列方程320= x—150。
3、(1)4小时,设出发后x小时相遇,列方程60x+48x=460。
(2)3小时,设B车开出后x小时两车相遇,列方程60 +60x+48x=460。
4、3千米,设A、B两地间的距离为x千米,— = 。
5、1分钟,设经过x分钟两人首次相遇,列方程550x—250x=400。
解一元一次方程课件【篇7】
第一课时
教学目的
1.了解一元一次方程的概念。
2.掌握含有括号的一元一次方程的解法。
重点、难点
1.重点:解含有括号的一元一次方程的解法。
2.难点:括号前面是负号时,去括号时忘记变号。
教学过程
一、复习提问
1.解下列方程:
(1)5x-2=8 (2)5+2x=4x
2.去括号法则是什么?“移项”要注意什么?
二、新授
一元一次方程的概念
如44x+64=328 3+x=(45+x) y-5=2y+l 问:它们有什么共同特征?
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。
例1.判断下列哪些是一元一次方程
x= 3x-2 x-=-l
5x2-3x+1=0 2x+y=l-3y =5
例2.解方程(1)-2(x-1)=4
(2)3(x-2)+1=x-(2x-1)
强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。
补充:解方程3x-[3(x+1)-(1+4)]=l
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的`方法去括号,每去一层括号合并同类项一次,以简便运算。
三、巩固练习
教科书第9页,练习,l、2、3。
四、小结
学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。
五、作业
1.教科书第12页习题6.2,2第l题。
第二课时
教学目的
掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。
重点、难点
1、重点:掌握去分母解方程的方法。
2、难点:求各分母的最小公倍数,去分母时,有时要添括号。
教学过程
一、复习提问
1.去括号和添括号法则。
2.求几个数的最小公倍数的方法。
二、新授
例1:解方程(见课本)
解一元一次方程有哪些步骤?
一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。
补充例:解方程 (x+15)=- (x-7)
三、巩固练习
教科书第10页,练习1、2。
四、小结
1.解一元一次方程有哪些步骤?
2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。
五、作业
教科书第13页习题6.2,2第2题。
第三课时
教学目的
使学生灵活应用解方程的一般步骤,提高综合解题能力。
重点、难点
1、重点:灵活应用解题步骤。
2、难点:在“灵活”二字上下功夫。
教学过程 :
一、 一、 复习
1、一元一次方程的解题步骤。
2、分数的基本性质。
二、新授
例1.解方程(见课本)
分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。那么怎样化简呢?引导学生分析,并求出方程的解。交流体会。
例2.解方程(见课本)
例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整数)
分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。
三、巩固练习。
根据公式V=V0+at,填写下列表中的空格。
VV0at02848314155476137
四、小结。
若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。
五、作业 。
解一元一次方程课件【篇8】
本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
综上分析及教学大纲要求,本课时教学目标制定如下:
⒈通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义.
⒉会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念.
⒊体会解决问题的一种重要的思想方法----尝试检验法.
⒋回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程.
重点:一元一次方程的概念和用尝试检验法求方程的解.
本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。采用教师引导,学生自主探索、观察、归纳的教学方式。利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:
根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
根据以上综合分析,这节课的教学流程为:
联系实际,创设情境——观察归纳,建构新知——交流对话,自我探索——
当学生看到自己所学的知识与“现实世界”息息相关时,学生通常会更主动。所以,我设计如下问题:
xxxx年夏季奥运会上,我国获得32枚金牌。其中跳水队获得6枚金牌,比射击队获得金牌数的2倍少2枚。射击队获得多少枚金牌?
如果设射击队获得x枚金牌,那么跳水队获得(2x-2)枚金牌,所以得到等式:。
在小学里我们已经知道,像这样含有未知数的等式叫做方程。
⑴5x=0;⑵42÷6=7;
⑶y2=4+y;⑷3m+2=1-m;
⑸1+3x.
创设学生熟悉的感兴趣的问题情境,能激起学生学习的兴趣和热情,并进一步回顾掌握小学已学过的方程的概念和列方程。也为下面一元一次方程的概念建构做好准备。
[练一练]:请你运用已学的知识,根据下列问题中的条件,分别列出方程:
⑴奥运冠军朱启南在雅典奥运会男子10米气步枪决赛中最后两枪的平均成绩为10.4环,其中第10枪(即最后一枪)的成绩为10.1环,问第9枪的成绩是多少环?
设第9枪的成绩为x环,可列出方程。
⑵国庆期间,“时代广场”搞促销活动,小颖的姐姐买了一件衣服,按8折销售的售价为72元,问这件衣服的原价是多少元?
设这件衣服的原价为x元,可列出方程。
⑶有一棵树,刚移栽时,树高为2m,假设以后平均每年长0.3m,几年后树高为5m?
设x年后树高为5m,可列出方程。
⑷xxxx年北京奥运会的足球分赛场---秦皇岛市奥体中心体育场,其足球场的周长为344米,长和宽之差为36米,这个足球场的长与宽分别是多少米?
设这个足球场的宽为x米,则长为(x36)米,可列出方程。
(二)观察归纳,建构新知:
[议一议]:观察你所列的方程,这些方程之间有什么共同的特点?
(先鼓励学生进行观察与思考,并用自己的语言进行描述,然后学生进行交流。教师在学生发言的基础上,给出一元一次方程的概念,并进行适当的讲解。)
在原有方程概念的基础上,鼓励学生观察、归纳自我建构新的概念——一元一次方程。有困难可提示:上述所列的方程中,方程的两边都是__式,只含有__个未知数,并且未知数的指数是__次,这样的方程叫做一元一次方程。(我国古代称未知数为元,只含有一个未知数的方程叫做一元方程。)
在学生对概念有了初步的印象后,紧接着给出几个式子让学生判断,为的是增强学生的判断能力和对概念的认识。练习有梯度、有层次。
⑴5x=0; ⑵y2=4+y;
⑶3m+2=1-m;⑷x-=-;
⑸xy=1.
⒉你能写出一个一元一次方程吗?
在认识概念时学生可能出现的障碍:
没有出现就算,有出现的话,教师不要马上给出判断,而是给学生足够的时间和空间去思考、讨论,经过一番对与错的碰撞,教师揭开“谜底”,并且渗透了认识事物要看其本质的教学思想。
在小学里我们还知道,使方程左右两边的值相等的未知数的值叫做方程的解。
你们知道“练一练”第⑴题的方程=10.4的解吗?
你们是怎么得到的?
(让学生各抒己见,只要学生能说出该方程的解教师都应给予积极的鼓励。)
强调:我们知道x只能取10.5,10.6,10.7,10.8,10.9。把这些值分别代入方程左边的代数式,求出代数式的值,就可以知道x=10.7是方程=10.4的解。这种尝试检验的方法是解决问题的一种重要的思想方法。
[做一做]:
⒈判断下列t的值是不是方程2t+1=7-t的解:
⑴t=-2; ⑵t=2.
追问:你能否写出一个一元一次方程,使它的解是t=-2?
这里的追问把练习提高一个层次,给学生一个创造的机会,使学生进一步全面理解一元一次方程及其解等概念。
除了这些方法,还有没有更好的方法呢?如果方程比较复杂,怎么办呢?下面我们就来研究如何用等式的性质解一元一次方程。
如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?
⒈等式的两边都加上或都减去同一个数或式,所得结果仍是等式。
⒉等式的两边都乘以或都除以同一个不为零的数或式,所得结果仍是等式。
说明:课本指出:“在小学我们还学过等式的两个性质”,但目前小学生尚未学过或未正式学过等式的两个性质。所以在此对等式的性质先作一番介绍。教师引导学生通过天平实验观察、思考、分析天平和等式之间的联系。使学生更好掌握等式性质。(具体、形象)这是根据学生的实际,适当对教材进行处理。
(学生已经用其他方法求解过这两个方程,这里是用等式的性质来解方程.可先让学生自己尝试利用等式的性质进行求解,教师再加以引导。)
例⒉解下列方程:
⑴5x=504x;⑵8-2x=9-4x.
(教学时,首先应鼓励学生自己尝试求解这两个方程,并从中体会运用等式的性质解方程的方法,然后提问学生:你是怎样解方程的?每一步的根据是什么?还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式。并引导学生回顾检验的方法,鼓励他们养成检验的习惯)
例题由浅到深,学生易掌握。对(2)有难度,可加提示:为了使含未知数的项都集中到等式的左边,应对方程做怎样的变形?依据是什么?为了使常数项集中到等式的右边,又应对方程作怎样的变形?依据是什么?渗透化归的思想。
[说一说]:通过上面的学习,你有什么收获?另外你有什么感触或疑惑?
总结理清知识脉络,强化重点,内化知识,培养能力。
作业的设计采用分层的形式面向全体学生。
解一元一次方程课件【篇9】
教学目标:
1、 使学生会列一元一次方程解有关应用题。
2、 培养学生分析解决实际问题的能力。
复习引入:
1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:
(1)__________ (2)_________ (3)_________
人们常规定工程问题中的工作总量为______。
2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的`工作效率是_______。
讲授新课:
1、例题讲解:
一件工作,甲单独做20小时完成,乙单独做12小时完成。
问:甲乙合做,需几小时完成这件工作?
(1)首先由一名至两名学生阅读题目。
(2)引导
Ⅰ:这道题目的已知条件是什么?
Ⅱ:这道题目要求什么问题?
Ⅲ:这道题目的相等关系是什么?
(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。
2、练习:
有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?
此题的处理方法:
Ⅰ:先由一名学生阅读题目;
Ⅱ:然后由两名学生板演;
解一元一次方程课件【篇10】
一。教学目标:
1。知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。
3。情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。
二。教学的重点与难点:
1。重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。
2。难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。
1。创设情景:
(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)
老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程。
老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?
(2)未知数的次数为1;
(3)是一个整式。
3。例题讲解:
例1判断如下的式子是一元一次方程吗?
(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由。)
提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号
(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)
1)。在我们前面学过的知识中,什么知识是关于有括号的。
2)。复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。
3)。问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。
4)。问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。
6)。系数化为1,运用了等式的性质。
(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式。)
方程(1)该怎样解?由学生独立探索解法,并互相交流。
(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)
(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)
2。预习下一节课的内容,
3。复习此节课的内容,并完成一下两道思考题。
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
(2) 该怎么求解?
解一元一次方程课件【篇11】
教学目标
1.掌握解一元一次方程的一般步骤。
2.会根据一元一次方程的特点灵活处理解方程的步骤,化为ax=b(a≠0)的.形式。
教学重、难点
重点:掌握解一元一次方程的基本方法.
难点:正确运用去分母、去括号、移项等方法,灵活解一元一次方程.
教学过程
一激情引趣,导入新课
1解方程:4x-3(20-x)=6x-7(9-x)
思考:解一元一次方程时,去括号要注意什么?移项要注意什么?
2求下列各数的最少公倍数:(1)12,24,36(2)18,16,24
二合作交流,探究新知
1动脑筋:
一件工作,甲单独做需要15天完成,乙单独做需要12天完成,现在甲先单独做1天,接着乙又单独做4天,剩下的工作由甲、乙两人合做,问合做多少天可以完成全部工作任务?
(先独立做,做完后交流做法,认真听出同学意见,老师点评)
通过这个问题,请你归纳解一元一次方程有哪些步骤?
先去____,后去_____,再_____、_______得到标准形式ax=b(a≠0),最后两边同除以______的系数。
考考你:
下面各题中的去分母对吗?如不对,请改正。
(1)去分母得5x-2x+3=2(2)去分母得2x-(2x+1)=6
(3)去分母得4(3x+1)+25x=80
2尝试练习(注意养成口算经验的好习惯)
解方程:
3比一比,看谁算得准(注意养成口算经验的好习惯)
解方程:(1),(2)
三应用迁移,巩固提高
1化繁为简
例1解方程:
2化为一元一次方程求解
例2若关于x的一元一次方程的解是x=-1,则k的值是()
AB1CD0
3实践应用
例3学校准备组织教师和优秀学生去大洪山春游,其中教师22名现有甲乙两家旅行社,两家定价相同,但优惠方式不同,甲旅行社表示教师免费,学生按八折收费,乙旅行社表示教师和学生一律按七五折收费,学校领导经过核算后认为甲乙两家旅行社收费一样,请你算出有多少名学生参加春游。
四冲刺奥赛,培养智力
例4解方程:
五课堂练习巩固提高解方程
六反思小结拓展提高
解一元一次方程的一般步骤是什么?要注意什么?
作业:p1198,9
2025解一元二次方程课件
通常老师在上课之前会带上教案课件,通常老师都会认真负责去设计好。教案是实现复合型人才培养目标的有效实践。编辑从各个方面搜集和整合资料使这篇“解一元二次方程课件”更加全面,阅读本文您会得到足够的收获和启发!
解一元二次方程课件(篇1)
[课 题] §12.1 一元二次方程[教学目的] 使学生了解整式方程、一元二次方程的意义;使学生知道并能认识一元二次方程的一般形式,会把一元二次方程化成一般形式。[教学重点] 使学生知道并能认识一元二次方程的一般形式,会把一元二次方程化成一般形式。[教学难点 ] 使学生掌握什么是一元二次方程的二次项和系数、一次项和系数以及常数项,[教学关键] 使学生掌握在指出一元二次方程的二次项系数、一次项系数和常数项时,一定要包括它们的符号。[教学用具] [教学形式] 讲练结合法。[教学用时] 45′×1 [教学过程 ][复习提问] 例方程解应用题的一般步骤是什么?[讲解新课]引例可由教师提出并分析其中的数量关系,设出未知数,列出代数式,并根据等量关系列出方程:(80-2x)(60-2x)=1500。(这其中应重点复习列方程解应用题的方法、步骤,或讲解或提问应视具体情况而定)。提问:如何将上述方程整理?整理后,得:x2-70x+825=0。这里不必多讲,只指出:这个方程(什么方程?这里不谈)与我们已经学过的一元一次方程不同,我们学了这一章,就可以解这个方程,从而解决上述问题。接着书写教科书第4页的问题:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应该怎样剪?引导学生分析题意,设未知数,列出代数式,找出相等关系,列出方程:x(x+5)=150。去括号,得: x2+5 x=150。现在来观察这个方程:它的两边都是关于未知数的整式,指出“这样的方程叫做整式方程。”就这一点来说它与一元一次方程没有什么区别,因而,一元一次方程也是整式方程,但一元一次方程未知数的次数是1,而上列方程未知数的最高次数是2,所以,只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程。(这样与一元一次方程对比着讲,既使整式方程的内含扩大,以加深学生的印象,也可使学生深刻了解一元二次方程的意义。)下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?1、3x+2=5x-3;(2x=5)2、x2=4;3、(x-1)(x-2)=x2+8;(3x=-6)4、(x+3)(3x-4)=(x+2)2;(2x2+x-16=0)(上述方程都是整式方程。其中1、3是一元一次方程,2、4是一元二次方程。)上列方程中的4,两边展开,得3x2+5x-12=x2+4x+4移项,得 2x2+x-16=0事实上,方程x2+5 x=150移项,得 x2+5 x-150=0这就是说,任何一个关于x的一元二次方程,经过整理,都可以化成下面的形式: ax2+bx+c=0(a≠0)。这种形式叫做一元二次方程的一般形式。这里应强调指出,方程 ax2+bx+c=0只有当a≠0时,才叫一元二次方程。如果a=0,b≠0,就是一元一次方程了。所以在一般形式中,必须包含a≠0这个条件。随后指出,在方程中,ax2,bx,c各项的名称,并举例说明。(ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。)例1 把方程3x(x-1)=2(x+2)+8化成一般形式,并写出它的二次项系数、一次项系数及常数项。解:去括号,得 3x2-3 x=2x+4+8移项,合并同类项,得 x2-5 x-12=0二次项系数是3;一次项系数是-5;常数项是-12。[课堂练习]教科书第5页练习第1,2题。[课堂小结]通过本节课的学习,我们知道了什么是整式方程,什么叫做一元二次方程和一元二次方程的一般形式:ax2+bx+c=0(a≠0)。在这里我们要特别注意a≠0这个条件。同时我们还学习了一元二次方程化成一般形式后,什么是二次项系数,什么是一次项系数,什么是常数项,在指出这三项内容时,要特别注意它们的符号。[课外作业 ]复习教科书第4,5页的内容,预习教科第6页上的内容。 [板书设计 ]课题: 例题:辅助板书: [课后记]
通过本节课的学习,大部分学生已掌握了什么是整式方程,什么是一元二次方程的概念,对今后学习一元二次方程的解法打下了良好的基础。
解一元二次方程课件(篇2)
一元二次方程教学设计
海门市海南中学 顾 健
学习目标:
1.类比一元一次方程,自主探究一元二次方程的定义.2.知道一元二次方程的一般形式和方程的解,会解简单方程.3.经历观察、思考、讨论等探究过程,发展自主学习的能力,感悟“从特殊到一般”“转化”“类比”等数学思想方法,积累数学活动经验.4.通过合作、交流,进一步学会互助、共享,并与同伴得到共同提高.教学重难点:一元二次方程的定义和一般式,会解简单方程.教学过程:
一、在复习回顾中,引导学生类比一元一次方程自主探究一元二次方程定义 1.自主回顾
已知矩形的长比宽大1厘米
问题(1)若矩形的周长是6厘米,求宽。 你会求解吗?你准备怎么做?
问题(2)若矩形的面积是6平方厘米,求宽。 你会求解吗?你准备怎么做? 2.类比归纳
问题(1)中的等式你学过吗?是什么方程?你是怎么知道的?(化简整理) 你能回忆一元一次方程的定义吗?(学生补充) 你知道一元一次方程的一般式吗? 追问:a为什么不等于0?b呢? 还学习了一元一次方程的哪些内容?
问题(2)中的等式你认识吗?你是怎么知道的? (一个未知数、最高次是
2、整式方程) 你能归纳一元二次方程的定义吗? 3.你能举出一些一元二次方程的例子吗? (转化后介绍项、系数、常数) 4.你能归纳一元二次方程的一般式吗?
追问:a为什么不等于0?b呢?C呢?(正确寻找a、b、c)
二、在合作交流中,引导学生分享方法,归纳方程解法 1.什么是方程的解?(能使等号两边相等的未知数的值)
什么是一元二次方程的解?
2.如何解一元一次方程?(形成x=a)它的解有几个?
3.猜想:如何解一元二次方程?尝试解黑板上的一元二次方程。 (先独立完成2分钟,再在小组内交流) 4.展示方法,你的依据是什么?
5.归纳方法,比较一元二次方程的解与一元一次方程的区别与联系。 (降次思想、转化思想)
三、共同反思,小结提升
1.你是如何理解一元二次方程的定义的? 2.你对一元二次方程中的a、b、c有怎样的认识?
3.一元二次方程的解有怎样的特点?今天你学会了哪些方法解一元二次方程? 4.通过今天对一元二次方程的学习,你积累了哪些重要的学习方法和经验?
一元一次方程教学设计
二元一次方程组教案设计模板
认识一元一次方程教学设计
一元二次方程,导学案
二元一次方程教案模板
解一元二次方程课件(篇3)
教学目标:
(一)知识技能目标:
1初步感受有些事件的发生是不确定的,有些事件的发生是确定的。
2会区分生活中的必然事件、不可能事件和随机事件。
3在经历猜测、试验、收集与分析试验结果的过程中,让学生学会合作交流。
(二)过程方法目标:
通过实际情境让学生认知生活中有确定事件和随机事件,结合合作探索活动让学生建立数学知识模型并运用于生活、服务于生活。
(三)情感态度目标:
激发学生的探索精神与创造力,建立起学习数学的信心,感受数学的无限乐趣。
教学重点:
正确理解、区分生活中与数学中的必然事件、不可能事件和随机事件。
教学难点:
区分生活中的事件类型,做出合理决策。
教学过程:
一联系实际创设情境引入新课
1教师出示乒乓球,引出下例:
2某次国际乒乓球比赛中,中国选手甲和乙进入最后的决赛,那么该项比赛的
(1)冠军属于中国吗?
(2)冠军属于外国选手吗?
(3)冠军属于中国选手甲吗?
(通过学生熟悉而又简单的问题让学生感知生活中的现象,从而激发兴趣,引入新课)
3通过学生的回答引出课题《确定与不确定》
二感知生活中的确定与不确定
说一说:(1)生活中有哪些事情是我们确定的?
(2)生活中有哪些事情是我们不确定的?
(小组讨论,让学生联系生活,再次感知,从而进一步激发兴趣)
三建立数学知识模型(通过上述学生的举例感知生活中的确定与不确定事情,从而给出三种事件的概念,让学生更容易理解)
在特定条件下,有些事情我们事先能肯定它一定不会发生,这样的事情是不可能事件.
在特定条件下,有些事情我们事先能肯定它一定会发生,这样的事情是必然事件.
在特定条件下,生活中有很多事情事先无法确定它会不会发生,这样的事情是随机事件.
四知识理解把握本质
练习:下列事件中哪些是不可能事件,那些是必然事件,那些是随机事件?
1.抛掷一个均匀的骰子,6点朝上。
2.打开电视,它正在播广告。
3.小明家买彩票将获得500万元彩票大奖。
4.明天一定下雨。
5.妇幼保健院,下一个出生的婴儿是女孩子。
6.1+3>2
7.三角形三个内角的和是180度。
8.如果a,b都是有理数,那么ab=ba
(对于概念的学习,要通过多次感知,不断强化,在初步感知概念后,要通过及时的辨别分析,真正认识概念的本质)
(通过第七、八两小题让学仿照再举几例,使学生认识到以前所学习的大量的.公式、法则等一般来说都是必然事件。)
五分组学习,其乐融融
1小组竞赛:
分别举出生活的必然事件、不可能事件和随机事件(将全班同学分成三组,分别举出必然事件、不可能事件和随机事件,通过活动更加深了对概念的理解,也调动了学生的兴趣)
2数学实验室:
摸球游戏:规则:共有15个白球,5个黑球.每次只能摸5个球,摸到5个黑球为一等奖,依次类推.
(1)学生动手摸奖,体会中奖的可能性,感受到身边的事情.
(2)设计游戏:你能仿照上面的游戏自己设计几个游戏吗?(一个是必然事件,一个是不可能事件,一个是随机事件)
(联系生活实际,体会生活中处处有数学,学有用的数学)
(用学生非常感兴趣的摸奖,既能加深对三种事件的理解,又能调动学生的积极性,活跃课堂气氛,同时也为下面的可能性埋下伏笔)
六故事:《田忌赛马》
齐王和田忌都有上等马、中等马和下等马3种,可是田忌的各个等级的马都比齐王同等级的马差一些?
想一想:田忌和齐王赛马是否一定会输?为什么?
七观察分析探究
改变开头例子中的条件:
(1)如果进入决赛的是两个外国人问题如何回答?
(2)如果进入决赛的一个中国人,一个外国人问题又如何回答呢?
通过例子发现必然事件,不可能事件,随机事件三者在一定条件下可以相互转化,让学生体会概念中的“特定条件”。
八小结:通过本节课的学习你有什么感受?
九课后练习:
1用适当的语言来表示下列词语所反映的事件发生情况?
东边日出西边雨?十拿九稳?大海捞针?海枯石烂
2小名、小芳和小圆每人各买一瓶饮料,在供购买的20瓶饮料中,有两瓶已经过了保质期.请根据以上这段话,设计一个不可能事件,一个必然事件,一个随机事件?
十板书设计:
确定与不确定
不可能事件
确定事件
必然事件
随机事件---不确定事件---可能会发生,也可能不会发生
三种事件在一定条件下可以相互转化
解一元二次方程课件(篇4)
教学目标
知识技能:掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力。
过程与方法:通过探索球积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义。
情感态度:鼓励学生自主探究,合作交流,养成自觉反思的良好习惯。
重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断。
难点:把数学问题转化为数学问题。
关键:从积分表中找出等量关系。
教具:投影仪。
教法:探究、讨论、启发式教学。
教学过程
一、创设问题情境
用投影仪展示几张比赛场面及比分(学习是生活需要,引起学生兴趣)
二、引入课题
教师用投影仪展示课本106页中篮球联赛积分榜引导学生观察,思考:.
① 用式子表示总积分能与胜、负场数之间的数量关系;
②某队的胜场总分能等于它的负场总积分么?
学生充分思考、合作交流,然后教师引导学生分析。
师:要解决问题①必须求出胜一场积几分,负一场积几分,你能从积分榜中得到负一场积几分么?你选择哪一行最能说明负一场积几分?
生:从最下面一行可以发现,负一场积1分。
师:胜一场呢?
生:2分(有的用算术法、有的用方程各抒己见)
师:若一个队胜a场,负多少场,又怎样积分?
生:负(14-a)场,胜场积分2a,负场积分14-a,总积分a+14.
师:问题②如何解决?
学生通过计算各队胜、负总分得出结论:不等。
师:你能用方程说明上述结论么?
生:老师,没有等量关系。
师:欸,就是,已知里没说,是不是不能用方程解决了?谁又没有大胆设想?
生:老师,能不能试着让它们相等?
师:伟大的发明都是在尝试中进行的,试试?
生:如果设一个队胜了x场,则负(14-x)场,让胜场总积分等负场总积分,方程为:2x=14-x解得x=4/3(学生掌声鼓励)
师:x表示什么?可以是分数么?由此你的出什么结论?
生:x表示胜得场数,应该是一个整数,所以,x=4/3不符合实际意义,因此没有哪个队的胜场总积分等于负场总积分。
师:此问题说明,利用方程不仅求出具体数值,而且还可以推理判断,是否存在某种数量关系;还说明用方程解决实际问题时,不仅要注意方程解得是否正确,还要检验方程的解是否符合问题的实际意义。
拓展
如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?
师:我们可以从积分榜中积分不相同的两行数据求的胜负一场各得几分,如:一、三行。
教师引导学生设未知数,列方程。学生试说。
生:设胜一场积x分,则前进队胜场积分10x,负场积分(24-10x)分,它负了4场,所以负一场积分为(24-10x)/4,同理从第三行得到负一场积分为(23-9x)/5,从而列方程为(24-10x)/4=(23-9x)/5。解得x=2,当x=2时,(24-10x)/4=1。仍然可得负一场积1分,胜一场积2分。
三、巩固练习
已知某山区的平均气温与该山的海拔高度的关系见表:
海拔高度(单位:m)
解一元二次方程课件(篇5)
教学内容
根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题
教学目标
掌握面积法建立一元二次方程的数学模型并运用它解决实际问题
利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题
重难点关键
1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题
2.难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型
教学过程
一、复习引入
1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?
2.正方形的面积公式是什么呢?长方形的面积公式又是什么?
3.梯形的面积公式是什么?
4.菱形的面积公式是什么?
5.平行四边形的面积公式是什么?
6.圆的面积公式是什么?
二、探索新
现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.
例1、某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m
(1)渠道的上口宽与渠底宽各是多少?
(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?
分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模
解:(1)设渠深为xm
则渠底为(x+0.4)m,上口宽为(x+2)m
依题意,得: (x+2+x+0.4)x=1.6
整理,得:5x2+6x-8=0
解得:x1= =0.8m,x2=-2(舍)
∴上口宽为2.8m,渠底为1.2m
(2) =25天
答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道
例2、如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
老师点评:
依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm
解一元二次方程课件(篇6)
教学目标:
(一)知识与技能:
1、理解并掌握用配方法解简单的一元二次方程。
2、能利用配方法解决实际问题,增强学生的数学应用意识和能力。
(二)过程与方法目标:
1、经历探索利用配方法解一元二次方程的过程,使学生体会到转化的数学思想。
2、在理解配方法的基础上,熟练应用配方法解一元二次方程的过程,培养学生用转化的数学思想解决实际问题的能力。
(三)情感,态度与价值观
启发学生学会观察,分析,寻找解题的途径,提高学生分析问题,解决问题的能力。
教学重点、难点:
重点:理解并掌握配方法,能够灵活运用用配方法解一元二次方程。
难点:通过配方把一元二次方程转化为(x+m)2=n(n≥0)的形式。
教学方法:根据教学内容的特点及学生的年龄、心理特征及已有的知识水平,本节课采用问题教学和对比教学法,用“创设情境——建立数学模型——巩固与运用——反思、拓展”来展示教学活动。
教学过程
学生活动
设计意图
一 复习旧知
用直接开平方法解下列方程:
(1)9x2=4 (2)( x+3)2=0
总结:上节课我们学习了用直接开平方法解形如(x+m)2=n(n≥0)的方程。
二 创设情境,设疑引新
在实际生活中,我们常常会遇到一些问题,需要用一元二次方程来解决。
例:小明用一段长为 20米的竹篱笆围成一个矩形,怎样设计才可以使得矩形的面积为9米?
三 新知探究
1 提问:这样的方程你能解吗?
x2+6x+9=0 ①
2、提问:这样的方程你能解吗?
x2+6x+4=0 ②
思考:方程②与方程①有什么不同?能否把它化成方程①的形式呢?
归纳总结配方法:
通过配成完全平方式的方法,得到一元二次方程的解,这样的解法叫做配方法。
配方法的依据:完全平方公式
配方法的关键:给方程的两边同时加上一次项系数一半的平方
点拨:先通过移项将方程左边化为x2+ax形式,然后两边同时加上一次项系数一半的平方进行配方,然后直接开平方求解。
四 合作讨论,自主探究
1、 配方训练
(1) x2+12x+( )=(x+6)2
(2) x2-12x+( )=(x- )2
(3) x2+8x+( )=(x+ )2
(4) x2+mx+( )=(x+ )2
强调:当一次项系数为负数或分数时,要注意运算的准确性。
2、将下列方程化为(x+m)2=n
(n≥0)的形式并计算出X值。
(1)x2-4x+3=0
(2)x2+3x-1=0
解:X2-4X+3=0
移向:得X2-4X=-3
配方:得X2-4X+2^2=-3+2^2(两边同时加上一次项系数一半的平方)
即:(X-2)2=1
开平方,得:X-2=1或X-2=-1
所以:X=3或X=1
方程(2)有学生完成。
3、巩固训练:课本55页随堂练习第一题。
五 小结
1、用配方法解二次项系数为一的一元二次方程的基本思路:先将方程化为(x+m)2=n(n≥0)的形式,然后两边开平方就可以得到方程的解。
2、用配方法解二次项系数为一的一元二次方程的一般步骤:
(1) 移项(常数项移到方程右边)
(2) 配方(方程两边都加上一次项系数的一半的平方)
(3) 开平方
(4) 解出方程的根
六 布置作业
习题2.3第1,2题
两个学生黑板上那解题,剩余学生练习本上计算。
学生观看课件,思考老师提出的问题,得到:设该矩形的长为x米,依题意得
x(10-x)=9
但是发现所列方程无法用直接开平方法解。于是引入新课。
学生通过观察发现,方程的左边是一个完全平方式,可以化为( x+3)2=0,然后就可以运用上节课学过的直接开平方法解了。
方程②的左边不是一个完全平方式,于是不能直接开平方。学生陷入思考,给学生充分思考、交流的时间和空间。
在学生思考的时候,老师引导学生将方程②与方程①进行对比分析,然后得到:
x2+6x=-4
x2+6x+9=-4+9
(x+3)2=5
从而可以用直接开平方法解,给出完整的解题过程。
在学生充分思考、讨论的基础上总结:配方时,常数项为一次项系数的一半的平方。
检查学生的练习情况。小组合作交流。
学生归纳后教师再做相应的补充和强调。
学生分组完成方程(2)和课后随堂练习第一题
学生分组总结本节课知识内容。
解一元二次方程课件(篇7)
一方面新课程要求培养学生应用数学的意识与能力,作为数学教师,我们要充分利用已有的生活经验,把所学的数学知识用到现实中去,体会数学在现实中应用价值。
这节课是“列一元二次方程解应用题(1)”,讲授在几何问题中以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题。这类注重联系实际考查学生数学应用能力的问题,体现时代性,并且结合社会热点、焦点问题,引导学生关注国家、人类和世界的命运。既有强烈的德育功能,又可以让学生从数学的角度分析社会现象,体会数学在现实生活中的作用。
通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的`主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:
一、本节课第一个例题,是传播问题中的一个典型例题,我在引导学生解决此题之后,总结了解一元二次应用题的步骤。不仅关注结果更关注过程,让学生养成良好的解题习惯。
二、练习1是例题1的变式与提高,练习2是例题2的变式与提高。通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力逐级上升,这是这节课中的一大亮点。在讲完例题的基础上,将更多教学时间留给学生,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。
三、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。
四、课堂上多给学生展示的机会,比如我所设计练习题可用不同方法去求解,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。
五、需改进的方面:
3、下课后很多学生和老师沟通课上一生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表个人的不同见解的学风。