乘法结合律课件
发布时间:2023-06-25 乘法结合律课件 结合律课件乘法结合律课件通用。
常言道,优秀的人都是有自己的事先计划。在日常的学习工作中,幼儿园教师都会提前准备一些能用到的资料。资料主要是指生活学习工作中需要的材料。有了资料,这样接下来工作才会更上一层楼!那么,你知道优秀的幼师资料是怎样的呢?因此,栏目特意整理了乘法结合律课件通用,建议你收藏并分享给其他需要的朋友!
乘法结合律课件(篇1)
教学内容:
教材第33页的主题图,第34—35页的例1(乘法交换律)和例2(乘法结合律)以及练习五中的相关习题。
教学目标:
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
教学难点:能运用乘法交换律和乘法结合律进行简便计算。
我们已经学过了哪些运算定律?请你用自己的话说一说,并说一说怎样用字母表示。
(1)出示主题图,让学生仔细观察,说一说图中告诉我们哪些信息。
2、学习例1。
(2)启发学生思考:要解答“负责挖坑、种树的一共有多少人?”这个问题,需要知道主题图中哪些相关信息?指定学生回答,课件出示、:一共有25个小组,每组里4人负责挖坑、种树。
(3)学生独立列式计算。教师根据学生回答,边板书:
(4)教师引导学生观察,比较两种解法有何异同。
启发思考:这两个算式得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(即:4×25=25×4)这个等式说明了什么?
(6)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)
(7)教师引导学生归纳小结:交换两个因数的位置,积不变。这叫做乘法交换律。(学生齐读。)
(8)让学生用自己喜欢的方式表示乘法交换律: a×b=b×a。让学生说一说:这里的a、b可以是哪些数?
(9)拓展:找一找,主题图中哪个问题可以用乘法交换律来解决。
(10)我们学习哪些知识时用了乘法交换律?
3、学习例2。
(2)启发学生思考:要解决这个问题又需要知道哪些信息?指定学生回答,教师边课件出示:一共有25个小组,每组要种5棵树,每棵树要浇2桶水。
(3)学生独立列式计算,教师巡视指导。指定不同算法的学生发表意见,教师根据学生回答边板书:(25×5)×2和25×(5×2)。
(4)教师引导学生比较两种算法的异同:计算顺序不同,但解决的是同一个问题,计算结果也相同,所以能用等号把这两个算式连起来。即:(25×5)×2=25×(5×2)
(5)哪一种方法计算起来更简便?
(6)你还能举出其他这样的例子吗?指定学生回答,教师边板书。
(7)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)你们能给乘法的这种规律起个名字吗?
(8)教师引导学生归纳小结:先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
4、乘法交换律和乘法结合律的应用。
(3)学生独立完成,教师巡视指导,指定学生上台板演。
(4)集体订正,指定学生说一说各题运用了什么运算定律。
6、比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?(组织学生讨论后集体交流。)交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。
学生小结本节课的学习内容。
《练习册》第14页第1课时的所有习题。
乘法结合律课件(篇2)
作为一名教学工作者,往往需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么什么样的教案才是好的呢?以下是小编为大家收集的“运算律”乘法交换律、结合律数学四年级上学期教案,仅供参考,欢迎大家阅读。
教材分析
这节课主要教学乘法交换律和结合律进行相关的简便运算,由于学生已有应用加法运算律进行简便计算的基础,所以本课时的主要目标是对“两个数相乘”进行简便计算的教学,以及对简便运算方法的提升。
学情分析
在学习本节课乘法交换律、结合律之前,学生已经学习了加法交换律和结合律,逐步学会了不完全归纳法和用字母表示数学规律,并运用规律进行简便计算。本节课在此基础上,重点让学生经历探索乘法交换律、结合律的过程,并会运用乘法交换律、结合律进行简便计算的方法。在学生日常的自学活动中,重视让学生依据已有的知识和经验自主探索,重视小组的合作与交流,所以学生的理解能力、自学能力和合作能力正逐渐提高,良好的自主学习习惯正在逐渐养成。
教学目标
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
教学重点和难点
1、引导学生概括乘法交换律、结合律。
2、乘法交换律和结合律进行简便。
教学过程
一、创设情境,发现问题
师:同学们喜欢搭积木吗?
生:喜欢
师:我们的淘气也很喜欢搭积木,而且聪明的`他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?
生:想
师:那好,就让我们一起去探索与发现。
二、探索乘法交换律
播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)
师:你知道图中有多少个小正方体吗?说说自己是怎样想的。
生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。
生:竖着数一排有4个小正方体,一共有5排,4×5=20个。
师(板书5×4=4×5)可以这样写吗?为什么?
生:可以因为积相等,(求的就是一个整体)
师:认真观察这个等式,你能发现什么奥妙吗?
生思考,汇报(数字相同,交换了位置,积不变)
师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?
生:……
师:请你帮淘气举一些这样的例子来验证一下行吗?
生举例验证
师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?
生说师板书:
a×b
乘法结合律课件(篇3)
1、教学内容:义务教育课程标准实验教科书四年级数学上册61-62页的例题和“试一试”、“想想做做”1-4题。
2、教材的编排情况及地位。
乘法的这两个运算定律,跟学生前面所学的加法交换律、结合律类似,也是由生活情境的数学问题引出一组等式,通过启发性的问题,引导学生在探索并在小组里交流,发现并归纳出乘法运算律。乘法的运算律,不仅有助于加深乘法计算方法的理解,还能使一些计算简便,而且在以后学习中也要经常用到。因此,这些运算律是小学数学最基础的知识之一,教学中要积极引导学生对这些规律性知识进行探讨,自觉应用中,并在应用加以巩固。
知识与能力:使学生理解和掌握乘法交换律和乘法结合律,并会运用乘法运算律进行简便计算。
过程与方法:使学生在合作交流中对运算定律的认识由感性认识逐步发展到理性认识,合理构建知识。
情感态度与价值观:培养学生分析、推理能力,培养学生探索规律的欲望和学习数学的兴趣。
4、教学重点、难点:
重点:引导学生概括出乘法运算律,并运用乘法运算律进行简算。
《新课程》提倡注重知识形成的过程。对这两种运算律的教学,不应仅仅满足于学生的理解、掌握及运用,更重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这是一个教学重点,也是难点。我根据学生实际情况,从学生的生活经验出发,设计创设情境、动手操作、玩游戏活动等活动,并组织学生探索、合作、交流、参与讨论,使学生发现并归纳出乘法运算律,既使学生学有价值的数学,人人成为学习数学的小主人,又充分调动了学生参与学习的积极性、主动性。
教学课程标准中提出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础上。学生在之前几个年级里,通过对四则运算学习和前几课时加法运算律的学习,对乘法运算律已经有一些感性认识。所以,在合作探索运算过程及掌握运算律时,我提倡联系加法运算律的推导方法进行学习,这一点会大大地减少学生推导乘法运算律的难度,为学生探索知识过程提供了一个构建知识的桥梁。
成功的数学教学策略应该让学生既“学会”又“会学”,最终达到“教是为了不教”的目的。在教本课时过程中,为了充分发挥学生的积极性、主动性,我采用的教学方法是:
1、情境教学法:在导入环节时,我通过设计联系学生生活现实的情景,找出生活中常见问题,使学生感到数学与生活是联系的,增强了学习数学的兴趣。
2、动手操作法:在推导乘法交换律环节时,我让学生用小石子或火柴,动手“摆一摆”,“说一说”,“写一写”,在自主探索中发现问题,使学生的实践能力和思维能力得到发展。
3、游戏法:在巩固知识环节,我根据学生的兴趣爱好,通过设计了游戏教学法,找朋友活动,从而增强课堂教学趣味性。
教学中,通过引导学生自主探究,小组合作,引导学生抓住问题,尝试解决问题,感悟知识的形成。
(一)创设情景,激发兴趣,导入新课,引出问题。
(1)要求学生上台排队:5人一组,组成4组。(提问:共有多少人?有几种列式?)
(2)(教师口头表达)学校买来15箱课外书,每箱有25本,每本4元,用了多少钱?看谁算得最快。
(这样创设情境,提出启发性问题,既体现了知识与生活的联系,激发了学生的学习兴趣,又为导入学习乘法交换律、结合律做好铺垫。)
观察插图,说说从中知道哪些信息,要求“共有多少人?”应该怎样列式?
(数学来源于生活,让学生在实际生活情境中学习数学,加强了知识与生活的联系,让学生从感性上掌握乘法交换律的特点,同时也激发了学生的学习兴趣。)
1、出示例题插图,弄清题意。
2、合作、探究、交流――解决问题。
1)解决问题。
引导学生说出相同点都是两个数相乘积相同;不同点是两个因数位置交换了。
2)分析,发现规律。
(1)“摆一摆”,“写一写”类似的等式。
发动学习动手实践、操作,拿出课前准备好的火柴,同桌合作学习,摆放要用乘法算的火柴,并列出相应的等式。
(2)学生自由汇报摆放好后所列的等式。
小组交流、讨论,每组中的两个算式有什么样的关系?每组算式有什么相同点及不同点?通过观察,你发现了什么规律。
(4)启发学生通过观察,发现两个数相乘,交换因数的位置,它们的积不变。
(经过活动,既突破了重点、难点,掌握了乘法运算律的推导过程,让学生实现了“经历一个数学学习的过程”。又培养学生的合作意识、动手操作能力,发展思维。)
3)归纳知识:
(1)用你自己喜欢的方法表示乘法交换律。
这一点要求在认识加法运算律时,学生已掌握用Δ+Ο=Ο+Δ,甲数+乙数=乙数+甲数,学生会联系加法运算律,根据已有经验写出相应的Δ×Ο=Ο×Δ,甲数×乙数=乙数×甲数。这样既加强复习旧知,学习新知的训练,又培养学生应用知识的能力。
(2)乘法交换律也可以用字母表示,如果用a、b表示两个因数,怎样表示乘法交换律?
5、运用知识。
(三)教学乘法结合律。
1、出示例题:
华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每个班有23人参加,一共有多少人参加?
(2)展示学生解题方案,畅谈解决方法。(指名板演,并分别说说每种解题思路。)
(3)交流两组解法异同。
教师帮助学生小结:相同点是,三个数相乘,三个数相同,积也相同;不同点是左边的式子是先把23和5相乘,再和6相乘,右边的式子是先把5和6相乘,再和23相乘。
3、分析、发现规律。
(1)请同学们将这两算式写成一个等式。
归纳概括:三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一数相乘,它们积不变。
4、归纳知识。
如果用字母a、b、c表示3个因数,你能用字母表示乘法结合律吗?
(四)做游戏,复习反馈。
1、出示动物头像,上面分别有根据乘法运算律,写出来的两组相等的乘法算式,标有算式相等的动物是好朋友,请同学们看准后,帮他们找到好朋友。
2、教师把一组小企鹅图画贴在黑板上,一组小企鹅卡片发给学生,两组企鹅身上都分别写着乘积是整十、整百或整千的'因数,学生拿着卡片根据要求找朋友,并贴在相应的图画上。
(创设情境,经过游戏活动,将枯燥、理论化的知识变“活”,学生会在快乐的氛围下学数学,产生浓厚的兴趣。第一项找朋友游戏,是为了让学生对所学知识有所巩固;第二项找朋友游戏是为了让学生重新熟记乘积是整十、整百、整千的两个因数,为下面灵活运用乘法运算律进行简便运算做好铺垫。
(五)反馈练习。
1、教学“试一试”
(a、学生在交流讨论过程中,会发现先乘能得到整百、整十的数相乘,运算比较简便;b、都用到了今天学习的运算律。)
2、完成“想想做做”。
这里,我根据新课程理念,放手让学生自己尝试解决、交流汇报、总结。培养了学生能力,教师只起引导、促进的作用。
(六)达标测试题。
1、填一填。
45×23= ×45 运用的运算定律:
62×25×4= ×( ×4) 运用的运算定律:
×(20× )=5× ×15 运用的运算定律:
2、算一算,比一比。
(1)妈妈卖了72千克猪肉,每千克12元,共卖了多少元?(列式计算,并用乘法运用律验算)
(2)绿园区有25块草坪,每块草坪的面积都有平方米,每平方米收瓜菜4千克,共收瓜菜多少千克?(用简便方法运算)
本练习的设计,一方面突出了思维的训练,具有层次性;另一方面注重联系了生活实际,使学生能应用所学知识解决一些简单的实际问题,感受到数学就在身边。
(七)课堂小结:这一节课我们学了哪些知识?今后如何应用?(通过提问题式结束,使学生明确本节课所学知识,对老师来说也是学习情况的及时反馈)
(八)板书设计:
板书是一节课的微型教案,根据本节课教学内容的特点和本年级学生从一般到抽象的认知规律,我将本节课的板书设计如下:
乘法结合律课件(篇4)
1.引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:借助实际问题,进一步体会加乘法交换律和结合律。
1、前面我们学习了哪些加法运算定律?你能说一说吗?
3、猜测:乘法中会有什么运算定律?你能猜一猜是怎样的'吗?
(1)乘法交换律是怎样的?你能说一说吗?
你能用字母表示吗?在哪些地方运用到它?
(2)乘法结合律是怎样的?你能用你喜欢的方法表示吗?
引导学生质疑、解决。
4、比较沟通:比较加法交换律和乘法交换律、加法结合律和乘法结合律,你们发现了什么?(交换律:都是两个数相加、相乘,交换位置,和(积)不变;结合律:都是三个数相加、相乘,前面两个数相加(乘),也可以把后面两个数相加(乘),和(积)是不变的)
教学反思:本节课让学生通过自学,效果非常好,节时高效。由于这节课的内容和上节课的内容有很多相似之处,采用让学生自学的方法,学生倍感兴趣,他们时而点一点,时而圈一圈,不仅掌握了本节课的知识,他们还提出了问题:如果是四个数相乘,能够运用乘法结合律先把中间两个数相乘吗?通过讨论,学生发现了即便是更多的数,也可以把中间两个数先乘。
乘法结合律课件(篇5)
教学目标:
1、掌握乘法交换律和乘法结合律。
2、运用乘法交换律验算乘法。
3、培养学生的分析、概括能力。
1、出示第33页主题图。
二、自主学习,合作探究。
师:一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。负责挖坑、种树的一共有多少人?
生算,小组里交流。生汇报。
师:他们算得对吗?从这里,你发现了什么?小组里议一议,交流。(交换两个因数的位置,积不变。)
你能举出几个这样的例子吗?
师:交换两个因数的位置,积不变。这叫什么?你给它取个名字?
师:乘法交换律,以前我们已用过它,在什么地方呢?
指名两生板演,集体订正。
①师:看图,每组要种5棵树,每棵树要浇2桶水,一共要浇多少捅水?
生小组里交流,并汇报。
②师:那么(255)2○25(52)中间填上什么符号?
请你举出几个这样的例子。
生甲:三个数相乘,先乘前面两个数,或者先乘后两个数,积不变。
3、比一比,议一议。
师:比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?
生甲:我发现加法交换律和乘法交换律,都是交换数的位置,结果不变。
生乙:我发现加法结合律和乘法结合律,改变了题里的运算顺序,结果不变。
三、巩固运用,深化提高。
1、教材第35页做一做,,第1题。
先计算,再运用乘法交换律进行验算。
2、教材第35页做一做,,第2题。
四、总结提升。
这节课,你学会了什么?还有什么问题和大家共同讨论?
乘法结合律课件(篇6)
对于乘法结合律的教学,四位老师不仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便运算上,重要的是她们引导学生经历了一个数学学习的过程,通过学生的联想,激发学生学习数学的兴趣,通过验证联想,使学生全身心的投入到学习活动中,教师给了足够的思考空间,通过验证进而概括,使学生体验到成功的喜悦。从而积极愉快的进入到运用。帮助学生理解和掌握了知识,同时又培养了学生学习数学的兴趣,也帮助学生在乘法与加法进行建构,使学生获得了真正的发展。同时在学习中培养了学生的思维能力,使学生受到科学方法,科学态度的启蒙教育。
教师是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,培养了学生探索和解决问题的能力和语言的组织能力。
乘法结合律课件(篇7)
北师大版教材四年级上册第三单元中的《探索与发现(二)》。
1、经历探索过程,发现乘法结合律和交换律,并用字母表示。
2、在理解乘法结合律和交换律的基础上,会对一些算式进行简便计算。
3、感受数学探索的乐趣,培养自主探究问题的能力。
1、重点:探索、发现、理解和应用乘法结合律和交换律。
师:他们怎么计算那么快呀?是不是有什么规律呢?这节课我们就一起来探索发现吧!
师生共同用小长方体搭一个和教材上一样的大长方体。
师:请大家认真观察,估一估这个长方体是由多少个小长方体搭成的?
师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。
师:从刚才大家所举的例子来看,每一组的结果都是相同的。那么从中你能发现乘法运算中的规律吗?
学生同桌交流后反馈。
师:那么我们就用字母a、b、c分别表示乘法算式中的任意三个数字,你能写出这个规律吗?
1、比较(3×5)×4=603×(5×4)=60两个算式的计算过程,哪个更简便?
1、“练一练”第1题。
学生独立做题后集体交流。
学生自由发言。
乘法结合律课件(篇8)
设计比赛情境,引出问题(教学导入)
师:下面我们进行计算比赛,你们有信心吗?
生:有。
师:请同学们看下面两道题。
课件出示:(15×25)×415×(25×4)
要求:男同学计算第一道题,女同学计算第二道题,比一比,看谁算得又对又快。
师:谁来说一说你的计算过程?
生1:我先算15×25=375,再算375×4=1500。
生2:我先算括号里面的25×4=100,再算括号外面的15×100=1500。
师:现在请同学们观察这两道算式,它们有什么相同和不同的地方?
生1:乘数一样。
生2:符号一样。
生3:结果一样。
生4:计算顺序不一样。
师:你能举出像这样的其他的例子吗?
生1:(18×125)×8和18×(125×8)。
生2:(21×5)×20和21×(5×20)。
师:你们能验证一下自己的算式是否成立吗?
生1:通过计算,我发现(18×125)×8=18×(125×8)。
生2:通过计算,我发现(21×5)×20=21×(5×20)。
师:像这样的乘法算式中也存在着一定的规律,是不是像女同学那样,运用这个规律就会使计算简便呢?这节课我们一起来探索一下。
赏析:此片段通过设计计算比赛的环节,激发学生的学习兴趣,接着引导学生观察算式的特点,并在此基础上让学生举例,初步感知乘法结合律的基本形式,为新知的学习做好铺垫。
探索乘法结合律(教学难点)
[课件出示算式:(2×4)×3和2×(4×3)]
师:现在请同学们一起来观察这两个算式,看一看它们有什么异同。
生1:两个算式的积相同。
生2:两个算式中的三个乘数相同。
生3:算式中括号的位置不同。
生4:它们的运算顺序不同。
师:谁来具体说说它们各自的运算顺序?
生1:(2×4)×3先算括号里的2×4,再用所得的积乘3。
生2:2×(4×3)先算括号里的4×3,再用所得的积乘2。
师:通过同学们的观察,我们发现这两个算式的运算顺序虽然不同,但它们的计算结果却相同,你能仿照上面的算式举几个这样的例子吗?
(学生举例,并集体计算,看一看结果是否相等)
师:通过刚才我们的举例与计算,你发现了什么?
乘法结合律课件(篇9)
WwW.yJs21.CoM
1、通过探索活动,进一步体会探索的过程和方法。
2、通过探索活动,发现乘法的结合律,并用字母进行表示。
3、在理解结合律的基础上,会对一些算式进行简便计算。
1、通过探索活动,进一步体会探索的过程和方法,发现乘法的结合律。
2、在理解结合律的基础上,会对一些算式进行简便计算。
一、发现问题:
1、出示长方体图,让学生估计搭这个长方体用了多少个小正方体。
2、用不同方法验证结果。让学生用不同方法计算,并引导讨论为什么方法不同结果却一样,这其中是否蕴含着某些规律。
小组内举一些数据来验证,可借助计算器,用一些较大的数据验证。
全班交流,并用字母表示结合律。
三、运用乘法结合律的简算。
1、试一试第1题:
让学生尝试用乘法结合律解决连乘运算中的简算问题。然后进行交流,概括出简算的方法。
2、进一步尝试用用乘法结合律解决连乘运算中的简算问题。
yjs21.cOm更多幼师资料编辑推荐
乘法运算定律课件
古人云,工欲善其事,必先利其器。幼儿园教师在平时的学习工作中,都会提前准备很多资料。资料一般指生产、生活中阅读,学习,参考必需的东西。参考资料我们接下来的学习工作才会更加好!可是,我们的幼师资料具体又有哪些内容呢?为了让你在使用时更加简单方便,下面是小编整理的“乘法运算定律课件”,如果对这个话题感兴趣的话,请关注本站。
乘法运算定律课件 篇1
教学目标:
1、经历乘法运算定律的猜想、验证过程。理解和掌握乘法交换律、乘法结合律(含用字母表示);
2、能灵活应用乘法交换律和结合律进行简便计算,解决实际问题;
3、猜想、验证、应用的过程中,培养学生自主学习的能力,发展学生学以致用的意识。使学生受到科学方法的启蒙教育。
教学过程:
一、比赛激趣,引发猜想
1、谈话:在数学课堂中,大家都非常欣赏思维敏捷,反应快的同学,下面就给大家一个机会,我们进行一次计算比赛,看哪位同学最先博得大家的欣赏!
2、教师报题,学生起立抢答。
3、大家的速度都很快,很难分出高下,下面换一种比赛形式。
(课件演示:一次性计算两道题,看谁算得既对又快。)
4、启发猜想:这几天我们在学什么计算题,(笔算乘法)感觉怎样?联系刚才我们做的两题加法,你想到了什么?
5、引导猜想:a、乘法中可能也有交换律和结合律;
b、猜想怎么用字母来表示它们。
{板书猜想结果:乘法交换律乘法结合律
二、合作探究,举例验证
1、引导验证方法:老师为什么要在等号上加“?”!谁有办法把问号去掉?
请学生当即举一个乘法交换律的例子。(板书:学生所举例子,注:举例证明)
质疑:举一个例子能证明这个运算定律的正确性吗?(可能是巧合)
那怎么办?需要凝聚大家的力量一起举例!
2、小组合作验证
3、归纳两条乘法运算定律的文字叙述内容,揭示课题。
三、学以致用,加强巩固
四、课堂小结,拓展延伸
本课的设计体现了以下几个特点:
1、创造性地运用教材,落实“三维”教学目标。
按照教参中的教学进程安排,乘法交换律和结合律需要分两课时完成。笔者认为将两课时合并为一课时,可以达到事半功倍的效果。首先,加法的交换律和结合律与乘法的交换律和结合律比较相似,由两条加法定律猜想到两条乘法定律,难度不大,十分自然。其次,两条乘法定律一起学,一方面有利于比较区分;另一方面,更利于实际应用,事实上在计算应用中,这两条定律通常是结合在一起应用的。
2、经历过程,强化体验,落实“三维”教学目标。
从猜想→验证→应用的整个教学过程中,教师只是适当的启发、引导、参与。更多的是学生自发的学习,是学生感觉学习知识的需要而展开学习。如:由加法的简算快捷而受启发联想到乘法要是也有运算定律进行简算该多好!从而激起探索新知的渴望。再如:当体会到举一个例子无法验证说明问题,需要举更多的例子时,让学生考虑怎么办?从而讨论解决方法:大家一起举例。再如:得出结论后,当然想到拿学习成果应用于实际。这比由老师步步安排好学习步骤要好得多,不仅培养了学生的自主学习意识,而且学生的参与积极性也会高涨。
3、科学思想和方法的渗透,落实“三维”教学目标。
在数学知识领域内,“猜想→验证→结论”是十分有效的思考研究方法。有利于学生思维的发展和今后的学习。同时,在验证环节中涉及到常见的证明方法——举例证明。同时渗透了偶然和必然之间的辨证关系。总体上说:这节课的设计很好地体现了学生的自主性,给学生较大的自主探索空间,体现了数学逻辑思维的严谨美,训练了学生的思维。
乘法运算定律课件 篇2
教材分析:
《整数乘法运算定律推广到小数》是义务教育标准实验教材小学数学五年级上册第一单元内容。这部分内容是在学生掌握了整数的四则运算和简便算法,以及小数加减法的基础上进行教学的。
教学目标:
1、知识与技能目标:
通过猜测、验证、应用等环节引导学生探索,并理解整数乘法运算定律对于小数同样适用。
2、过程与方法目标:
能够正确、合理、灵活的运用乘法运算定律进行有关小数乘法的简便运算。
3、情感态度与价值观目标:
让学生相互交流、合作、体验成功的喜悦
教学重点:
探索、发现、理解整数乘法运算定律,在小数乘法中同样适用。
教学难点:
运用运算定律进行小数乘法的简便计算。
学情分析:
五年级的孩子们大部分已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此在本堂课的教学中,我充分调动学生的积极性,提高学生课堂活动的参与性,让他们通过亲自探索和体验来达到掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。
教法学法:
本节课我主要采用自主探究,合作交流,汇报验证等教学方法。通过创设生动的教学情景,激发学生的求知欲。使学生在观察中发现,在探究中交流,在合作中归纳解决问题。具体地说分为以下几种方法:
1、情景创设法。
2、活动探究法 。
3、集体讨论法 。
教学流程:
第一环节:创设情境,导入新课。
上课伊始,我会向孩子们抛出一个问题:同学们,我们已经学习了整数乘法的一些运算定律,谁能来说一说整数乘法的运算定律有哪些?
学生们会回答:乘法交换律、乘法结合律和乘法分配律。
接着我会让孩子们用数字、字母或者符号等自己喜欢的方式来表示出这三个定律。学生展示后,我进行小结:我们知道乘法运算定律在整数乘法中,可以使一些计算更简便了,那么在小数乘法中,这些运算定律是否也能运用呢?今天这节课我们就来研究这个问题。同时板书课题。
在这一环节中让孩子们用自己喜欢的方式表示三个定律,一方面激发他们学习的兴趣,另一方面复习巩固所学的知识,为学习新课作准备。以旧引新,激发孩子的探究欲望,让他们有目标的去思考。
第二环节:自主探索,解决问题。
本环节我设计了以下几个教学活动。
(一)小组合作,猜测验证。
1、用幻灯片出示以下题目。
2○1.2
0.4○0.8
0.5○2.4
让孩子们猜一猜,每一组算式它们有怎样的关系?(当然由于是猜测,学生出现的答案很可能会不一样。)
2、学生自己探究,验证。
让学生以小组为单位通过计算得出结论,原来每组算式的结果都是相等的'。
接着我引导学生们仔细观察每一组算式,它们有什么特点?
学生们通过观察会得出如下结论:第一组算式运用了乘法交换律,第二组算式运用了乘法结合律,第三组算式运用了乘法分配律。
3、举例验证。
我向孩子们提问:通过上面的一组例子,能否就说明乘法运算定律在小数乘法中同样适用?
孩子们可能有两种意见:能或是不能。
针对不同意见,我会引导他们:对,单纯的一组例子并没有说服力,我们需要多举几个例子进行验证。下面咱们就以小组为单位仿照第一组的例子,也写出三种这样的算式,并验证是否相等。
(给孩子们充分的时间动手写,验证后让他们进行汇报,尽量多让几组学生汇报,这样例子多了,结论更有说服力。)
学生汇报的同时,我会有目的的板书几组算式,让学生观察发现,乘法运算定律,在小数乘法中同样适用。
在大家交流结束后,我这样引导他们:刚刚小组同学相互交流后,你能用一句话来概括你们的发现吗?(引导学生得出结论:整数乘法的运算定律在小数乘法中同样适用。)
在这一环节中我首先让学生进行猜测,在头脑中初步感知每一组算式之间的关系,然后进行验证,进一步理解每一组算式之间的关系,再次启发学生自己举例验证,让他们通过自己动手动脑,以及倾听其他同学的发言,从而得出结论。在这一环节中,教师的作用只是引导点拨,决不把规律强加给学生,而是让学生自己去猜测、发现、验证。
(二)灵活应用,解决问题。
出示例题8
师:同学们,仔细观察下面两题,看看它们能不能用简便方法计算。
4.784 0.65201
(1)让学生独立思考,然后尝试写在练习本上。
(2)指名让学生板演。
然后我会让孩子们思考:
第①题中为什么先让0.25和4相乘?这里运用了什么运算定律呢?
孩子们会自然而然的答出:运用了乘法交换律
接着问他们:
你们认为第②小题中解题的关键是什么?
学生会根据以往的知识答出:把201分成200+1,然后用乘法分配律完成。(因为乘法分配率在上学期的学习中就是一个难点,所以这里我也会强调一下,让孩子们体会到先把特殊的数进行分解,然后才能进行简算。)
然后继续提问:在小数乘法中,要使计算简便,我们应该注意什么?(启发学生思考,认真审题,要观察数的特点等。)
在这一环节里,让孩子们运用所学的知识解决问题,这是数学学习的目的。学生通过自己动脑想,尝试用乘法的运算定律使计算简便,激发了他们运用知识解决问题的欲望,同时使学生体会到运用乘法运算定律的简便性,并体验到成功的快乐。
第三环节:精心选题,多层训练。
本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组(基本题、变式题、拓展题、开放题)。
练习题组设计如下
通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。
第四环节:质疑总结,反思评价。
用幻灯片出示以下两个问题
让学生以小组为单位,每位学生充分发言,交流学习所得。在评价方面:先让学生自评,接着让他们互评,最后我会表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。
在本环节通过交流学习所得,增强孩子们学习数学知识的信心,培养了他们敢于质疑、勇于创新的精神。
板书设计:
本课的板书设计如下这样的板书设计既条理清楚、简单明了、一目了然;同时又突出了本课的教学重点,对学生的学习起到帮助作用。
乘法运算定律课件 篇3
1、不能用手擦黑板。
2、有基本的教态,课堂内容的安排基本符合数学课的要求。
3、讲课时,要面对所有的学生,用语要简练,声音大一点,指令要明确。
4、数学用语用得不够到位,如:(a+b)c,应该读a+b的和乘以c,不应该是括号a+b乘以c。
1、小数乘法的口算方法要讲清楚。
2、不要在新授课时,把容易混淆的知识点放在一起讲。
3、学生没有理解使用运算定律的原因,学习很被动。
4、教学要从一般到特殊,从简单到复杂,并要照顾全体学生。
5、运算定律很重要,分配律是难点,问题讲得不透,没有分类讲解。
6、相对于学生的基础而言,讲课的内容较深,要充分了解学生的学情,避免过于拔高。
7、对于运算定律的主要例题,要让学生知道,并写在黑板的正中间,有课件可以事先准备好,教学生学会看例题。
8、注意结合律的特点是连乘,找特殊数如:5×8,5×4,25×8,25×4,125×8等;分配律要找相同数,“两边都是乘,中间加或减,乘法分配律真好用”。
1、板书过于密集,不够有条理。
2、完整的板书应该有:
正板书:在正中间写课题和例题;
副板书:左上角写旧知识,右上角写新知识中的重难点,左下角和右下角留给学生板演。
1、对于学生的错误,要及时纠正。
2、课堂巡视不够,要及时反馈学生的问题。
4、整个教学过程学生参与过少,老师讲得太多,缺少学生探索的过程。学生很难在学习的过程中体会到简算所带来的`成功的喜悦。
这节整理复习课我对分数乘法知识进行一次梳理,给学生建立一个完整的分数乘法知识体系,巩固对乘法知识的掌握和理解应用。
一、以合作交流为主,发挥学生主体地位。
本节课是一节复习课,内容学生都已经基本掌握,所以,我放手让学生自想、自做、自讲、自论。先是让学生课前用自己喜欢的方法对本单元的知识进行整理和复习,课上再采用小组合作交流的形式互相讨论交流,发现自己有遗漏的知识点,在小组内自行补充,完善了本单元的知识结构,同学们表现的积极主动,找到了各种整理方法,使知识的学习不流于形式。
二、课前布置同学们对易错题的整理,让孩子在课前寻找在本单元做错的题目,再找出共性的易错点进行交流,重点让学生说说错误原因和提醒同学们应该注意的问题,加深对错题的认识,避免下次犯类似的错误。在教学时由于时间有限,对于学生找的易错题没有完全交流到位,课前老师自己也应找一些典型的错题进行整理,这样能对学生整理不到位的地方进行一个补充。
乘法运算定律课件 篇4
教学目标
1.引导学生探索和理解乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:乘法交换律、结合律和分配律的学习。
教学难点:乘法交换律、结合律和分配律在计算中的应用。 教学过程
第一课时
一、引入新课
环境保护对于人类是非常重要的,我们总是要力所能及的保护地球,保护环境。植树就是一项非常有意义的事,大家都参加过植树活动吗?看看小明的同学们,正在植树呢。我们一起去看看吧。
二、新课学习
看他们热火朝天的植树真辛苦啊。你能提出什么数学问题吗?
学生交流、汇报,教师选择记录。
乘法交换律
首先我们就来解决这个问题,负责挖坑、种树的一共有多少人? 一共有25组,每组有4个人负责抬水、浇树。那么可以怎样列式呢?
25×4○4×25
观察这两个算式,你发现了什么?
也就是说25×4和4×25的结果是一样的,都是100.那也就是说这两个算式可以用等号连接。
25×4=4×25
你还能写出类似的算式吗?
例如:86×4=4×86,100×33=33×100
观察这些算式,你能用一句话说一说这个规律吗?
让学生用自己的语言说一说,主要是说的清楚,理解规律,不要求一字不差。教师总结:交换两个因数的位置,积不变。
这个规律是不是听起来很耳熟,你能给它起个名字吗?
这就是乘法交换律。你能用字母表示吗?
a×b=b×a
三、巩固练习
(1)26×8=( )×( )
(2)56×( )=35×( )
四、课堂总结
说一说今天你有什么收获?
第二课时
一、引入新课
接下来我们来解决另外一个问题:一共要浇多少桶水?
二、新课学习
一共有25组,每组要植树5棵,每棵树要浇水2桶。那么可以怎样列式呢?
25×5×2
请你算一算,看看谁的方法比较巧妙。
观察这两个算式,你发现了什么?
也就是说无论先计算那两个数的积,最后的结果是一样的,那也就是说这两个算式可以用等号连接。
(25×5)×2=25×(5×2)
但是在不改变运算结果的前提下,有时候改变运算顺序会让我们的计算变得简便。
你还能写出类似的算式吗?
例如:
观察这些算式,你能用一句话说一说这个规律吗?
让学生用自己的语言说一说,主要是说的清楚,理解规律,不要求一字不差。教师总结:先乘前两个数,或者先乘后两个数,积不变。
你能给这个规律起个名字吗?
这就是乘法结合律。也就是说把能够让计算变得简便的两个数先结合起来相乘,再乘第三个数,这样就能算的又对又快。
你能用字母表示吗?
(a×b)×c=a×(b×c)
三、巩固练习
怎样简便怎样算
17×25×4 125×29×8
四、课堂总结
这节课你学到了什么?有什么收获?和大家交流一下。
第三课时
一、引入新课
还记得们知道了乘法的那些运算律吗?谁来说一说。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
今天我们来继续探究乘法的运算律,看看是不是还有什么新的规律。
二、新课学习
还是来解决植树时的一个问题:一共有多少名同学参加了这次植树活动?
一共有25组,每组里4个人挖坑种树,2个人抬水浇水。那么可以怎样列式呢?请你算一算,看看谁的方法比较巧妙。
教师巡视,然后挑出做法比较典型的学生汇报。全班讨论(4+2)×25和4×25+2×25的相同于不同之处。
观察上面的算式,你发现了什么?
(4+2)×25=4×25+2×25
但是在不改变运算结果的前提下,有时候改变运算顺序会让我们的计算变得简便。
让学生用自己的语言说一说,主要是说的清楚,理解规律,不要求一字不差。教师总结:也就是说两个数的和一个数相乘,可以先把它们与这个数分别相乘,再相加。
你能给这个规律起个名字吗?
这就是乘法分配律。
你能用字母表示吗?
(a+b)×c=a×c+a×c
或者:a×(b+c)=a×b+a×c
三、巩固练习
播放课件:乘法的分配律和结合律——由北京国之源软件技术有限公司提供
四、课堂总结
我们学习了乘法的交换律、结合律还有分配律,合理应用这些规律会让计算变得简便。
乘法运算定律课件 篇5
在教学过程中,我安排了六个环节进行数学活动,分别是:复习铺垫,引出新知;质疑猜想,展开验证;实践新知,应用提高;加强对比,沟通联系;巧设练习,巩固提高;反思体验,总结评价。
(一)复习铺垫,引出新知
知识的获取靠积累,根据小学生掌握知识的遗忘规律,在教学新课前,我设计了以下练习,对已学知识进行巩固、温习,架起与新知识间的桥梁,达到温故知新的目的。课件出示:
(二)质疑猜想,展开验证
在学生完成练习后,我创设了这样一个问题:整数乘法运算定律可以推广到小数乘法,不知道能不能推广到分数乘法?我这样问的目的是引发学生的认知冲突,刺激他们的求知欲望,进而组织学生猜想,我鼓励学生大胆发表自己的观点。如果学生都说整数乘法运算定律能适用于分数乘法的计算时,我会这样告诉他们,毕竟这是你们的猜想,最好我们能进行验证。为了引导学生自行设计方案来验证猜想,我设计了这样一个四人小组合作活动:用1/2、1/3、1/5这三个分数,根据运算定律,设计一种方案,看看整数运算定律到底能不能推广到分数乘法中。学生经过交流,可能会这样汇报:
1、乘法交换律:……2、乘法结合律:……这说明乘法结合律同样适用于分数乘法。
3、乘法分配律:……
所以这说明乘法分配律适用于分数乘法。
在学生汇报这几种方案时,一定还有其他符合这三种定律而方案不尽相同的,只要不完全一样,我都鼓励大家说一说,这样更具验证说服力。让学生通过小组合作学习,给学生创设了观察、思考、交流的机会,学生的思路突破了教材的束缚,使学生学习数学的过程真正成为生动活泼的、主动的、富有个性的过程。学生汇报完毕后,我领着学生进行小结:整数乘法的运算定律对分数乘法同样适用,应用乘法运算定律,同样也可以使一些分数计算简便。
(三)实践新知,应用提高
使学生获得成功体验,增强学习数学的自信心,最好的办法就是让学生实践自己探究出的新知。因此我出示例5、例6后,要求学生运用运算定律,用简便方法进行计算,在此我不作任何提示,让学生独立完成计算。完成计算后,先在小组内交流着重讨论:计算中应用了什么定律?这样算,避免了什么麻烦?最后我再组织全班反馈,指定学生到黑板上进行演示汇报。
(四)加强对比,沟通联系
为了帮助学生形成良好的认知结构,我引导学生观察对比例5、例6和复习的第2题,说说各自的看法。同学们经过比较,发表了自己的观点,我根据他们的回答,归纳了这三组题的异同点:相同点——都应用了乘法运算定律,使计算简便了;不同点——整数、小数中,一般是将乘积为整十、整百、整千……的数,先乘起来,分数中,一般是将能直接约分的数先乘起来。
(五)巧设练习,巩固提高
学生利用所学知识解决问题,是发展创新意识的阶段。为了实现新课程标准提出的“人人学有价值的数学,不同的人在数学上得到不同的发展”这一基本理念,体现出“以人为本”的教育观念。我设计了多种层次的练习,包括能力提高(一)、能力提高(二)思考题三个部分。
(六)反思体验,总结评价
让学生回顾这节课学习的内容说说自己有何收获,以及自己、同学本节课的学习情况。引导学生理清知识结构,形成完整认识,并通过自评和互评,使学生受到与他人合作共事的自我教育。
乘法运算定律课件 篇6
课题:乘法的意义和乘法交换律
教学内容:教科书第22页的例1和例2,第22、23页的乘法交换律,完成做一做中的题目和练习五的第1-2题。
教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。
教学重点:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法。
教学难点:培养学生分析推理的能力。
教具、学具准备:把下面复习中的题目写在小黑板上,把例1的插图放大挂图。
教学过程
一、复习旧知,引起迁移。
教师:我们在前面复习总结了加法和减法,今天要复习总结乘法。
教师出示复习题。
1.同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?
2.同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?
3.小荣家养鸭45只,养的鸡是鸭的3倍。小荣家养鸡多少只?
4.小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?
先让学生默读题目,然后教师提问:
上面这些题目哪些题可以用乘法计算?为什么?请三、四个学生逐题回答能不能用乘法计算。
教师:第1题和第3题可以用乘法计算,因为这两道题都是求几个相同加数的和。
二、学习新知
1、学习例1。
出示例1的插图,
自学:(1)要求盘里一共有多少个鸡蛋可以怎样求?有几种求法?
学生回答后教师板书:
用加法计算:5+5+5+5+5+5=30(个)
用乘法计算:56=30(个)
(2)乘法算式5乘以6表示什么?(6个5相加。)
(3)相同的加数是谁?
(4)相同的加数的个数是谁?
(5)解答这道题用加法计算简便,还是用乘法计算简便?
(6)你能说出乘法是什么样的运算吗?
教师肯定学生的回答,再强调说明并板书;求几个相同加数的和的简便运算,叫做乘法。接着让学生看教科书第25页,齐读两遍书上的结语。
乘法算式中乘号前面的数叫什么数?表示什么?
乘法算式中乘号后面的数叫什么数?表示什么?
被乘数和乘数又叫什么数?,
教师:学过因数以后,在一个算式中被乘数和乘数就可以不必严格区分了。
2.自学乘数是1和0的乘法。
(1)自学一个数和1相乘。
完成下面的算式:13=、31=、11=。
61=18=110=1231=
做完后让几个学生说一说你是怎样理解的。
教师边说边板书:一个数和1相乘,仍得原数。
(2)自学一个数和0相乘。
自学后,完成下面的算式:03=30=
提问:0乘以3等于什么?这个算式表示什么意思?学生回答后教师板书:
03=0表示3个0相加的和是0。
3乘以0等于什么?能不能说这个算式表示0个3相加?先让学生回答,教师再说明:0个3不能表示0个3相加,3乘以0就表示0个3还是0。
板书:30=0。
0乘以0呢?学生回答后,教师说明:0个0不能相加,0乘以0就表示0个0还是0,算式是:00=0。
这三个算式都和哪个数有关系?(都和0有关系。)
一个数和0相乘它们的积有什么特点?
教师边说边板书:一个数和0相乘,仍得0。
3.学习乘法交换律。
让学生带着问题看例1的插图,然后教师提问:
(1)要求一共有多少鸡蛋,用乘法计算还可以怎样列式?
(65=30(个))。
(2)比较一下这两个乘法算式,有哪些相同?有哪些不同?
讨论后,多让几个学生发言,互相补充。
师:这两个算式都是两个数相乖,只是两个因数交换了位置,算出的结果相同。
实践:下面同学们举几个例子来验证一下这个结论是不是有普遍性。
小组间进行实践。
教师:通拉上面这些乘法计算,可以看出两个数相乘,交换因数的位置,计算结果怎样?学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法交换律。
*学生自学例2。
谁能够用字母把乘法交换律表示出来?教师板书:ab=ba
大家回忆一下,我们过去学习哪些知识时用了乘法交换律?学生发言后,教师肯定学生的回答,并明确指出:我们曾经用交换乘数和被乘数位置的方法进行乘法验算,这实际上就是应用了乘法交换律。
三、巩固练习
1。做第23页做一做中的题目。先让学生独立做,然后再集体核对。
2.做练习五的第1题。学生独立做完以后,再集体核对。核对第2题的第4小题时,可以引导学生计算一下等号:左面等于什么,等号右面等于什么。教师再说明:三个数连乘,相乘的因数交换了位置,乘积也不变,所以乘法交换律也适合三个数连乘的计算。
四、作业
练习五的第1、2题。
教学设想:本课大胆地进行了学生探究性学习的尝试,让学生自己总结结论,并自己进行验证,教师只是参与者,这样充分发挥了学生的自主性。使学生在学习知识的过程中,逐渐掌握探究性学习的方法。
课后附记:
乘法运算定律课件 篇7
教学内容:复习加法和乘法的运算定律及其应用--教材第74页5题及练习十七7-11题与12*-13*。
教学目的:使学生进一步掌握加法和乘法的运算定律,会应用这些定律进行一些简便运算;能够比较熟练地计算三步式题和解答一些比较容易的三步计算的文字题。
教学过程:
一、口算
做练习十七的第7题。
(2分钟口算竞赛,直接在教材上写出得数)
二、复习加法、乘法的运算定律和简便算法(第74页第5题相关内容)
1.加法的运算定律。
教师:加法有哪些运算定律?用字母怎样表示?
让学生说,教师板书用字母表示的形式:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
2.乘法的运算定律。
教师:除了加法有运算定律外,还有什么运算有运算定律?有哪些运算定律?让学生先用语言表述,再说出用字母怎样表示,教师板书:
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
然后引导学生比较加法和乘法的交换律、结合律有什么联系和区别。使学生进一步认识到它们的表达式类似,只是运算的方法不同。
3.做练习十七的第8题。
巩固加法和乘法的运算定律,看谁能够根据运算定律填写适当的数或符号。
4.加法和乘法的一些简便算法。
做练习十七的第9题。
让学生在练习本上做,看谁算得又对又快。让先做完的学生说一说自己是怎样算的(不用说出应用了什么运算定律),再了解全班有多少学生没用简便算法计算。然后让没有用简便算法计算的学生说一说,算得快的学生是怎样应用运算定律进行计算的。如果还有一些学生说不清楚,教师要结合运算定律进行讲解,使他们学会用简便算法。
三、作业
1.做练习十七的第10-11题。
2.提前做完的学生可以做练习十七中的第12*题和第13*题。
乘法运算定律课件 篇8
教学内容:
义务教育课程标准实验教科书四年级下册第三单元的乘法
交换律和乘法结合律。
教材分析:
主题图以植树为背景,展示了植树过程中同学们挖坑、种树、抬水、浇树等活动的情境。例1是在主题图的基础上提出问题“负责挖坑种树的一共有多少人?”解答这个问题所需要的条件都在主题图中。例2仍然是利用主题提出问题“一共要浇多少桶水?”从解决这个问题的两种算法中,可以得到乘法结合律的一个实例。在此基础上,引导学生观察、比较、概括得出乘法结合律。
教学目标:
知识与能力:使学生理解和掌握乘法交换律和乘法结合律,并会运用乘法运算律进行简便计算。
过程与方法:使学生在合作交流中对运算定律的认识由感性认识逐步发展到理性认识,合理构建知识。
情感态度与价值观:培养学生分析、推理能力,培养学生探索规律的欲望和学习数学的兴趣。
教学重点、难点:
重点:引导学生概括出乘法运算律,并运用乘法运算律进行简算。
难点:乘法运算律的推导过程。
教学策略:
1、情景创设策略:以《数学新课程标准》的理论知识与跨越式教学理念为指导,通过情景创设,在解决实际问题的过程中充分调用已有的知识经验,进行知识迁移,为学生提供学习支架,自主探究、归纳乘法运算定律。
2、信息技术与学科教学整合策略:把信息技术作为学生探索新知、验证猜想、运用知识的工具,为学生之间、师生之间的交流提供了广阔的空间,增强了课堂学习的互动。
3、感受成功策略:鼓励学生进行大胆猜想,通过科学的验证确定猜想的成立,感受成功的喜悦,为学习注入动力。
4、激趣策略:课件的使用比普通课堂更能吸引学生的注意,使学生积极动口、动手、动脑课堂学习更具趣味性。
教法和学法:
1、充分发挥学生的主体作用,在教学中注意让学生自主探索、发现规律、理解规律,通过猜测—验证,引导启发学生发现规律。引导学生积极、主动地参与到知识的形成过程中去。
2、自始至终注意培养学生观察、比较、抽象概括能力,教给学生观察、比较、抽象概括的方法。在教学中不仅引导学生有序地观察比较,还充分运用小组合作讨论的手段,进行小组合作讨论,各抒己见,取长补短,在观察到的感性材料的基础上加以抽象概括,形成结论。
教学资源:
1、人民教育出版社义务教育课程标准实验教科书四年级下册课本。
2、多媒体演示课件:利用图片、文字,创设情景,进行练习环节。
说教学过程:
(一)、课前谈话调节气氛、调动学生的学习热情、舒缓紧张环境。
(二)、在新课时有意识地设计了“问题创设,引发思考——自主探究、获得规律——巩固应用、解决问题”三个教学环节,使学生经历探究过程,并在此过程中注意渗透“探索与发现”的一般方法,让学生学得积极、主动。这也符合学生认知的特点和新课程的理念。说教模型,解决问题。这是在
(三)、在发现学习了结合律的规律后,安排了一个及时巩固的环节,主要是通过这样的环节,让所学的规律得到进一步的检验和巩固。让学生明白数学知识与生活紧密联系,并能很好的解决我们生活中的问题。(数学实用性、有用性的渗入)
(四)、在探索完乘法结合的规律后,直接引出两组算式,并由此让学生推导、验证出乘法的交换律。这种简约的设计主要是基于在乘法结合的理解基础上,并且乘法交换律相对简单易理解。
(五)、最后是运用模型,解决问题。这是在学习完这两种规律后,在学生心中建立了一个数学模型后,运用它解决实际问题。这样主要是根据认知的特点,通过练习加以巩固,同时也是感受数学学习带来的快乐与方便。
乘法运算定律课件 篇9
教材分析:
这部分内容是学生在学过分数乘整数的意义和计算方法的基础上进行教学的。它是后面学习分数除法的意义以及分数乘除法应用题的基础。所以这部分内容是教学的重点。
一个数乘分数,包括整数乘分数和分数乘分数。但它们的意义都可以概
括为求一个数的几分之几是多少。这是对整数乘法意义的扩展,因此是教学的一个重点。本节的难点在于:推导一个数乘以分数的计算法则,所以一定要将推导过程分析清楚,击破难点。
由于整数可以看成分母是1的假分数,所以不管是分数乘整数还是整数乘分数都可以转化为分数乘分数,因此分数乘分数的计算法则对于分数乘整数和整数乘分数都适用。这部分的内容表面看不难,但学生开始做分数乘整数()和整数乘分数()的题目时,往往会将整数与分子约分,建议在讲例题时要加以强调约分的方法。
重、难点突破策略:
1.意义的教学:
(1)铺垫,建立模型:
第4页图(1)教学建议:
在学生求出3杯的重量后,再多列举几道类型题,
求千克的3倍是多少?(3)
如求5杯、2杯重几千克?实质就是:求千克的5倍是多少?(5)
求千克的2倍是多少?(2)
使学生的脑里形成:求一个数的几倍是多少,用乘法计算的模型。
(2)导出意义:
①第4页图(2)教学建议:
求杯水的重量,就是求1杯水重量的半倍是多少,即求千克
半倍是多少?根据图(1)的模型类推可以列式:半倍,这里的半倍即杯,那么,半倍就相当于。
因此求的是多少?用乘法列式就是:
②第4页图(3)的教学可仿照图(2)的教学。
③导出意义:一个数与分数相乘就是求这个数的几分之几是多少。
④意义的运用:求一个数的几分之几是多少用乘法。(一个数=多少)
(3)意义的应用:做练习第4页的文字题,巩固一个数成分数的意义.
2.推导出计算法则:
(!)教学公顷的是多少的计算方法
联系分数乘法的意义,着重说明就是求的是多少。第一步先出示1小时耕地公顷的图示。第二步分析求公顷的是多少的算理,就是把公顷平均分成5份,取其中的1份,也就是把1公顷平均分成(25)份,每份是1公顷的,取其中的1份,就是1。所以:
=1(根据分数乘整数的法则计算)
=
=
(2)教学公顷的是多少的计算方法
求小时耕地多少公顷,就是求公顷的是多少?算式是:。第一步先出1小时耕地公顷的图示。第二步分析求公顷的是多少,就是把公顷平均分成5份,也就是把1公顷平均分成(25)份,每份就是,取其中的1份是1,取3份就是3所以:
=3(根据分数乘整数的法则计算)
=
=
(3)推导出计算法则:
==
由
==
推出一个数乘以分数的计算法则:分数乘分数,用分子相乘的积做分子,用分母相乘的积做分母。
(4)强调:为了计算简便,能先约分的一定要先约分再乘。
3.分数计算法则的统一:
因为整数看作:,所以分数乘整数也可以转化为分数乘分数的形式.所以分数乘分数的计算法则对于分数乘整数和整数乘分数都适用。可以直接将整数看作分子与分母进行约分。但开始做分数乘整数或整数乘分数的题型时,有的学生经常会将整数与分子约分造成错误,所以教学时要加以强调,多做练习巩固。
课题三:分数的乘加、乘减混合运算
教材分析:
分数乘加、乘减混合运算,是在分数乘法的基础上进行教学的,它本身属于分
数四则混合运算的一部分内容。便于更好地区分分数乘法与分数加、减法的计算方法,提高计算的熟练程度。
分数乘加、乘减的混合运算的运算顺序和整数乘加、乘减的混合运算的运算顺序相同,教学中可以通过复习整数乘加、乘减的混合运算的运算顺序,采取以旧带新的方法理解分数乘加、乘减的混合运算的'运算顺序.此内容难度不大,完全可以放手让学生自习完成。
教学策略:
教学程序可设计为:自习--讨论--教师点拨
关键是确定顺序:理解分数乘加、乘减混合运算的运算顺序与整数的运算顺序相同:含有两极运算,要先算第二级,再算第一级.
2023乘法运算定律课件
栏目小编对“乘法运算定律课件”问题进行了深入研究并整理了相关资料,我的建议是基于我的经验和知识仅供参考。每个老师需要在上课前弄好自己的教案课件,老师还没有写的话现在也来的及。设计教案需要注重学生个人能力的培养和发展。
乘法运算定律课件 篇1
1、简便计算:
999×27+333×19
38×48+96
1999+999×999
先读一读、 议一议 、 做一做。
第一个练习。难度不大,只要他能正确运用乘法分配律就能直接做,第二个练习,是学生计算中经常出现的问题,通过判断进一步提升学生运算定律运用的正确性,第三个练习,需要学生知识的综合应用,先要利用积不变来转换成有相同因数的算式,再利用分配律简便计算。
2、总结:
纵观全课设计,我以学生自主探究、合作交流贯穿始终,精心设计各个教学环节,让学生主动积极地学习,体会到整理知识的好处,感受到简算的优越性,使本节课既达到了整理复习的目的,又提高了学生合理、灵活地运用简便算法的能力。
乘法运算定律课件 篇2
教学目标:
1.掌握小数的连乘、乘加、乘减的运算顺序,并能按运算顺序正确计算。理解整数乘法运算定律同样适用于小数乘法。
2.提高学生类推迁移能力。
3.通过猜测、验证,培养学生探究知识的科学精神。
重点:
掌握小数连乘、乘加、乘减的运算顺序,并能正确计算,理解整数运算定律同样适用小数乘法。
难点:
探究整数乘法运算定律在小数中的应用。
教学过程:
(一)复习:
1.口算:
20301.20.20.54300-1005
90103254-7043205110.6
2310125194408+501926+1974
订正:学生口算有困难时,可以让优等生说一说是怎样口算的?
2.先说一说每个题的运算顺序,再计算。
12560307+852504-200
二、新课
1.小数连乘、乘加、乘减。
(1)把上面复习题2稍作变动(加上小数点),让学生说一说改动后的运算顺序是什么?
变成:1.20.560300.7+8.52.54-3.2
学生回答后,教师给予肯定,并板书小数的运算顺序跟整数一样。
(2)出示例6:
由学生独立解答。
订正并提问:
(1)第一步先求什么?
(2)还可以怎样列式?
练习:完成第9页做一做
720.81+10.47.062.4-5.7
2.整数乘法运算定律推广到小数
引导性谈话:整数运算与小数运算有着密切的联系,比如小数的连乘、乘加、乘减的运算顺序与整数和连乘、乘加、乘减完全相同,整数乘法中有交换律、结合律和分配律,这些运算定律在小数乘法中能适用吗?
(1)请同学猜想一下。
(2)启发提问:能否在小数乘法中适用,不能光凭猜测(这是不科学的),还需要验证,你打算用什么方法验证这些运算定律和小数乘法中也同样适用呢?(举例子来说明)
(3)组织学生具体验证(行间巡视、指导)采取小组合作形式,有分工,有合作。
(4)以小组为单位,汇报验证结果。
(5)通过0.71.21.20.7,(0.80.5)0.40.8(0.50.4),(2.4+3.6)0.52.40.5+3.60.5,进一步验证整数乘法的交换律、结合律和分配律在小数乘法中同样适用。
(6)练习:
填空:
4.21.69=□□2.50.770.4=(□□)□
6.13.6+3.93.6=(□□)□
(三)质疑:
1.今天的学习,你都知道了什么?
(小数连乘、乘加、乘减的运算顺序同整数一样,整数乘法的运算定律在小数乘法中也同样适用)
2.学完这节课,你有什么体会或感受想向大家说吗?
(整数和小数有着密切的联系;今后在小数乘法中遇到能简算的,就可以应用运算定律简算了......)
3.对今天所学的知识还有什么不懂的问题?提出来供大家研究。
四、巩固练习
1.完成第11页《练习三》第2题
下面的计算对吗?把不对的改正过来。
50.41.95-1.93.760.25+25.8
=50.40.05=0.9776+25.8
=25.2=26.7776
用手势判断,并说明错在何处。
2.计算下面各题
19.46.12.35.670.21-0.62
3.254.76-7.87.20.1828.5
18.10.92+3.930.0430.24+0.875
可分组完成,便于因材施教。(采取比赛方式)
3.玉山农场新建一座温室,室内耕地面积是285平方米,全部栽各西红柿,一茬平均每平方米产6千克。每千克按1.30元计算,一共可以收入多少元?
乘法运算定律课件 篇3
教学过程:
一、知识点的复习
回忆《乘法的运算定律》这一小节的学习内容。
教师引导回忆,并相应板书。
二、联系实际复习
1.学生汇报课前收集的有关乘法的运算定律的相应知识。
2.学生汇报课前自己根据乘法运算定律自编的题目或搜集的题目。
教师把符合要求的题目贴上黑板。
学生根据前面的知识点的复习,进行题目的独立解答。
要求:选择自己喜欢的方法解答。
教师巡视,加以必要的指导。
有必要的题目可以让学生练习画线段图。
小组内交流。
全班汇报。
三、小结
学生谈收获
课后小结:
教学内容:
乘法运算定律的复习
教学目的:
1.引导学生能运用乘法运算定律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
乘法运算定律课件 篇4
教学内容:教科书练习六的第6-13题。
教学目的:通过综合练习使学生进一步熟悉学过的运算定律,能够运用学过的运算定律进行简便计算。
教具准备:将下面复习中的题目写在黑板上。
教学过程:
一、复习
把下面相等的式子用线连起来,并说明符合什么运算定律。
a+ba(bc)
(a+b+c)b+a
(ab)ca+(b+c)
abacc+bc
(a+b)cba
让学生一个一个地在黑板上连线,并说明符合哪个运算定律。
教师:应用这些运算定律可以使一些计算简便。
二、做练习六的第6题
先让学生独立做,做完后集体核对。
1、核对第6题时,学生说出一种算法后,再提问:还有别的算法吗?教师把学生所说的算式都写在黑板上。
提问:哪一种算法比较简便?请几个学生发言。
3、提前做完的学生可以做练习六的第11题和第13题。
(1)第11题,做题时要让学生特别明确口里填的是同一个数后,提问:
等号左面的式子还能等于什么?根据是什么?教师板书:3口十2口=(3+2)口。
想一想,5乘以什么数的积仍是这个数呢?
(2)第13题,是两个数的差同乘以一个数的规律。开始先让学生自己依照乘法分配律类推,再提问:
等号左面的算式表示什么意思?(一个数与两个数的差相乘。)
等号右面的算式表示什么意思?(被减数和减数分别与这个数相乘,再把两个乘积相减。)
教师:两个算式中间用等号连起来,就表示一个数与两个数的差相乘等于被减数和减数分别与这个数相乘,再把两个乘积相减,结果不变。
你能不能再用两个其它的例子说明一下这个规律?
四、作业
练习六的第9、10题。
乘法运算定律课件 篇5
教材分析:
这部分内容是学生在学过分数乘整数的意义和计算方法的基础上进行教学的。它是后面学习分数除法的意义以及分数乘除法应用题的基础。所以这部分内容是教学的重点。
一个数乘分数,包括整数乘分数和分数乘分数。但它们的意义都可以概
括为求一个数的几分之几是多少。这是对整数乘法意义的扩展,因此是教学的一个重点。本节的难点在于:推导一个数乘以分数的计算法则,所以一定要将推导过程分析清楚,击破难点。
由于整数可以看成分母是1的假分数,所以不管是分数乘整数还是整数乘分数都可以转化为分数乘分数,因此分数乘分数的计算法则对于分数乘整数和整数乘分数都适用。这部分的内容表面看不难,但学生开始做分数乘整数()和整数乘分数()的题目时,往往会将整数与分子约分,建议在讲例题时要加以强调约分的方法。
重、难点突破策略:
1.意义的教学:
(1)铺垫,建立模型:
第4页图(1)教学建议:
在学生求出3杯的重量后,再多列举几道类型题,
求千克的3倍是多少?(3)
如求5杯、2杯重几千克?实质就是:求千克的5倍是多少?(5)
求千克的2倍是多少?(2)
使学生的脑里形成:求一个数的几倍是多少,用乘法计算的模型。
(2)导出意义:
①第4页图(2)教学建议:
求杯水的重量,就是求1杯水重量的半倍是多少,即求千克
半倍是多少?根据图(1)的模型类推可以列式:半倍,这里的半倍即杯,那么,半倍就相当于。
因此求的是多少?用乘法列式就是:
②第4页图(3)的教学可仿照图(2)的教学。
③导出意义:一个数与分数相乘就是求这个数的几分之几是多少。
④意义的运用:求一个数的几分之几是多少用乘法。(一个数=多少)
(3)意义的应用:做练习第4页的文字题,巩固一个数成分数的意义.
2.推导出计算法则:
(!)教学公顷的是多少的计算方法
联系分数乘法的意义,着重说明就是求的是多少。第一步先出示1小时耕地公顷的图示。第二步分析求公顷的是多少的算理,就是把公顷平均分成5份,取其中的1份,也就是把1公顷平均分成(25)份,每份是1公顷的,取其中的1份,就是1。所以:
=1(根据分数乘整数的法则计算)
=
=
(2)教学公顷的是多少的计算方法
求小时耕地多少公顷,就是求公顷的是多少?算式是:。第一步先出1小时耕地公顷的图示。第二步分析求公顷的是多少,就是把公顷平均分成5份,也就是把1公顷平均分成(25)份,每份就是,取其中的1份是1,取3份就是3所以:
=3(根据分数乘整数的法则计算)
=
=
(3)推导出计算法则:
==
由
==
推出一个数乘以分数的计算法则:分数乘分数,用分子相乘的积做分子,用分母相乘的积做分母。
(4)强调:为了计算简便,能先约分的一定要先约分再乘。
3.分数计算法则的统一:
因为整数看作:,所以分数乘整数也可以转化为分数乘分数的形式.所以分数乘分数的计算法则对于分数乘整数和整数乘分数都适用。可以直接将整数看作分子与分母进行约分。但开始做分数乘整数或整数乘分数的题型时,有的学生经常会将整数与分子约分造成错误,所以教学时要加以强调,多做练习巩固。
课题三:分数的乘加、乘减混合运算
教材分析:
分数乘加、乘减混合运算,是在分数乘法的基础上进行教学的,它本身属于分
数四则混合运算的一部分内容。便于更好地区分分数乘法与分数加、减法的计算方法,提高计算的熟练程度。
分数乘加、乘减的混合运算的运算顺序和整数乘加、乘减的混合运算的运算顺序相同,教学中可以通过复习整数乘加、乘减的混合运算的运算顺序,采取以旧带新的方法理解分数乘加、乘减的混合运算的'运算顺序.此内容难度不大,完全可以放手让学生自习完成。
教学策略:
教学程序可设计为:自习--讨论--教师点拨
关键是确定顺序:理解分数乘加、乘减混合运算的运算顺序与整数的运算顺序相同:含有两极运算,要先算第二级,再算第一级.
乘法运算定律课件 篇6
教学内容:教科书第92页下半页的内容,第93页的例7和例7后面的做一做,练习十二的第4-8题。
教学目的:
1.使学生会把整数乘法的运算定律用于小数的计算。
2.使学生会用乘法运算定律进行简便计算。
教学过程:
一、复习
让学生说一说在整数乘法中学过哪些运算定律。要从以下三个方面说:
1.运算定律的内容;
2.运算定律的字母表达式;
3.举例说明应用运算定律怎样使计算简便。
根据学生的回答,教师把有关乘法的三个运算定律写在黑板上。
二、学习新知
1.把整数乘法运算定律推广到小数。
自学教科书第92页下半页的例子,看看每组算式是不是相等。
2.学习例7。
教师:在整数乘法中应用运算定律可以使一些计算简便,在小数乘法中应用运算定律也可以使一些计算简便。
出示例7。先让学生自己想一想,然后,同座位的学生进行讨论。
学习第(1)题时,可以提问:
这道题怎样做比较简便?(先做0.254比较简便。)
第一步应该怎样做,应用哪条乘法运算定律?(应用乘法交换律把原来的算式改写成0.2544.78。)
第二步应该怎样做,应用哪条乘法运算定律?(应用乘法结合律。)
教师根据学生的回答,把计算的每一步写在黑板上。
最后,用虚线把可以省略的步骤框起来。
学习第(2)题时,可以仿照第(1)题先提问,还可以让学生想一想,在整数乘法计算中,这样的题怎样进行简便计算,以培养学生的迁移能力。
3、基本练习。
做例7后面的做一做。
学生独立计算,教师巡视,进行个别辅导。集体订正时,对于每一道题都要让两名学生说一说是怎样想的,每一步应用了什么运算定律。
教师:我们今天学习了小数乘法的简便计算,在以后的计算中,能用简便运算的就用简便运算。
三、巩固练习
1、做练习二十二的第4题。
学生独立填写,教师巡视,个别辅导。集体订正时,指名说一说是根据哪个运算定律填写的。可有意识地让一些中、差生回答。
2.做练习二十二的第5题的第一行的三个小题。
学生独立计算,教师巡视,发现问题。及时纠正。集体订正时,让学生说一说每遭题是怎样进行简便计算的,应用了哪些乘法运算定律。
3.做练习二十二的第6题。
教师说明题目要求,学生独立计算,教师巡视时,注意了解学生是否注意使用简便方法进行运算。集体订正时,对于用简便方法比较好的学生要给予表扬。
4.做练习二十二的第8题。
学生独立解答,教师巡视。集体订正时,让用不同解法的学生都说一说自己是怎样想的。哪种方法比较简便。
教师提醒学生:不仅在计算式题时要注意使用简便方法进行计算,在解答应用题时也同样要注意使用简便方法。
对于学有余力学生,可以让他们做练习二十二的第17题。
四、小结
教师引导学生回忆所学的知识,提醒学生随时注意用简便方法进行计算。
五、作业
练习二十二的第5题的其余习题,第7题。
板书设计:整数乘法运算定律推广到小数
例7:计算(1)0.254.784(2)0.65201
=0.2544.78=0.65(200+1)
=14.78=130+0.65
=4.78=130.65
课后附记:
乘法分配律课件10篇
每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。编写完整的教案是实现有效教学和提高学生学习成绩的需要,写一篇教案课件要具备哪些步骤?栏目小编为您准备了以下最新关于“乘法分配律课件”的范文,愿这些参考资料对你有所启发成就更好的你!
乘法分配律课件 篇1
乘法分配律
一、教学目标:
(一)知识目标:
使学生在解决实际问题的过程中发现并理解乘法分配律。
(二)智能目标:
使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
(三)情感目标
使学生能联系现实问题主动参与探索、发现和概括规律的学习尘埃,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重点:在解决实际问题的过程中发现并理解乘法分配律
教学难点:自主发现规律,抽象归纳,并能用符号、语言或其他方式与同伴交流规律。
二、教法学法:启发式教学
三、教学准备:
多媒体课件投影仪主动参与,乐于探究
四、教学过程
(一)创设问题情境
五一就要举行艺术节的比赛了,为了这次艺术节,教师和同学们都花了很多的精力,这不,我们学校教舞蹈的老师正利用星期天,去为舞蹈组的小演员们挑选漂亮的演出服呢?(课件出示商店场景)
【设计意图】创设一个充满现实的问题情境,使学生认识到现实生活中蕴涵着大量的数学信息,并主动积极地带着自己的知识背景、活动经验和理解走进课堂。
(二)展开探索过程
1、初步感知
(1)提出要求:仔细观察,从图中你获得了哪些信息?
买这些些服装,叶老师一共要付多少元钱呢?你能列出综合算式吗?
(2)学生独立列式,教师巡视
(3)交流反馈:你是怎么想的,怎样列式
板书:65×5+45×5(65+45)×5
请生交流解题思路,并比较哪种解法更简便。
(4)列成等式
通过计算,我们发现这两种解法虽列式不同,但都能解决问题。那么我们在这两个算式之间用什么符号来表示它们的得数是相等的呢?
小结:虽然这两个算式样子不同,但是计算结果是相等的。我们就可以把两个算式写成一个等式。
2、类比展开
(1)提出类比问题:如果叶老师选择选择的是另两种服装,买的数量都是6件、或8件的,你还能用两种方法来求一共要付多少元吗?
(2)要求:每一小组编一题,用两种方法列出综合算式,并计算出结果,比一比哪组完成得又快又好!
(3)学生小组合作完成,交流反馈,相机板书:
32×6+65×6(32+65)×6
32×8+65×8(32+65)×8
32×6+45×6(32+45)×6
32×8+45×8(32+45)×8
(4)观察算式,引导列成等式,仿照等式随意举例
像这样的情况,是偶然巧合还是有其中的规律呢?大家不妨再举几个例子,再算一算。
举例,小组交流,挑选几组板书。
【设计意图】从生活中的实际问题出发,在学生独立思考、探索的基础上引导有效的交流,在交流中相互启发,通过观察、类比列举使学生对乘法分配律有所初步感知,形成丰富的数学活动经验,而且也掌握了一学习数学的方法。
3、体验感悟
(1)观察这些算式,或小声地读一读这些算式,这中间隐藏着什么规律呢?学生有自己的语言描述发现的规律。
(2)修改算式,感悟规律
通过观察,同学们或多或少都发现了一些规律,现在老师给每个小组提供了一些算式,根据你刚才的观察,你觉得这些算式中,哪两个可以用等号连起来就把它们挑出来,如果有争议可以算一算来验证一下。
课件出示:
(3+4)×63×6+4×6
3×17+3×53×(17+5)
20×(5+13)20×5+5×13
(13+7)×413×4+7
(13+7)×413×4+7
交流反馈有哪几组等式。让生想办法修改那些不能组成等式的,使它们变成等式。
【设计意图】充分体现了学生学习的主体地位,学生通过解决问题,类比列举、观察感悟、反思纠错等多种学习活动,培养了学生的学习能力,生动活泼地建构起对数学富有个性理解的过程。
4、揭示规律
(1)游戏“交朋友”
课件出示:(80+20)×4,谁是它的好朋友?(80和20打着伞,一块去和4交朋友,4可最热情了,它和80握握手,又和20握握手,多公平啊,80和20高兴地把伞都丢掉了)
出示:6×(10+20),(A+100)×5,(42+45)×▲,请生帮它们交朋友。
(2)揭示规律
像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表
示??)
用字母表示:〔a+b〕×c=a×c+b×c
用语言叙述:两个数的和乘第三个数,可以把这两个数分别和第三个数相乘,再求和。
任何事物都可以从正反两方面去看,你们反着读一读用字母表示的等式,你能给下面两个算式找到朋友吗?35×8+65×8 9×18+9×282
【设计意图】从数学的角度来看,数学要比生活更重要。数学毕竟不是生活经验的“照片”,而是对生活经验进行重组、加工,逐步抽象打手成数学模型,它反映的是事物之间的关系和规律,它来源于生活而又远远高于生活。所以,前面的教学环节是为了学生更好地理解和掌握数学知识,在学生有所感悟,但不能用规范的数学语言进行概括时,及时数学化,有效地引导学生小结规律,使教学目标得以顺利完成。
(三)巩固内化
1、根据乘法分配律,在__里填入合适的数
(1)、(15+23)×2=____×2+_____×2
(2)、(37+12)×16=37×____+12×____
(3)、___×___+___×___= ( 16+26)×8
(4)、(125+11)×8=____×____+____×_____
(5)、276×38+276×62=____×(___+___)
如果计算的话,(4)、(5)你会选择左边的算式还是右边的算式进行计算,为什么?
2、判断下面各题是否正确,把错误的改正过来
(1)2×15+4×15=(2+4)×15??????()
订正:
(2)5×(20+6)=5×20+6????????()
订正:
(3)8×23+8×27=8×23+27????????()
订正:
(4)9×(6×4)=9×6+9×4????????()
订正:
3、应用题
一块长方形的桌面,长68厘米,宽32厘米。周长是多少厘米?(用两种方法解答,并说说你喜欢哪种方法)
*4、用简便方法计算(任选一题)
①(125+9)×8 ②128×31-28×31 ③43×5+46×5+11×5
小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。
【设计意图】练习的设计不仅紧紧围绕教学重点,而且注重练习的层次和坡度。基本练习形式多样,达到了双基训练扎实的效果。由于刚刚学习了乘法分配律,为使学到的知识能更好地纳入到原有的已有知识体系里,必须进行一定量的、针对性强、有实效的基本练习。
(四)总结回顾
今天这节课,你有什么收获,从中你得到什么启发?
【设计意图】“收获”既有知识的习得,也有情感上的感受及所得,反思的效果很明显。
(五)课堂作业
六、说板书设计
乘法分配律
例:短袖衫裤子夹克衫乘法分配律:
32元45元65元两个数的和与一个数相乘,可以把这65×5+45×5=(65+45)×两个数分别和这个数相乘,再相加。=325+225=110×5
=550(元)=550(元)
其他购买方案:
32×6+65×6=(32+65)×6
32×8+65×8=(32+65)×8
32×6+45×6=(32+45)×6
32×8+45×8=(32+45)×8
〔a+b〕×c=a×c+b×c
《乘法分配律》教学反思教学乘法分配律之后,发现学生的学习效果很不理想,特别是乘法分配律的'运用,正确率很低。针对这种情况,我想,在教学中应该注意以下几个问题:
1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。教学中通过“朝三暮四”的故事解决“这只猴子20天要吃多少个栗子?”这一问题,结合具体的故事情景,得到了(3+4)×20=3×20+4×20这一结果。这时老师往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等
的?”这里不仅要从解题思路的角度理解(3+4)×20=3×20+4×20是相等的,还要从乘法的意义的角度理解,即左边表示7个20,右边也表示7个20,所以(3+4)×20=3×20+4×20。
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。
如:计算125×88;101×89你能用几种方法?125×88 ①竖式计
算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89 ①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。
4、多练。
针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等
乘法分配律课件 篇2
[教学内容]练习四(第50-51页)
[教学目标]
1、练习用乘法结合律、分配律进行简算。
2、用乘法解决实际问题。
[教学重、难点]
用乘法结合律、分配律进行简算。解决实际问题。
[教学准备]计算器
[教学过程]
一、用乘法结合律、分配律进行简算
做第1题:独立完成,订正时说说简算方法。
做第3题:小组活动:比一比
看哪个小组连的又对又快,在做题的过程中进一步理解乘法分配律适用的条件。
二、花圃中的乘法
让学生独立完成,重点理解列式的算理,即第1个问题为什么是计算周长,第2个问题为什么是计算面积,体会周长与面积的不同含义。
三、观察与思考:
本题是一个乘数的变化引起积的变化,渗透了一些函数的思想。
先呈现情境图,让学生观察,再根据图上给出的信息解决所提出的问题。然后引导学生思考所列算式中乘数与积的变化规律。接着,可让学生再举例来验证自己的发现。
第课时:
乘法分配律课件 篇3
教学内容:
探索乘法分配律,应用乘法结合律进行简便运算。(课文第45页的内容,及第46页的试一试、练一练等)
重点:指导学生探索乘法的分配律。
难点:发现并归纳乘法分配律
关键:指导观察分析算式的特征。
教学目标:
1、通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。
2、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
3、会用乘法分配律进行一些简便计算。
教具准备
实物投影仪或挂图(课文插图)
教学过程:
一、导入谈话:
教师:同学们,通过探索活动我们已经发现了一些数学规律,并应用如乘法结合律等解决问题。这一节课,我们再一起去探索,看看我们又会发现什么规律。
板书:探索与发现(三)
?
今天,又有什么发现呢?让我们一起走上探索之路。
二、探索交流、发现规律
1、呈现课文插图(实物投影或挂图)
教师:一共贴了多少块瓷砖?你怎么算?
2、先让学生独立思考,然后在小组中交流,让每一个学生都在小组中说一说是怎么想的。
3、反馈交流情况。
由小组派代表汇报交流结果(有选择地板书)。
学生A:69+49
=54+36
=90(块)
学生B:(6+4)9
=109
=90(块)
要求学生结合插图说明算式的意义。
4、指导学生结合观察算式的特点。
5、举例验证。
让学生根据算式特征,再举一些类似的例子。
如:(40+4)25和4025+425
4264+4236和42(64+36)
讨论交流:
(1)交流学生的举例是否符合要求:
(2)交流不同算式的共同特点;
(3)还有什么发现?(简便计算)
6、字母表示。
教师:如果用a、b、c分别表示三个数,你能写出你的发现吗?
学生先独立完成,然后小组交流。最后教师板书。
(a+b)c=ac+bc
7、提示课题。
教师在未完成的板书中添上:乘法分配律。
三、应用规律,解决问题
课文第46页的试一试。
1、(80+4)25
(1)呈现题目。
(2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。
(3)鼓励学生独自计算。
2、3472+3428
(1)呈现题目。
(2)指导观察算式特点,看是否符合要求。
(3)简便计算过程,并得出结果。
四、巩固练习
1、课文第46页的练一练。
第1题,简单的应用乘法分配律进行计算。
第2题,注意指导一些算式的计算方法。
9911:可以看成(100-1)11=1100-11
或看成99(10+1)=990+99
3829+38应该把算式看作:3829+381
第3题,这是一道解决实际问题的练习,在计算中可以应用乘法的分配律使计算简便。
第一个问题一共有多少瓶?可以直接扳书让学生进行练习,然后进行交流。
第二个问题付1500元够吗?学生可以算出这些饮料的总价,然后与1500元进行比较,可以用估算的方法。
2、选用课时作业设计。
[板书设计]
乘法结合律
3(54)=6015254=1500
(35)4=6015(254)=1500
乘法结合律:(ab)c=a(bc)
乘法分配律课件 篇4
一、说教材
(一)教学内容在教材中的地位和作用
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材将乘法分配律与传统的相遇问题有机地结合在一起,合理整合知识,让学生在解决实际问题的过程中理解乘法分配律,注重引导学生运用猜想、验证、比较、归纳等方法解决问题,提高教学效率。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
(二)教学重点、难点的确定
新的数学改革强调,现实的和探索性的数学学习活动要成为数学学习内容的有机组成部分。所以,我把本课的重点确定为引导学生发现乘法分配律及理解含义上;因乘法分配律不是单一的乘法运算,还涉及到加法运算,为此在理论算术中又称之为乘法的分配性质,理解起来有一定的难度,所以,我把本节课的难点也确定为理解掌握乘法分配律上。
(三)学情分析
学生已经学习掌握了乘法交换律、结合律,并能够初步应用这些定律进行一些简便计算的基础上接着学习"乘法分配律"不会觉得太难,但是学生的概括、归纳能力还是一个薄弱的环节。
二、说教学目标
根据《大纲》要求,教学内容和学情,本节课我制定如下教学目标。
(一)知识目标:
学会解答相遇问题,在解答实际问题的过程中理解乘法分配律。
(二)智能目标:
借助已有经验和具体运算,初步学会用猜想、验证、比较、归纳等数学方法学习知识。
(三)情感目标:
使学生欣赏到数学运算简洁美,体验"乘法分配律"的价值所在,从而提高学习数学的兴趣和学习数学的主动性。
三、说教法与学法
(一)教学方法
在设计求平均数的教学时,利用问题情境,以解决问题为线索,让学生在独立思考、合作探究的过程中,充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为积极主动参与的学习。
(二)学法指导
本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。通过学生多思、多说、多练,积极参与教学的整个过程。
(三)教学准备
多媒体课件
四、说教学程序 (共分四个环节)
一、创设情境,激趣引入。
师:你了解我国高速公路的一些情况吗?山东境内有哪几条主要的高速公路?你知道济青高速公路的情况吗?
学生在小组内交流课前收集的有关资料,师简要介绍我国及山东省高速公路发展情况。(板书课题)
出示情境图,引导学生观察。你从图中得到了哪些信息?根据图中的信息你能提出什么数学问题?(引导学生提出有关乘法的问题)
学生交流,师适当板书:济青高速公路全长约多少千米?
【青岛版教材的一大特点是:()突出问题意识的培养。这一环节中让学生自己发现问题——提出问题——解决问题,培养学生收集和处理数学信息的能力。极大地提高了学生的学习兴趣,带入学生进入学习过程。】
紧接着进入第二环节:
二、合作探索,发现规律
本环节意在引导学生通过已有经验和具体运算,在观察、猜想、比较、归纳、验证、与交流的数学活动中,理解乘法分配律。具体可分四步进行:
1、解决问题
师::"济青高速公路全长约多少千米?"这个问题怎么解决?
学生先独立思考,小组探究,全班交流:求济青高速公路全长就是求两辆车两小时行驶的路程和。师根据学生的交流,进一步借助课件或画出线段图,表示出解决这个问题的两种思路。学生独立列式计算,集体交流后,师适当板书。一种思路是先求每辆车分别行驶的路程,再求公路的全长。110×2+90×2=400(千米)。一种是先求两辆车1小时行驶的路程和,再求2小时行驶的路程和。(110+90)×2=400(千米)
2、观察猜想
师:观察、比较上面两个算式,你有什么发现?
学生思考交流,师引导学生重点从计算结果、算式的结构和计算方法上进行比较。
师:根据前面所学的定律,结合刚才的发现,你有什么想法?
学生交流,提出猜想。(110+90)×2和110×2+90×2可能相等。
3、验证猜想:
你们能想办法验证自己的猜想吗?
学生小组合作,举例验证,并进行记录,全班汇报交流。
师:你们真了不起!刚才你们发现的规律:两个数的和与一个数相乘,可以把这两个加数分别与这个数相乘,再把积相加,这个规律叫做乘法分配律。学生仿照(110+90)×2和110×2+90×2写算式。验证揭示了这些例子共同特点,就是两个数的和乘一个数等于和里的每一个加数……在举例验证的过程中提示学生可以使用计算器。
4、用字母表示规律,
你能用字母把它表示出来吗? 学生尝试表示,师板书。
再次凸现乘法分配律的含义:(a+b)·c=a·c+b·c.
三、巩固练习
1、自主练习第一题,学生独立完成,订正时,指生交流是怎么链接的,为什么这样链接?
2、第二题,学生独立完成,交流时说说这样填写的理由。
3、第三题,学生独立判断对错,在小组内交流结果,说说错的原因并将错误的算式进行纠正。
四、总结评价
师:这节课上你有什么收获?你能评价一下你和小组同学的表现吗?
板书设计: 济青高速公路
方法一 110×2+90×2=400
方法二 (110+90)×2=400
乘法分配律:(a+b)。c = a.c+b.c
综观上述设计,在创设情景中发现并提出问题——然后在解决问题的过程中发现规律 ——通过猜想验证巩固规律 ——简单运用规律。我执教青岛版小学数学四年级上册已有两年,在课堂教学中实践了上述教学流程,并不断地充实、完善。极大地激发了学生求知欲,培养了学生自主、合作、探究的能力,使数学课堂"活"起来。通过这样精心的安排,体现了数学学科的特点,呈现了数学思维规律的探索过程。
乘法分配律课件 篇5
教学目标:
1、借助画图的方式理解、掌握乘法分配律并会用字母表示。
2、能够运用乘法分配律进行简便运算。
3、利用几何直观,培养学生观察、归纳、概括等初步的逻辑思维能力。
4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索,自己得出结论的学习意识。
教学重、难点:
理解并掌握乘法分配律。难点是乘法分配律的推理及运用。
教学过程:
一、情境导入:
出示采摘园图片。这是老师去采摘园采摘草莓的图片。你们观察过采摘大棚的地面是什么形状?采摘棚原来宽20米,长60米,扩大规模后,长增加了30米。现在果园的面积有多大?
二、探究发现,归纳总结。
(一)借助图形,感知模型。
1、引导:想象一下,如果用一幅图来表示题目的意思,这幅图会是什么样的呢?
请把想象的图画出来。交流学生作品后,课件出示
60米 30米
20米
原面积 增加的部分
2、你会独立解决吗?(学生尝试解决)说说你是怎么想的?
评价:刚才大家用自己喜欢的方法从不同的角度出色地解决了同一个问题。现在请观察一下:(60+30)× 20=1800,60× 20+30× 20=1800,你有什么发现?师相机板书等号。
(二)借助图形,抽象模型。
1、出示几何图形:用两种方法解决问题。
60米 ( )米
20米
原面积 增加的部分
刚才已知长增加了30米,现在尝试自己决定长增加的数量,你还能写出一些类似上面这样的等式吗?
2、交流:你想增加几米?怎样算?结论是什么?
师相机板书。
引导:孩子们,现在黑板上有那么多算式,你是否能结合图2来说一说它们有什么共同的特点?先同桌互说。再集体交流。
3、出示图3,要求:先把自己猜测的数据填入下面的面积模型中,然后对自己的猜测进行计算、验证、自主完成任务单项2。
( )米 ( )米
( )米
原面积 增加的部分
4、交流:你是怎么猜测和验证的?结论是什么?
教师小结:由此可以得到的结论是:两个数相加的和乘一个数,等于用这两个数分别乘这个数,再把和相加。字母表示为(a+b)×c=a×c+b×c
讨论:这个规律在数学上叫——?(板书课题——乘法分配律)
(三)借助图形,逆用模型。
1、出示计算题:
(50+6)×25、8×(25+125)、102×45学生独立计算,汇报反馈交流。
引导学生展开想象,看着这些算式,结合刚才长方形的面积模型,你想到了什么?
2、46×25+54×25、98×20+98×80
请闭上眼睛想象一下两个长方形拼成一个大正方形的过程,教师大屏幕演示。
(四)借助图形,拓展模型。
1、采摘大棚,原来宽20米,长60米,扩大规模后,长增加30米,问:原面积比增加的面积多多少?
你们能解决这个问题吗?试着算一算。
反馈交流:说说你们是怎么解决的?
我们可以把所求问题想象成是两个长方形,沿着宽重合,然后求出多余的部分就可以了。大屏幕演示。
2、20×60-20×30=600与(60-30)×20=600我们发现,它们之间存在着什么样的关系呢?
谁能用字母来表示这个新规律呢?
师板书:(a-b)×c=a×c-b×c
三、科学练习:
略
乘法分配律课件 篇6
教学内容
P36页例3,做一做,练习六习题。
教学目标
1、知识与技能:引导学生探究和理解乘法分配律。
2、过程与方法:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
3、情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
教学重点
乘法分配律的意义和应用。
教学难点
乘法分配律的反应用。
教学过程
一、目标导学
(一)导入新课
1、复习导入
(8+2)×1258×125+2×125
2、揭示课题:乘法分配律
(二)展示目标(见教学目标1、2)
二、自主学习
(一)出示自学提纲(自学教材P36页例3并完成自学提纲问题)
1、计算(4+2)×25的运算顺序是什么?4+2表示什么?再乘25表示什么?
2、计算4×25+2×25的运算顺序是什么?4×25表示什么?2×25表示什么?把它们的积相加表示什么?
3、计算这两道题你发现了什么?能用一句话概括吗?
4、这是乘法的什么运算律?用字母怎样表示?
5、会用简便算法计算4×25+6×25吗?
(二)学生自学(学生对照自学提纲,自学教材P36页例3并完成自学提纲问题,将不会的问题做标注)
(三)自学检测
下面哪些算式运用了乘法分配律?
117×(3+7)=117×3+117×7
24×(5+12)=24×17
(4+5)×a=4×a+5×a
三、合作探究
(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。
(二)师生互探
1、解答各小组自学中遇到不会的问题。
2、针对自学提纲5题请不同方法同学汇报。
3、结合“自学提纲”引导学生归纳总结:(并板书)
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫乘法分配律。
四、达标训练(1、2题必做,3题选做、4题思考题)
1、下面哪个算式是正确的?正确的打√,错误的打×。
56×(19+28)=56×19+28()
32×(7+3)=32×7+32×3()
64×64+36×64=64×(64+36)()
2、下面每组算式的得数是否相等?如果相等,选择其中一个算出得数
⑴25×(200+4)⑵35×201
25×200+25×435×200+35
⑶265×105—265×5⑷25×11×4
265×(105—5)11×(25×4)
3、用乘法分配律计算。
103×20xx×5524×205
4、在()里填上适当的数。
167×2+167×3+167×5=167×()
28×225—2×225—6×225=()225
39×8+6×39—39×4=()×()
五、堂清检测
(一)出示检测题(1-2题必做,3题选做,4题思考题)
1、用简便方法计算。
24×75+24×25125×22—125×14
(25+20)×435×99+35
2、每个同学要用9本练习本,四(1)班有42人,四(2)班有38人,这两个班共需要多少本练习本?
3、计算。
89×10135×36+35×63+35
4、小马虎由于粗心大意把30×(□+3)错算成30×□+3,请你帮忙算一算,他得到的结果与正确结果相差多少?
(二)堂清反馈:
作业布置
练习册相关习题。
板书设计
乘法分配律
一共有多少名同学参加了这次植树活动?
(1)(4+2)×25(2)4×25+2×25
=6×25=100+50
=150(人)=150(人)
(4+2)×25=4×25+2×25
(a+b)×c=a×c+b×ca×(b+c)=a×b+a×c
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
乘法分配律课件 篇7
教学目标
1.使学生理解乘法分配律的意义.
2.掌握乘法分配律的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.教学重点:乘法分配律的应用
教学难点:乘法分配律的反应用.
教具:教学课件一套
教学过程:
一、比赛激趣,提出猜想
(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)
7×28+7×72
7×(28+72)
(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
7×28+7×72=7×(28+72)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
二、引导探究,发现规律。
1、我们下面就一起来验证一下这位同学的猜想在其它的题里是否也成立。
2、商场“五一”举行让利大折扣,王老师趁这机会去为参加校园歌手比赛的五位同学挑选服装,请看大屏幕:(出示情境图)
(1)看到这幅图画,你了解到了什么信息?你想提什么问题?
(2)你能用两种方法列出综合算式吗?
(3)学生独立列式,教师巡视
(4)交流反馈:你是怎么想的,怎样列式计算
板书:65×5+45×5(65+45)×5
(5)观察这两个算式,你有什么发现?
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)轻声读这些等式,你发现了什么?
4、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(4)像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
用字母表示:〔a+b〕×c=a×c+b×c
用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。
(5)大屏幕出示关于乘法分配律的总结,学生齐读。
三、探索发展,应用规律
(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(8+4)×2534×72+34×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
四、巩固内化
1、做“想想做做”第1题
学生独立填写,指名报,全班共同校对。
明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?
2、做“想想做做”第2题
学生自己判断。然后请生说说判断的依据。
3、做“想想做做”第3题
让每位学生都用两种方法计算长方形的周长,指名板演。
明确:这两种算法有什么联系?符合什么规律?
小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。
4、做“想想做做”第4题
让学生各自按运算顺序计算,指定两人板演,共同订正。
提问:每组两道算式有什么联系?哪一题的计算比较简便?
小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。
五、总结回顾
乘法分配律课件 篇8
教学内容:人教社教材四年级下册P26页例7
教学目标:
1、通过自主探索及与同伴交流,使学生亲历观察、猜测、验证、归纳、建构乘法分配律的全过程。理解乘法分配律的意义。
2、会应用乘法分配律,使某些运算简便。
3、使学生感受数学与现实生活的联系,在知识的形成过程中,培养学生的观察能力、概括能力和语言表达能力。
教学重点:
让学生积极的动手实践、自主探索及与同伴交流,亲历观察、归纳、猜测、验证、推理等探索发现的全过程,学习科学探究方法。
教学难点:理解和掌握乘法分配律的推导过程。
教学设计思路:
1、通过买衣服的情境转入乘法分配律。
2、通过观察、分析、比较几组不同的算式,引导学生发现一般规律,然后归纳总结出字母公式,并能用语言表述出来,使学生理解乘法分配律的意义。
3、会用乘法分配律进行简单的计算。
教学过程:
一、创设情境,生成问题
1、生活引入,激发兴趣
今年十月,县里准备举行中小学生田径运动会,我们学校准备派5个同学参加比赛,学校准备为这5位同学选一套运动服装。老师在商店逛来逛去选了几件衣服和几条裤子,请看大屏幕。
出示:两件上衣(价格分别是100元、80元)
两条裤子(价格分别是70元、50元)
2、提出问题,独立思考
出示:(1)一共有几种搭配方法?
(2)选择你自己喜欢的一种方案计算出总价(用多种方法计算)。
二、探索交流,建构规律
1、生选择搭配方案并计算。
2、组内研讨,并出示:
(1)一共有几种搭配方案?
(2)介绍自己的方案,并说一说需要花多少钱?你是怎么算的?
3、汇报交流:
(1)探讨第一种方案。
师:哪一个同学想先来给项老师推荐他的方案?
(预设学生回答:A:要求5套衣服多少钱,就要先求出1套多少钱。即:一套的价钱×套数=总价。列式为:(100 70)×5
B:要求5套衣服多少钱,就要先求出5件上衣的价钱和5条裤子的价钱。即:上衣价钱 裤子价钱=总价.列式为:100×5 70×5)
(2)探讨第二种方案。
(3)探讨第三种方案。
(4)探讨第四种方案。
教师板书:
一套 ×套数 = 5件上衣 5条裤子
(150 100)× 5 = 150×5 100×5
(150 70)× 5 = 150×5 70×5
(100 100)× 5 = 100×5 100×5
(100 70)× 5 = 100×5 70×5
4、生列举例子。
(1)出示:活动要求
A、写出三个这个的算式。
B、交流:你怎么来说明你写的算式左右两边是相等的?
(2)汇报、师板书学生说的等式,并让学生说一说怎样证明算式左右两边是相等的。
5、用字母表示乘法分配律。
问:谁能用一个算式表示全班所有同学的算式?
6、学生归纳概括:乘法分配律的意义。
三、巩固应用,训练提升
1、在□里填上适当的数。
(15 20)×12=□×12 □×12
25×(4 9)=□×4 □×9
8×(10 5)=□×□ □×□
30×24=30×□ 30×□
2、把左右两边相等的算式用线连接起来。
48×12 52×12 15×18 26×18
(15 18)×26 25×40 25×4
25×(40 4) (48 52)×12
14×(45-5) 11×4 25×4
(11×25)×4 14×45-14×5
四、全课小结:今天这节课我们学习了什么内容?还记得我们是怎样学的吗?
乘法分配律课件 篇9
1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。
2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。
3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
(1)如何求济青公路的全长,有几种解法,如何列式计算。
(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?
(3)什么叫乘法分配律,如何用字母表示?
5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)
学习中你有哪些收获、困惑和体会,请在小组内交流一下。
师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。
课堂生成预设:
(1)济青高速公路全长大约多少千米?
教师追问:第一种算法是先算什么,再算什么?第二种算法呢?
预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;
预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)
(2)相遇时大巴车比中巴车多行多少千米?
(110-90)×2 110×2-90×2
=20×2 =220-180
=40(千米) =40(千米)
教师追问:你能说说两种算式的意思么?
预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;
预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。
(3)观察、比较两种算法的过程和结果,你有什么发现?
预设一:第一种算法是先加(或减)再乘;
预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。
(4)据此,你有什么猜想?
预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
(5)怎样验证你的猜想呢?
(师用线段图帮助学生理清思路)
学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。
通过观察,有何发现?引导学生回答:
举例验证:(125+12)×8 = 125×8+12×8
(40-4)×25 = 40×25-4×25
(8+16)×125 = 8×125+16×125
(80-8)×125 = 80×125-8×125
…… ……
(6)通过验证,你能得出什么结论?
结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。
(板书课题)你会用字母表示这个规律吗?
(用字母表示:(a± b) c=ac±bc)
预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的.积相加,结果不变。
预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。
预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
预设四:这个规律叫乘法分配律,可以用字母表示为:
(a± b) c=ac±bc
课堂预设:
举例验证:(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
…… ……
教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。
设计意图:将乘法分配律适当拓展
教师引导:怎么样?学会了吗?想不想挑战一下自己?
(1) 指4名学困生板演,其余同做在练习本上。
(2) 展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。
课堂预设:(以第一题为例)
(80+70)×5 ( 80+70)×5
=80×70+70×5 =80×5+70×5
(1)你认为谁的答案对,为什么?谁的答案不对,为什么?
(2)第一种答案是把括号里的两个加数相乘了,不符合乘法分配律,所以错了;第二种答案符合乘法分配律,所以是正确的。
(3)用同样的方法评议其余3题。
(4)同桌互改
(5)统计错题情况,让小组代表说说错误原因。
(6)学生各自订正错题。
预设一:我知道了什么是乘法分配律。
预设二:我又体验了探索数学规律的一般方法——通过观察发现问题——提出猜想——举例验证——得出结论。
预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!
同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。
板书设计
乘法的分配律
济青高速公路全长大约多少千米? 相遇时大巴车比中巴车多行多少千米?
(110+90)×2=110×2+90×2 (110-90)×2=110×2-90×2
验证:
(125+12)×8 = 125×8+12×8 (40-4)×25 = 40×25-4×25
(8+16)×125 = 8×125+16×125 (80-8)×125 = 80×125-8×125
结论:用字母表示:(a± b) c=ac±bc)
(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
乘法分配律课件 篇10
一、说教材:
教学目标及重难点:
根据《大纲》要求,教学资料和学情,本节课我确定了如下教学目标及重难点。
教学目标:
1、知识与本事
(1)会用乘法分配律进行一些简便计算。
(2)在探索的过程中,发现乘法分配律,并能用字母表示。
2、过程与方法
(1)经过探索乘法分配律的活动,进一步体验探索规律的过程。
(2)经历共同探索的过程,培养解决实际问题和数学交流的本事。
3、情感、态度与价值观
(1)增加学生之间的了解、同时体会到小伙伴合作的重要。
(2)在这些学习活动中,使学生感受到他们的身边处处有数学。
(3)在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点:充分感知并归纳乘法分配律。
教学难点:理解乘法分配律的意义。
二、说教法、学法
1、教学方法。
在设计乘法分配律的教学时,依据学生的认知发展水平和已有的知识经验。我采用自主学习、合作交流、当堂训练的教学模式。充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为进取主动参与的学习。
2、学法指导。
新课程标准指出学生是学习的主人,教师只是学习的组织者,引导者和合作者,学生始终参与教学活动中。所以在本节课教学过程中,我根据教学资料以学生自主学习、自主探索为主,让学生去解决实际问题,在解决问题过程中引导学生经过观察、比较、概括的方法总结出“乘法分配律”。使学生都能够动手、动脑、动口,进取参与教学的整个过程。
三、说教学过程
本节课的教学我是这样安排的:“创设情境,激趣导入;观察发现,总结规律;运用规律,尝试练习;扩展延伸;全课小结”共五个环节。
(一)创设情境,激趣导入:
本节课是规律的学习,就资料本身而言枯燥,单调,学生很难感兴趣,所以我从男女生的比赛开始,一是调动了学生的学习兴趣。更重要的是:经过比赛的形式让学生亲身经历感知到用相同的数,相同的运算符号,组成的结果也相同的算式,由于运算顺序不一样,使计算的难易程度是不一样的。在引导学生找这些式子的相同点和不一样点时,把学生的学习心向引导到对运算律的研究上去。初步感知了乘法分配律,为接下来归纳总结规律打下了基础。
(二)观察发现,总结规律:
经过例题的教学,学生会在观察、比较后发现其中隐藏的规律,肯定为这一发现感到欣喜不已并有表达的欲望,为了锻炼学生的语言表达本事就让学生先交流,但受学生的抽象概括本事的制约,表达的肯定不是很清楚,这时教师立刻让学生练习课前练习题来比较、观察,一来让学生明白用语言表达困难时能够借助式子用行为表达,二来也是以此来验证规律是否成立。接下来让学生把众多的的案例概括起来――即用符号表达。这种表达方式除了能直观、简洁地显现运算律的本质资料。学生在用图形、字母表示运算律时,也能充分体会这种表达方式的优越性,从而既加强对运算律的理解,又培养符号意识,发展符号感。最终教师把文字规律呈现出来,一是规范学生的语言表达,二是进一步巩固规律。
(三)练习的设计
理解了乘法分配律,我让学生经过“课堂活动”第1题的练习,再次体验乘法分配律在解决问题过程中的应用。之后设计了一组紧扣规律的简单填空练习,让学生在运用中进一步体会到乘法分配律中“分配”的意义。紧之后经过一组确定题加深对乘法分配律的理解和运用。最终的拓展延伸练习,将本节课的知识进行迁移,使学生体会到更多数的和与一个数相乘,两个数的差与一个数相乘这样的类型题也能够用类似的方法进行简便计算,使学有余力学生的本事进一步得到提高。