等式的性质1教学反思800字汇总
发布时间:2022-12-08 等式性质教学反思教师不仅要教书,更要育人。教案是教师备课用心一种方式。教案有利于体现指导学生的学习方法;写好一份教案该注意些什么呢?也许"等式的性质1教学反思"就是你要找的,欢迎阅读,希望对你有帮助。
等式的性质1教学反思【篇1】
不等式的性质是不等式变形的依据,也是探索解不等式方法的基础,学生掌握好本节内容是学好本章内容的关键;本节课的内容蕴含着丰富的数学思想,是培养学生类比、化归、数形结合等数学思想的良好素材。学生经历不等式性质的探索过程,体现了学生的主体性地位,充分发挥了学生学习的主动性,对学生掌握不等式的性质打下了基础;会解简单的一元一次不等式,并能在数轴上表示出解集,体会化归思想和数形结合思想;通过类比等式的性质,降低了学生学习不等式性质的难度,也为学生理解不等式的性质提供条件,初步培养类比和数形结合的思想方法。在不等式性质的探究过程中使学生经历类比、猜想、观察、归纳、比较的探究过程和启发式教学方式;利用多媒体,增强了不等式的对比的视觉效果,激发了学生的学习兴趣,帮助学生形象直观的发现规律,辅助对教学重点的突出。
本节课的开始并没有直接提问什么叫不等式,什么叫不等式的解集,而是让学生自己说出一些简单的不等式及其解集;在不等式性质教学过程中也是通过学生自主探究归纳总结出性质,改变了以教室为中心的思想观念。在“试一试”这一环节也没有先直接给出完整的解法而是让一个学生板演后发现问题才纠正补充完整。总的来说,这节课进行的还比较顺利,但是在学生探究不等式性质时,仅仅观察了给出的几个例子,而没有让学生再用其他的不等式或换其他的数加以验证,给学生留的空间太小,致使学生在对不等式的性质的认可、理解、记忆上出现了问题,以至于在做练习时不能准确熟练的说出是运用了什么性质,再者板书可能有些简单。今后要扬长避短,不断转变观念,改进教学。
等式的性质1教学反思【篇2】
本节课重点讲授了“等式的性质2”和利用“等式的性质”进行解方程。在教学手段上,采用的现代多媒体技术与讲学两用稿相结合的方式,让学生得到听数学的视听享受,同时也让学生学习到实实在在的知识。在课例安排上,采用性质、例题、练习、思考四层教育法,全方位的巩固知识在学生头脑中的印象。一些例题或结论的变形更是开拓了学生的视野也提高了学生的学习数学的兴趣。
学生听课情况总体来说也是比较好的,这反映在以下几个方面:
一、回答问题积极。
学生积极回答问题并且从回答的情况来看,很显然是经过深思熟虑的。
二、听课注意力集中。
学生听课的表情告诉我,他们听课的程度——认真。
然而在教学中,还存在以下几点不足:
(1)复习导入时,没有注意学生群体的参与性,没有充分让学生全员参与,激活学生已有的知识。
(2)练习时:层次不明显、趣味性不够,还是与传统的教学一样,比较枯燥,练习时要求的单一化造成,严重影响了学生学习的积极性。
根据以上几点,今后应该注意:
练习层次化。对练习的要求是由准确到又对又快过渡;对练习的目标是好中差均有所得;对练习的安排要由易到难综合的三方面内容的层次要求。
教学趣味化。在教学中不断采用新颖的活动,诸如小竞赛、小游戏、小实验等,使学生的情绪、情感始终处于蓬勃状态,自尊心、自信心等都能得到满足。
引导学生学习弹性化。这是数学课程改革的根本目标:不同的人学不同的数学,不同的人在数学上有不同的发展,人人学有价值的数学。让学生弹性的学习,更能体现对学生的尊重,也体现教师的教学观是否以学生的需要为着眼点。
等式的性质1教学反思【篇3】
Yjs21.coM
本节课的内容包括两个方面:一是理解“等式两边同时加上或减去同一个数,所得结果仍然是等式”,二是应用等式的性质解只含有加法和减法运算的简单方程。解方程是学生刚接触的新知识,学生原有的知识储备与生活经验不足,因此教学中老师要时刻关注学生的学习的情况,引导学生经历将现实生活问题加以数学化,引导学生通过操作、观察、分析和比较,由具体的知识渗透到抽象的去理解等式的性质,并应用等式的性质来解方程。在这节课的教学中,应让学生理解并掌握等式的性质,这是为学生后续学习方程打下较扎实的基础。
一、让学生通过动手、操作、观察中去发现等式的性质
老师先出示天平,并在天平两边各放一个20克的砝码,“你能用式子表示出两边的关系?”生写出20=20;教师在天平的一边增加一个10克砝码,“这时的关系怎么表示?”生写出20+10>20,“这时天平的两边不相等,怎样才能让天平两边相等?”生交流得出在天平的另一边增加同样重量的砝码;然后依次出现后续的三幅天平图,学生观察,教师板书,并组织学生小组讨论交流:“你有什么发现吗?”通过全班交流,在交流中教师应逐步提示,因为这是一个全新的知识,得出等式的性质。最后,让学生自己写几个等式看一看。通过具体的操作为学生探究问题,寻找结论提供了真实的情境,富有启发性、引领性,让学生经历了解决问题的过程,并在问题的解决中发现并掌握了知识。
二、让学生运用等式的性质解方程
引入了等式的性质,其目的就是让学生应用这一性质去解方程,第一次学习解方程,学生心理上难免会有些准备不足,为了帮助学生应用等式的性质解方程,课前布置了学生预习,课中我先让学生尝试练习,但巡视中发现学生没有根本理解,我就利用天平所显示的数量关系,引导学生发现“在方程的两边都减去10,使方程的左边只剩下x”,并详细讲解解方程的书写格式,包括检验。通过这样有步骤的练习,帮助学生逐渐掌握解方程的方法。然后让学再次通过修正,试一试,巩固解方程的知识。本节课达到了预期的效果。
三、遗憾的是,由于星期一集体活动的冲突,导致今天的上课时间30分钟都不到,因此学生的交流显得不充分,教师的重点讲解显得不到位
等式的性质1教学反思【篇4】
《等式的性质》一课教材设计了四个观察小实验活动,分别探索等式两边同时加、减和同时乘、除的规律。在用算式表示实验结果的同时,使学生知道“等式两边同时加减或乘除以同一个数(除数不能为0),等式仍然成立”这一规律。
由于等式的性质是解方程的基础和依据,所以我在教学时给予特别重视,活动一、用天平直观图演示的操作,给学生提供认真观察、积极思考、交流自己发现的空间,切实理解等式的性质。活动二、用课件进行演示,在活动一的基础上引导学生自主探究,合作交流,自己总结等式的性质。基础训练中,分别安排了在天平上填运算符号和数字,在课堂练习中填数的模拟解方程练习。练习时,让学生看懂题目的要求,特别是第1题中的训练题说一说是怎样想的,也就是根据等式的基本性质做的,打实基础为下面用等式的基本性质解方程做准备。
本课讲完之后,感觉学生的学习效果还不错,我认为运用图片加演示进行教学,对于学生的学习是很有帮助的,提出精炼的思考问题和适当的点拔会增加课堂的教学效率,紧凑的教学环节使课堂教学更加顺畅。尊重学生,给学生更多的发言机会,暴露他们的思维,把思维留给学生是最好的教学方式,注重了学生上课语言表述的规范与准确,书写的工整。
总之,数学教学要给学生留出大量的习题训练时间,给学生消化和熟悉巩固的机会是很有必要的,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。
等式的性质教学反思(二)
等式的性质(关于乘除的),是在学生掌握了等式的性质(关于加减的)的基础上教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、猜想入手,激发学习兴趣
猜想是学生感知事物作出初步的未经证实的判断,它是学生获取知识过程中的重要环节。因此,在教学中鼓励学生大胆猜想:在一个等式两边同时乘或除以同一个数,所得结果还会是等式吗?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。
二、操作验证,培养探索能力
在探究等式的性质(关于乘除的)时,安排了两次操作活动。首先让学生把一个等式两边同时乘或除以同一个数,然后思考讨论:所得结果还会是等式吗?引导学生发现所得结果仍然是等式。然后再让学生把等式两边同时乘或除以“0”,结果怎么样?通过两次实践活动,学生亲自参与了等式的性质发现过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
三、发散思维,培养解决问题能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说
促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出等式的性质(关于乘除的)。通过“摆写想说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。
在本课教学中,也有值得进一步探讨的问题。例如:让学生运用“猜想——验证”的方法探索规律,感悟等式的性质,这样的学习方式,学困生更像一个旁观者,教师该怎么办?
等式的性质1教学反思【篇5】
本课内容是在学生认识了等式和方程的基础上进行教学的,它是今后学习解方程的基础。在以前的教材里,学生是应用四则运算各部分之间的关系解方程,这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《数学课程标准》从学生的长远发展和中小学数学教学的衔接出发,要求小学阶段的学生会利用等式的性质解简单的方程。反思本节课的教学,有以下成功之处:
1.在直观情境中,按“形象感受——抽象概括”的方式教学等式的性质。用天平呈现的直观情境形象地表示等式两边发生的变化及结果,有利于学生的直观感受。又在学生观察、分析等式变化的基础上及时抽象、概括出等式的性质,使学生进一步积累了数学活动的经验,初步发展了抽象概括能力。
2.循序渐进地教学等式的性质。在引导学生发现等式的性质的过程中,逐步推进:先从不是方程的等式过渡到方程,再由加同一个数过渡到减同一个数。这样的设计符合学生的认知规律。
3.在学习和探索的过程中,注意培养学生独立思考的能力,在独立思考的基础上培养交流的能力与合作意识。
等式的性质1教学反思【篇6】
等式的性质,是在学生掌握了方程的定义,并在小学已经学过了一些等式的基本性质的基础上教学的。本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、猜想入手,激发学习兴趣
猜想是学生感知事物作出步的未经证实的判断,它是学生获取知识过程中的重要环节。因此,在教学中鼓励学生大胆猜想:在一个等式两边同时加或减同一个数,所得结果还会是等式吗?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。
二、操作验证,培养探索能力
在探究等式的性质(关于乘除的)时,安排了两次操作活动。首先让学生把一个等式两边同时乘或除以同一个数,然后思考讨论:所得结果还会是等式吗?引导学生发现所得结果仍然是等式。然后再让学生把等式两边同时乘或除以“0”,结果怎么样?通过两次实践活动,学生亲自参与了等式的性质发现过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
三、发散思维,培养解决问题能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,去说。促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出等式的性质(关于乘除的)。通过“摆写想说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。
等式的性质1教学反思【篇7】
方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的,解方程的根据是等式的性质,这节课上学生必须很好的掌握,现对这部分内容总结如下:
本节课的整体过程是这样的':先利用让学生来实验,从而引出了等式的性质1,然后让学生利用等式的性质1来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是比较简单,都是能一步能得出结果的方程。讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。
总结一下,大致有以下几种比较常见的情况::①含未知数的项不知道如何处理;②没有同时进行运算;③没有加上或减去同一个数。针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。)再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。
总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来小学的方法进行;第二,不是同时进行运算还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。
另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。
等式的性质1教学反思【篇8】
本课堂内容是在学生认识了等式和方程的基础上进行教学的,它是今后学习解多步方程的基础。在以前的教材里,学生是应用四则运算各部分之间的关系解方程,这样的思路只适宜解比较简单的方程,而且和中学教材不一致。从学生的长远发展和中小学数学教学的衔接出发,要求小学阶段的学生能“等式的性质,会利用等式的性质解简单的方程”。关于等式的性质的内容有两段,本课堂先学习等式的两边同时加上或减去同一个数,结果仍然是等式。
1、在直观情境中,按“形象感受——抽象归纳”的方式教学等式的性质。用天平呈现的直观情境形象地表示等式两边发生的变化及结果,有利于学生的直观感受。又在学生观察、分析等式变化的基础上及时抽象、归纳出等式的性质,使学生进一步积累了数学活动的经验,初步发展了抽象归纳能力。
2、循序渐进地教学等式的性质。在引导学生发现等式的性质的过程中,逐步推进:先从不是方程的等式过渡到方程,再由加同一个数过渡到减同一个数。这样的设计符合学生的认知规律。
3、在学习和探索的过程中,注意培养学生独立思考的能力,在独立思考的基础上培养交流的能力与合作意识。
4、有层次地安排了学生的学习活动。需诶小新知时,先让学生独立思考,然后同桌交流,再小组合作;在练习中,先是同桌互相检验,最后是独自检验。
5、重视了教师的示范作用。对解方程的书写格式和检验方法,教师首先做出准确的示范,让学生一开始就掌握正确的书写格式,同时培养了学生认真书写和自觉检验的良好学习习惯。
等式的性质1教学反思【篇9】
今天所教的《等式的性质2和解方程》是在《等式的性质1》的基础上进行教学的,使学生探索并理解“等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式”,学会应用等式的性质解只含有乘法或除法运算的简单方程。通过对教参的学习,我认为本课应该解决好以下几个问题:
1.例5和例3的结构基本相同,也是从天平图表示的数量间的相等关系入手,应引导学生在观察、分析、比较、抽象和概括等活动中,自主探索并理解等式的另一条性质。
2.结合现实情境引导学生自主探索例6的解法。由于学生已经初步掌握了解方程的一般步骤,教学过程中可以让学生通过自主尝试完成,再以讨论的形式引导学生学会利用并理解相关条件寻找等量关系,再根据等量关系列方程。
3.应培养学生运用新知识解决方程的能力。通过学生尝试,交流,教师适当的评析,使学生明白在解方程的过程中,都应利用等式的性质使方程的左边只剩下x。
4.培养学生自觉检验的意识。
课中围绕这些想法展开,效果不错,就是有点前紧后松。
等式的性质1教学反思【篇10】
一、教学前后对该知识点的认识和理解
等式的性质是本章的.基础,是方程解法时的重要依据。解方程就是用等式的性质来施行一系列的恒等变换。因此,要正确理解和应用等式的性质。在教学过程中,安排学生通过观察、归纳引出等式的两条性质,并直接利用它们讨论一些较简单的一元一次方程的解法,这将为后面几节进一步讨论复杂的一元一次方程的解法准备理论依据。
二、教学过程的实施
这节课学生学习的主要内容是等式的二条性质,以及运用这二条性质解一些简单的方程,那么怎么来学习呢?如果直接就给同学们讲等式有这样的二条性质,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我就想到了借助生活实际来学习这节课的内容,利用天平来加强对等式性质的直观理解,这样学生接受起来比较容易,掌握起来也比较的容易。
在新课引入这个环节,我先就利用天平,引出了等式的基本性质,同时还用了具体的数字等式来验证,而且还让学生用等式来表示这些性质,从本质上理解这些等式性质,从几个方面认识来加深学生的印象。然后过渡到等式性质的几个小练习,让学生们练习。在学生的练习中,更加深了学生对等式性质的理解。
在小练习中,学生很容易掌握等式的两边同加或同乘一个数或式子,但是同除一个数时,总忘了这个数不能为0,所以在这里我特意引导学生两边除以一个0时的结果,通过错题来探寻答案,主要考虑到给他们独立思考的空间,由此最终达到教学目的。
通过前面的小练习,学生理解了等式的性质,然后让学生利用等式的性质解方程,有助于引导学生研究方程的解法,在教学过程中,首先让学生明白解方程就是把方程变形为“x=a”的形式。同时在教学中,没有过早地使用“合并同类项”“移项”“系数化为1”等解方程的专门用语,这里就是要突出等式性质,使用等式性质考虑如何解方程。
Yjs21.coM更多幼师资料延伸读
不等式的基本性质课件六篇
根据教学要求老师在上课前需要准备好教案课件,教案课件里的内容是老师自己去完善的。教案是教学过程的有效监控。经过编辑的整理以下为大家提供了关于“不等式的基本性质课件”的相关内容,多阅读多思考是一个不断进步的过程欢迎大家参考下面的内容!
不等式的基本性质课件(篇1)
《基本不等式》教学设计
基本不等式
教材分析
本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。 要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如数形结合、归纳猜想、演绎推理、分析法证明等在各种不等式研究问题中有着广泛的应用;另外它在如“求面积一定,周长最小;周长一定,面积最大”等实际问题的计算中也经常涉及到。
就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。
课程目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律
《基本不等式》教学设计
的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式abab的证明过程及应用。 2难点:
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。
教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。 具体过程安排如下:
一、创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,
《基本不等式》教学设计
颜色的明暗使它看上去像一个风车,代表中国人民热情好客。 [问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式a2b22ab。在此基础上,引导学生认识基本不等式。
二、抽象归纳:
一般地,对于任意实数a,b,有a2b22ab,当且仅当a=b时,等号成立。 [问] 你能给出它的证明吗?
学生在黑板上板书。
特别地,当a>0,b>0时,在不等式a2b22ab中,以a、b分别代替a、b,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.答案: abab(a,b0)。 2【归纳总结】
如果a,b都是正数,那么abab,当且仅当a=b时,等号成立。 2ab称为a,b的算术平均数,ab称2我们称此不等式为基本不等式。 其中为a,b的几何平均数。
三、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、联想数列的知识理解基本不等式
已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?
两个正数的等差中项不小于它们正的等比中项。
《基本不等式》教学设计
3、符号语言叙述: 若a0,b0,则有ababab,当且仅当a=b时,ab。 22[问] 怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)
“当且仅当a=b时,等号成立”的含义是:
当a=b时,取等号,即ababab; 2仅当a=b时,取等号,即ababab。
24、探究基本不等式证明方法: [问] 如何证明基本不等式?
(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。)
2 方法一:作差比较或由(ab)0展开证明。
方法二:分析法(完成课本填空)
设计依据:课本是学生了解世界的窗口和工具,所以,课本必须成为学生赖以学会学习的文本.在教学中要让学生学会认真看书、用心思考,养成讲讲议议、动手动笔、仔细观察、用心体会的好习惯,真正学会读“数学书”。 要证abab
① 2只要证ab
② 要证②,只要证ab
0
③ 要证③,只要证()20 ④
显然, ④是成立的。当且仅当a=b时, ④中的等号成立 。 点评:证明方法叫做分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法.
《基本不等式》教学设计
5、探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生abab(a,b0)2的几何解释,通过数形结合,赋予不等式探究不等式abab(a,b0)2几何直观。进一步领悟不等式中等号成立的条件。
如图:AB是圆的直径,点C是AB上一点,CD⊥AB,AC=a,CB=b,CD
Dab
abab2abOCAB几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。
四、探究归纳
下列命题中正确的是
①对于任意实数a,b,均有ab2ab;
②当x0时,由于1x22x,当且仅当1x2时,即x=1时,等号成立。所以函数y1x2(x0)的最小值为2;
π4π4(0,)的最小sinx4③当x(0,)时,有;所以函数ysinx在
2sinx2sinx值为4。
以上命题均是根据基本不等式的使用条件中的难点和关键处设置的,目的是利用学生原有的平面几何知识,进一步领悟到不等式abab成立的条件2a0,b0,及当且仅当ab时,等号成立。这些“陷阱”要让学生自己往里跳,然后自己再从中爬出来,完全放手让学生自主探究,老师指导,师生归纳总结。
《基本不等式》教学设计
结论:
若两正数的乘积为定值,则当且仅当两数相等时,它们的和有最小值; 若两正数的和为定值,则当且仅当两数相等时,它们的乘积有最大值。 简记为:“一正、二定、三相等”。
五、领悟练习:
公式应用之一:
1(1)若x0,x的最小值为________,此时x_________.
x(1) 若a>0,b>0,且a+b=2,则ab的最大值为_______,此时a=_____,b=_____。
公式应用之二:(最优化问题)
设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中
(1) 在学农期间,生态园中有一块面积为100m2的矩形茶地,为了保护茶叶的健康生长,学校决定用篱笆围起来,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?
(2)现在学校仓库有一段长为36m的篱笆,要围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。最大面积是多少?
六、反思总结,整合新知:
通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?
设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.老师根据情况完善如下:
一个不等式:若a0,b0,则有abab。 2ab,当且仅当a=b时,2ab两种思想:数形结合思想、归纳类比思想。
《基本不等式》教学设计
三个注意:基本不等式求函数的最大(小)值是注意:“一正二定三相等”
七、布置作业:P114习题
八、课下思考:类比基本不等式,当a,b,c均为正数,猜想会有怎样的不等式?
不等式的基本性质课件(篇2)
《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:
本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:
知识与技能:
1. 感受生活中存在的不等关系,了解不等式的意义。
2. 掌握不等式的基本性质。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
重点:不等式概念及其基本性质
难点:不等式基本性质3
教法与学法:
1. 教学理念: “ 人人学有用的数学”
2. 教学方法:观察法、引导发现法、讨论法.
3. 教学手段:多媒体应用教学
4. 学法指导:尝试,猜想,归纳,总结
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。
下面我将具体的教学过程阐述一下:
一、创设情境,导入新课
上课伊始,我将用一个公园买门票如何才划算的例子导入课题。
世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?
(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)
紧接着进一步提问:若人数是x时,又当如何买票划算?
二、探求新知,讲授新课
引例列出了数与数之间的不等关系和含有未知量120
接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。
(1)a是负数;
(2)a是非负数;
(3) a与b的和小于5;
(4) x与2的差大于-1;
(5) x的4倍不大于7;
(6) 的一半不小于3
关键词:非负数,非正数,不大于,不小于,不超过,至少
回到引入课题时的门票问题120
难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。
反馈练习:用一个小练习巩固三条性质。
如果a>b,那么
(1) a-3 b-3 (2) 2a 2b (3) -3a -3b
提出疑问,我们讨论性质2,3是好象遗忘了一个数0。
引出让学生归纳,等式与不等式的区别与联系
三、拓展训练
根据不等式基本性质,将下列不等式化为“”的形式
(1)x-13
再次回到开头的门票问题,让学生解出相应的x的取值范围
四、小结
1.新知识
一个数学概念;两种数学思想;三条基本性质
2.与旧知识的联系
等式性质与不等式性质的异同
五、作业的布置
以上是我对这节课的教学的看法,希望各位专家指正。谢谢!
“让学生主动参与数学教学的全过程,真正成为学习的主人”
不等式的基本性质课件(篇3)
基本不等式
一、教学设计理念:
注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.
二、教学设计思路: 1.教学目标确定
这节课的目标定位分为三个层面:
第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解基本不等式;③引导学生从不同角度去证明基本不等式;④用基本不等式来证明一些简单不等式.
第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.
第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的奥妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程
本节课我设计了五个环节:
第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解基本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.
第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比较几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对基本不等式进行严格的证明,包括了比较法,综合法和分析法,而学生对作差比较法是比较熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并规范证明过程,为今后学习证明方法打下基础.
第四个环节:训练小结,巩固深化.学习基本不等式最终的目的体现在它的运用上,首先在例题选择上,注重让学生充分认识 和 间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对基本不等式成立条件包括等号成立的条件.
第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,体现化归的思想,最后设计三道思考题,两道进一步巩固化归思想及应用基本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的机会,得到进一步提高.
最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用基本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等”这样的结论,但已潜移默化为我们下一节课使用基本不等式求最值问题作了铺垫,起到承前启后的作用.
三、本节课重点
重点:应用数形结合的思想和日常生活中例子理解基本不等式,并从不同的角度探索不等式的证明过程.
难点:灵活使用化归思想把问题转化为运用基本不等式,以及基本不等式成立条件中包括等号成立的条件.
在这一节中的主要任务就是让学生从不同的角度去探索基本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜想,指定验证,得出结论,最后灵活运用这个结论来解决问题.
四、本节课亮点:
1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:
①变教学生学会知识为指导学生会学知识;
②变重视结论的记忆为重视学生获取结论的体验和感悟; ③变模仿式学习为探究式学习.
4.课堂小结采取问题式小结给学生留下满口香.
导入新课
探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??
(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)?? 推进新课
师 同学们能在这个图中找出一些相等关系或不等关系吗?如何找??
【三维目标】:
一、知识与技能
1.能够运用基本不等式解决生活中的应用问题 2.进一步掌握用基本不等式求函数的最值问题;
3.审清题意,综合运用函数关系、不等式知识解决一些实际问题. 4.能综合运用函数关系,不等式知识解决一些实际问题.
二、过程与方法
本节课是基本不等式应用举例的延伸。整堂课要围绕如何引导学生分析题意、设未知量、找出数量关系进行求解这个中心。
三、情感、态度与价值观
1.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。
2.进一步培养学生学习数学、应用数学的意识以及思维的创新性和深刻性
【三维目标】:
一、知识与技能
1.探索并了解基本不等式的证明过程,体会证明不等式的基本思想方法; 2.会用基本不等式解决简单的最大(小)值问题;
3.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号"≥"取等号的条件是:当且仅当这两个数相等;
4.理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释;
二、过程与方法
1.通过实例探究抽象基本不等式;
2.本节学习是学生对不等式认知的一次飞跃。要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点。变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础。两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质
三、情感、态度与价值观
1.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣
2.培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力
、知识结构解读
1.教材对基本不等式 的推导给出了三种证法,即作差法、分析法和综合法,同时引导同学们探讨基本不等式的几何解释.
2.基本不等式主要应用于求某些函数的最值及证明不等式.应用基本不等式时一定要注意其成立的条件.基本不等式的应用过程蕴涵了函数思想、方程思想、数形结合思想、分类讨论思想及化归与转化等数学思想.
二、重点、难点解读
本节的重点内容是掌握"两个正数的算术平均数不小于它们的几何平均数";掌握"两个正数的和为定值时积有最大值,积为定值时和有最小值"的结论. 难点是正确理解和使用基本不等式求某些函数的最值或证明不等式.
三、知识点精析
1.基本不等式的定义(详见课本)
基本不等式可表述为:两个正实数的几何平均数小于或等于它们的算术平均数. 注意:不等式 成立的条件是 . 2.基本不等式的几何证明
已知在 中,如右图所示, 为斜边 上的高, 为 的外接圆的圆心, 的延长线交 于点 . , ,证明: .
一、教学目标
1.知识与技能
探究基本不等式的证明过程,初步理解基本不等式
2.过程与方法
通过对基本不等式的不同角度的探究,渗透数形结合及转化的数学思想.
3.情感、态度与价值观:
通过本节学习,激发学生学习和应用数学知识的兴趣,形成积极探索的学习风气.
二、教学重点 用数形结合的思想理解基本不等式,并从不同角度探索不等式 的证明过程
教学难点 对基本不等式 的探究
三、教学资源 普通高中数学课程标准(实验) 人教A版教材必修5
中学数学周刊2005年第10期 百度
四、教学方法与手段
启发学生探究,多媒体辅助教学
五、教学过程
(一)创设情境:
如图1是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表着中国人民的热情好客.
你能在这个图中找出一些相等关系或不等关系吗?
设计意图:创设问题情境,为问题的引出做铺垫
(二)新知探究: 图1
将风车抽象成图2
设直角三角形的两条边长为a、b,那么正方形 的边长为 .这样,4个直角三角形的面积和为2ab,正方形面积为 .由于4个直角三角形的面积和小于正方形ABCD的 面积,我们就得到了一个不等式
当直角三角形变为等腰直角三角形, 图2
即 时,正方形EFGH缩为一个点,这时有
此时,a、b代表正方形的边长,显然是正数,如果我们推广到一般情况,对于任意的实数.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;
2.过程与方法:通过实例探究抽象基本不等式;
3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣
【教学重点】
应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;
【教学难点】
基本不等式 等号成立条件
【教学过程】
1.课题导入
基本不等式 的几何背景:
如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?
教师引导学生从面积的关系去找相等关系或不等关系
2.讲授新课
1.探究图形中的不等关系
将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。
当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。
2.得到结论:一般的,如果
3.思考证明:你能给出它的证明吗?
证明:因为
当
所以, ,即
4.1)从几何图形的面积关系认识基本不等式
特别的,如果a>0,b>0,我们用分别代替a、b ,可得 ,
通常我们把上式写作:
2)从不等式的性质推导基本不等式
用分析法证明:
要证 (1)
只要证 a+b (2)
要证(2),只要证 a+b- 0 (3)
要证(3),只要证 ( - ) (4)
显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。
3)理解基本不等式 的几何意义
探究:课本第110页的《基本不等式》说课稿
一、教材分析
1、本节课的地位、作用和意义
基本不等式又称为均值不等式,选自普遍高中课程标准实验教科书(北京师范大学出版社出版) 必修5 ,第3章第3节内容。学生在初中学习了完全平方公式、圆、初步认识了不等式,同时,在本章前面两节学习了比较大小、一元二次不等式等,这些给本节课提供了坚实的基础;基本不等式是后面基本不等式与最大(小)值的基础,在高中数学中有着比较重要的地位,在工业生产等有比较广的实际应用。
2、本节课的教学重点和难点
我通过解读新课标和分析教材,认为:
重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点之一;再者,均值不等式有比较广的应用,需重点掌握,而掌握均值不等式,关键是对不等式成立条件的准确理解,因此,均值不等式以及其成立的条件也是教学重点。
突出重点的方法:我将采用①用分组讨论,多媒体展示、引导启发法来突出均值不等式的推导;用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和其成立的条件),变式教学来突出均值不等式及其成立的条件。
难点:很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出错误,所以,均值不等式成立的条件是本节课的难点。
突破难点的方法:我将采用用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和其成立的条件),变式教学等等来突破均值不等式成立的条件这个难点。
二、教学目标分析
1、知识与技能目标
(1)学会推导基本不等式: 。
(2)理解 的几何意义。
(3)能3分钟内写出基本不等式,并说明其成立的条件,准确率为95%
2、过程方法与能力目标
(1)探索并了解均值不等式的证明过程。
(2)体会均值不等式的证明方法。
3、情感、态度、价值观目标
(1)通过探索均值不等式的证明过程,培养探索、研究精神。
(2)通过对均值不等式成立的条件的分析,养成严谨的科学态度,勇于提出问题、分析问题的习惯。 “探究” 基本不等式的证明(1)
【三维目标】:
一、知识与技能
1.探索并了解基本不等式的证明过程,体会证明不等式的基本思想方法;
2.会用基本不等式解决简单的最大(小)值问题;
3.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;
4.理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释;
二、过程与方法
1.通过实例探究抽象基本不等式;
2.本节学习是学生对不等式认知的一次飞跃。要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点。变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础。两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质
三、情感、态度与价值观
1.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣
2.培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力
【教学重点与难点】:
重点:应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;
难点:理解基本不等式 等号成立条件及 “当且仅当 时取等号”的数学内涵
【学法与教学用具】:
1.学法:先让学生观察常见的图形,通过面积的直观比较抽象出基本不等式。从生活中实际问题还原出数学本质,可积极调动地学生的学习热情。定理的证明要留给学生充分的思考空间,让他们自主探究,通过类比得到答案
2.教学用具:直角板、圆规、投影仪(多媒体教室)
【授课类型】:新授课
【课时安排】:1课时
【教学思路】:
一、创设情景,揭示课题
1.提问: 与 哪个大?
2.基本不等式 的几何背景:
如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?(教师引导学生从面积的关系去找相等关系或不等关系)。
二、研探新知
重要不等式 :一般地,对于任意实数、,我们有 ,当且仅当 时,等号成立。
证明:
所以
不等式的基本性质课件(篇4)
2010-2011学年度第二学期关集中心校七年级数学组导学案专用纸 主备人:胡伟 审核人: 使用人:
第11周 讨论时间:
不等式的基本性质(1)
教学设计
学习目标
1、理解、掌握不等式的基本性质;
2、能够运用不等式的基本性质解决有关问题.重点难点
重点:不等式的三个性质.难点:不等式性质3的探索及运用.解决办法:不等式的基本性质3的导出,采用通过学生自己动手实践、观察、归纳猜想结论、验证等环节来突破的.并在理解的基础上加强练习,以期达到学生巩固所学知识的目的.教学方法
先学后教、讨论、探究、讲练结合 教具准备
多媒体,或小黑板 教学设计流程
问题:等式有哪些性质?(学生交流3-5分钟) 学生回答等式的性质:
性质1 等式两边同时加(或减)同一个数(或式子),结果仍相等.性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.此次活动中教师应重点关注:
(1)学生对已学过的等式性质内容的记忆,及叙述语言的准确性; (2)学生对等式性质得出过程的回顾.探讨不等式的基本性质.(学生读文8-10分钟后,研讨并解决下面问题) 如果a>b,那么,在数轴上表示a的点A位于表示b的点B的右侧,画图表示.
(一)做做
1.请你在上面的数轴上画出表示a+3和b+3的点来,哪个点在右侧?并用不等号连接下面的式子: a+3______b+3.类似地,应有 a+c______b+如果在a>b的两边都减去同一个数或同一个整式,你认为应该有怎样的结论? 让学生多举出几组数据,结合数轴来比较出两组数的大小关系.(以小组为单位,充分讨论,通过交流得出结论).不等式的基本性质1:如果a>b,那么 a+c>b+c,a-c>b-c.就是说,不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
(二)探究
1.根据8>3,用“>”或“
8×2_______3 × 2; 8×(-2)_______3×(-2).8× _______3× ; 8×(-)_______3×(- ).8×______3×; 8×(-)_______3×(-).2.对于8>3,在不等式两边乘同一个正数,不等号方向改变吗? 3.对于8>3,在不等式两边乘同一个负数,不等号方向改变吗? 4.你有什么发现?再举几例,验证你的结论.通过多组数据,观察、思考、一起探究两组数的大小关系.学生在填空的基础上分组探索不等式的性质.教师深入小组参与活动,观察指导学生的探究方法,并倾听学生的讨论.此次活动是本节课的核心活动,对学生有一定的难度,有些学生可能会直接把等式的性质加以修改,推广得到不等式的性质,而忽略了不等式的两边乘或除以同一个正数或同一个负数时的不同结论,此时教师应引导学生注意观察题目,并继续举几个例子让学生观察对比,体会不等式性质与等式性质的异同,用自己的语言描述发现的规律.不等式的基本性质2:如果a>b,并且c>0,那么ac>bc.不等式的基本性质3:如果a>b,并且c
(三)例题
例 根据不等式的基本性质,把下列不等式化成x>a或x2; (2)2x20.学生独立完成,举手回答问题.教师填写答案,并对学生出现的问题给予指导,进一步巩固不等式的性质.此次活动中教师应重点关注:
(1)学生能否说出填空根据的是不等式的哪一条性质; (2)学生对不等式性质3的掌握情况.解:(1) x-l>2,
x-l+l>2+1(不等式的基本性质1), x>3.(2)2x
2x-x
(不等式的基本性质2), x20 (不等式的基本性质3), xa或x
(四)教后检测
1.如果a”或“a或x8x+1; (3) x>-4; (4)-10x
(五)当堂训练
1.在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质. (1)若a-3<9,则 a ______12;
(2)若-a<10,则a______ -10; 答:(1)a<12,根据不等式基本性质1. (2)a>-10,根据不等式基本性质3. 2.已知a<0,则
(1)a+2 ______2;
(2)a-1 ______ -1;
(3)3a______ 0; (4)a-1______0;
(5)|a|______0. 答:(1)a+2<2,根据不等式基本性质1. (2)a-1<-1,根据不等式基本性质1. (3)3a<0,根据不等式基本性质2.
(4)因为a<0,两边同加上-1,由不等式基本性质1,得a-1<-1. 又已知,-1<0,所以 a-1<0.
(5)因为a<0,所以a≠0,所以|a|>0.
(本题除了进一步运用不等式的三条基本性质外,还涉及了一些旧的基础知识.如a<0表示a是负数;a>0表示a是正数;|a| 是非负数等.) 3.判断下列各题的推导是否正确?为什么?(投影)(请学生口答) (1)因为>,所以-<-; (2)因为a+8>4,所以a>-4; (3)因为4a>4b,所以a>b;
(4)因为-1>-2,所以-a-1>-a-2; (5)因为3>2,所以3a>2a.
答:(1)正确,根据不等式基本性质3. (2)正确,根据不等式基本性质1. (3)正确,根据不等式基本性质2. (4)正确,根据不等式基本性质1. (5)不对,应分情况逐一讨论.
当a>0时,3a>2a.(不等式基本性质2) 当 a=0时,3a=2a.
当a<0时,3a<2a.(不等式基本性质3)
(学生在回答本题的过程中,当遇到困难或问题时,教师应做适当引导、启发、帮助)
4.按照下列条件,写出仍能成立的不等式: (1)由-2<-1,两边都加-a; (2)由7>5,两边都乘以不为零的-a. 5.用不等号填空:
(1)当a-b<0时,a______ b; (2)当a<0,b<0时,ab ______0; (3)当a<0,b>0时,ab ______0; (4)当a>0,b<0时,ab ______ 0; (5)若a ______ 0,b<0, 则ab>0;
(六)教后反思
不等式的基本性质课件(篇5)
本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。
接下来出示的问题1从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。
问题2、3的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是很好,在引导学生探究的过程中时间控制的不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
通过问题四让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。
在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。
在练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的时候有点耽误时间。
让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。
不等式的基本性质课件(篇6)
一、素质教育目标
(一)知识教学点
1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.
2.灵活运用不等式的基本性质进行不等式形.
(二)能力训练点
培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.
(三)德育渗透点
培养学生积极主动的参与意识和勇敢尝试、探索的精神.
(四)美育渗透点
通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。
二、学法引导
1.教学方法:观察法、探究法、尝试指导法、讨论法.
2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.
三、重点·难点·疑点及解决办法
(一)重点
掌握不等式的三条基本性质,尤其是不等式的基本性质3.
(二)难点
正确应用不等式的三条基本性质进行不等式变形.
(三)疑点
弄不清“不等号方向不变”与“所得结果仍是不等式”之间的关系是学生学习的疑点.
(四)解决办法
讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.
四、课时安排
一课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.
2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.
3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.
七、教学步骤
(-)明确目标
本节课主要学习不等式的三条基本性质并能熟练地加以应用.
(二)整体感知
通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.
(三)教学过程
1.创设情境,复习引入
什么是等式?等式的基本性质是什么?
学生活动:独立思考,指名回答.
教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.
请同学们继续观察习题:
(1)用“>”或“<”填空.
①7+3____4+3 ②7+(-3)____4+(-3)
③7×3____4×3 ④7×(-3)____4×(-3)
(2)上述不等式中哪题的不等号与7>4一致?
学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.
【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.
不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的'性质.
学生活动:观察思考,猜想出不等式的性质.
教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”
师生活动:师生共同叙述不等式的性质,同时教师板书.
不等式基本性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?
学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.
【教法说明】观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?
师生活动:由学生概括总结不等式的其他性质,同时教师板书.
不等式基本性质2 不等式两边都乘(或除以)同一个正数,不等号的方向不变.
不等式基本性质3 不等式两边都乘(或除以)同一个负数,不等号的方向改变.
师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.
学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.
强调:要特别注意不等式基本性质3.
实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.
不等式的基本性质与等式的基本性质有哪些区别、联系?
学生活动:思考、同桌讨论.
归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.
①若 ,则 , ;
②若 ,且 ,则 , ;
③若 ,且 ,则 , .
师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.
注意:不等式除了上述性质外,还有以下性质:①若 ,则 .②若 ,且 ,则 ,这些先不要向学生说明.
2.尝试反馈,巩固知识
请学生先根据自己的理解,解答下面习题.
例1 根据不等式的基本性质,把下列不等式化成 或 的形式.
(1) (2) (3) (4)
学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.
教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.
解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.
所以
(2)根据不等式基本性质1,两边都减去 ,得
(3)根据不等式基本性质2,两边都乘以2,得
(4)根据不等式基本性质3,两边都除以-4得
【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与 或 对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.
例2 设 ,用“<”或“>”填空.
(1) (2) (3)
学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.
解:(1)因为 ,两边都减去3,由不等式性质1,得
(2)因为 ,且2>0,由不等式性质2,得
(3)因为 ,且-4<0,由不等式性质3,得
教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.
注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.
【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.
3.变式训练,培养能力
(1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴( ) ④∵ ∴( )
⑤∵ ∴ ⑥∵ ∴ ( )
学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.
答案:
① (A) ② (B)
③ (C) ④ (C)
⑤ (C) ⑥ (A)
【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.
(2)单项选择:
①由 得到 的条件是( )
A. B. C. D.
②由由 得到 的条件是( )
A. B. C. D.
③由 得到 的条件是( )
A. B. C. D. 是任意有理数
④若 ,则下列各式中错误的是( )
A. B. C. D.
师生活动:教师选出答案,学生判断正误并说明理由.
答案:①A②D③C④D
(3)判断正误,正确的打“√”,错误的打“×”
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴ ( ) ④若,则 ∴,( )
学生活动:一名学生说出答案,其他学生判断正误.
答案:①√ ②× ③√ ④×
【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.
(四)总结、扩展
1.本节重点:
(1)掌握不等式的三条基本性质,尤其是性质3.
(2)能正确应用性质对不等式进行变形.
2.注意事项:
(1)要反复对比不等式性质与等式性质的异同点.
(2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.
3.考点剖析:
不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.
八、布置作业
(一)必做题:P61 A组4,5.
(二)选做题:P62 B组1,2,3.
参考答案
(一)4.(1) (2) (3) (4)5.(1) (2) (3) (4) (5) (6)
(二)1.(1) (2) (3)
2.(1) (2) (3) (4)
3.(1) (2) (3)
九、板书设计
6.1 不等式和它的基本性质(二)
一、不等式的基本性质
1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.
若 ,则 , .
2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若 , ,则 .
3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若 , ,则 .
二、应用
例1 解(1)(2)
(3)(4)
例2 解(1)(2)
(3)
三、小结
注意不等式性质3的应用.
十、背景知识与课外阅读
盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的 ,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?
[参考]最新不等式教学反思精选
教师的人格就是教育工作者的一切,只有健康的心灵才有健康的行为,高质量的课堂,离不开老师优秀的教案,怎样能将教案写的具有创造性呢?幼儿教师教育网的编辑特意为大家收集整理了“最新不等式教学反思”,本文内容仅供您的参考!
最新不等式教学反思(篇1)
本节课通过多媒体呈现习题,节省了大量的时间,充分利用了宝贵的课堂45分钟。通过学生自我训练、小组互帮和教师释疑,成功地解决了在新授过程中存在的部分遗留问题,达到了巩固一元一次不等式和一元一次不等式组的相关知识,尽管培养学生乐于探索的学习品质不是一朝一夕的事,但本节课在这方面也发挥了积极的作用;对知识的综合、迁移和应用等能力也起到了潜移默化的功效。但在教学过程中我觉得还有如下遗憾:
在课件中尽管有一个知识网络图,但学生在学习过程中对本章知识并没有能够形成知识体系,没有能够构建完整的知识网络图。主要原因应该是:
1.知识网络图不是由学生自我总结得出的
2.没有和学生共同分析知识结构图中各部分内容之间的关联
3.网络图中做了链接,学生点击后进入链接内容,知识网络很快消失。
在今后的教学中,一定要让学生自我总结,自我设计知识结构图,教师引导规范由学生板书在黑板上,使之和课件中的结构基本一致,然后呈现课件中的知识结构图,再由学生点击进入下一阶段。
最新不等式教学反思(篇2)
本节内容是第八章的难点也是重点,在章节中有承上启下的作用,是一元一次不等式的简单变形的应用,是一元一次不等式组的基础。因而这节内容我更加费劲心思的思考该如何教学,才能让学生更好地掌握知识,运用知识。
一、课堂教学结构反思
本节课教学设计上较合理,知识点循序渐进,符合初中生的学习心理特点。本节课先让学生明白一元一次不等式的变形,再回顾一元一次方程的解的步骤,进一步理解和掌握一元一次不等式的解的步骤。在理解的基础上,通过例题加深,让学生经历了回顾、动手操作、提出问题、判断、找方法、合作交流等过程。另一方面,能够体现出用新教材的思想,体现了学生的主体地位,体现了新的教学理念。
在学习本节时,要与一元一次方程结合起来,用比较、类比的转化的数学思想方法来学习,弄清其区别与联系。
(1)从概念上来说:两者化简后,都含有一个未知数,未知数的次数是1,系数不等于零;但一元一次不等式表示的是不等关系,一元一次方程表示的是相等关系。
(2)从解法上来看:两者经过变形,都把左边变成含未知数(如x)的一次单项式,右边变成已知数,解法的五个步骤也完全相同;但不等式两边都乘(或除)以同一个负数时,不等号要变号,而方程两边都乘(或除)以同一个负数时,等号不变。
(3)从解的情况来看:
1、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性.在数轴上表示不等式的解集是数形结合的具体体现。
2、熟练掌握不等式的基本性质,特别是性质3。不等式的性质是正确解不等式的基础。
二、有效的课堂提问反思
错误分析引入有效的提问,可以加深对本课知识的理解,又能更好地巩固前面的内容,起到承上启下的作用。提问过程中可以达到师生间的相互交流。教学提问中,比如:解一元一次方程的步骤是什么?学生在理解解一元一次方程步骤的基础上,类比解一元一次不等式的步骤就有了进一步的认识。同时,提出对“等号”与“不等号”的不同,不等式的解与方程的解又有点差别,特别是对不等式的性质3的不同,加深了学生对不等式的解的理解。由于学生的基础比较差,课堂教学提问中,由易到难,深入浅出,尽可能让学生学会、会学、会做。
三、 有效的课堂参与反思
本节课我从复习旧知识,提问,动手操作,合作交流、形成共识的基础上,让学生理解一元一次不等式的概念及不等式的解法步骤。在课堂活动中经历、感悟知识的生成、发展与变化过程,重在学生参与完成。通过精心设计问题、课堂讨论,中间贯穿鼓励性语言,并让学生自己理清思路、板书过程,锻炼学生语言表达能力和书写能力,激发了学生学习积极性,培养学生的参与意识和合作意识,学生在各个环节中,运用所学的知识解决问题,进而达到知识的理解和掌握,使学生真正参与到知识形成发展过程中来。
本节课较好的方面:
1、本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;
2、课程内容前后呼应,前面练习能够为后面的例题作准备。
3、设计学案对学生学习的知识进行检查。
不足方面:
引入部分练习所用时间太长,讲评一元一次不等式的概念太细致,导致了后段时间紧,部分内容不能完成。
我深感,只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。这说明,一种新的教学理念要真正成为师生的教育行为,还有很长的路要走。我将和我的学生在这一探索过程中不断努力前行,总之,我们在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须多做一些事,例如精心设计适合学生的教学环节,多思考一些学生所想的,真正做好学生前进道路上的领路人。
最新不等式教学反思(篇3)
在教学活动中,我有以下活动觉得比较好的:
建立知识结构,进行新课的引入和知识的迁移.上课伊始,我书写了等式(方程)一章的部分知识结构,并且有由等式的有关概念到不等式的有关概念的类比线路图,从而引入课题,开始检查前置学习的情况.这样处理,学生对这个知识内容的整体把握就能够高屋建瓴,数学学习的能力意识就能够形成。
前置学习检查的任务明确.数学教学中很为重要的新知识引入在课堂之前的前置学习完成,为此,新知识的形成过程老师就没有办法把握了,这就要求数学教师很好地在前置学习检查方面动脑筋,在“不等式的性质”这堂课上,由同学们交流检查前置学习的情况,提出三条交流任务:不等式的性质是什么?不等式的性质是怎么研究得到的?不等式的性质与等式的性质有什么区别和联系?学生的交流和讨论就有了明确的方向,后面就有了学生很好的回报:性质的回答情况与以往一样比较到位,更有同学回答了不等式的性质是由等式的性质联想得到的,有同学回答了不等式的性质是我们通过由特殊到一般研究得到的(学案中安排了由具体例子到一般规律的总结),在与等式性质区别和比较之后,学生得出“在不等式两边同时乘以或除以一个数时一定要考虑这个数是正数还是负数”这样的注意点.因此学生前置学习是富有成效的,前置学习检查也是前置学习的补充和完善.
课堂设问、提问精心研究.在利用不等式的性质进行不等式的变形时(问题是以填空不等号的形式拟题的),提问:“各小题的结果是什么?怎样由已知的不等式变形得到的?理论依据是什么”,这样设问便于学生研究,便于学生回答;提升学习内容,问题有难度,思考有深度,在学生回答五道判断题对错后,连续追问,有问为什么的,有问反例是什么的,有问成立的条件是什么的,有问怎样改变结论使命题成立,怎样改变条件试命题成立.提问学生回答问题形式多样,多数情况,学生举手回答,还有依座次回答,点学号回答,同学推荐回答等等,全班学生整堂课处于积极的参与状态.
课堂内容的处理详略得当.利用性质进行不等式的变形是性质的理解和掌握,难度不大,学生口答一挥而就;分类讨论虽是难题,三种情况一经点破,旋即解决;提升判断实是难点,反复讨论,多角度思考,多方位研究,一题多变化,用足力气;用不等式的性质解不等式,变形后的形式要明白、怎样变形要清楚、变形依据要对号、书写格式要规范,同时这又是后面解一元一次不等式的预演,移项法则由此产生,所以,安排了例题老师示范、安排了学生上黑板板演、安排了学生在上面点评.本课全部完成了预设的教学任务,用了八分钟时间进行了很充分的小结.
最新不等式教学反思(篇4)
我的本节课学习的人民教育出版社出版的六三制初中数学七年级下册,第九章第一节的第一课时,主要学习不等式的定义及符号表示,不等式的解、解集、解不等式、一元一次不等式等的定义,不等式解集的表示方法等内容。通过对本节课的教学,谈如下感受:
一、让数学走进学生的生活,提高学生的学习兴趣,提升学生用数学的眼光看生活,用数学的语言表述生活现象的能力。不等关系在学生的实际生活中是随处可见的,让学生把生活中的内容数学化,可以提高学生的兴趣,但同时也会暴露学生认识中的不足:如用数学语言描述不等关系时,学生叙述是往往缺乏必要的限制的条件:有学生说:电脑比电视的价格高,青菜比水果便宜等。而忽略了物品的质量、品牌、品种等不同而带来的价格的不同。所以在教学中要提醒学生用准确的数学语言来描述它们之间的不等关系。
二、类比是本节的重要方法,在本节课中有所体现,但是强调的不够,原因主要要本节课的概念较多,如果把所对应方程的所有概念都加以类比来强化的话,反而会淡化学生对不等式相关定义的理解和掌握,所以在本节课中主要对方程的解与不等式的解进行了类比。而对方程与不等式,一元一次方程与一元一次不等式在教学中是视情况而来对待的,如果学生理解这些概念有问题,就进行类比来教学,如果学生理解不等式的这些概念没问题的话,就可以淡化对这些感念的类比。
三、关于对“≥、≤”的处理,在人教版的教材中,本节课中没有出现这两个符号,本节课的教材中只是把用“>、<、≠”来表示大小关系的式子叫做不等式,二在第二课时学习不等式的性质来才引入“≥,≤”及其含义,我感觉为了体现知识的完备性,在本节课中,把表示大小关系的五个符号一起出现,让学生体会认识,特别是在用数轴表示不等式的解集的时候,学生可以更加清楚地认识“≥、≤、>、<”的区别与联系。
四、引导学生准确用不等式表示数量关系,由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在本节教学中,要引导学生用含有未知数的不等式来表示显示生活中的大小关系,特别要注意:“正数、负数、非负数、大、小、多、少、超过、不足”等词在列不等式时对不等号的选用,让学生知道用不等式解决实际问题的方便之处,要求学生准确“译出”不等式。教学中,如果在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别会更好些。
以上是我对执教本节课的简单反思,不当之处,敬请各位批评指正。
最新不等式教学反思(篇5)
不等式一章,对学生来说是难点,把握好教学很关键,我经过教学反思见下。
1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分求出解集,这是最容易理解的方法,也是最适用的方法。用“大大取较大、小小取较小、大小小大取中间、大大小小取不了”求解不等式,我认为减轻学生的学习负担,有易于培养学生的数形结合能力。在教学中我要求学生两者皆用。
2、加强对实际问题中抽象出数量关系的数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。教学中,一方面加强训练,锻炼学生的自我解题能力。另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。
3、把握教学目标,防止在利用一元一次不等式(组)解决实际问题时提出过高的要求,重点加强文字与符号的联系,利用题目中含有不等语言的语句找出不等关系,列出一元一次不等式(组)解答问题,注意与利用方程解实际问题的方法的区别(不等语言),防止学生应用方程解答不等关系的实际问题。
4、本节课课堂容量(安排的例题的题量太多)偏大,而且在思维上也有比较特殊的地方,从而导致学生在课堂上的思考的时间不够,课堂时间比较紧张。因此今后在课时的安排上要尽可能的安排更多的课时,以减少每一节课的课堂容量,给学生更多的思考时间和空间,提高课堂的效果。同时还要重视思考题的作用,因为班上有一部分同学体现出基础比较扎实,而且对数学也比较有兴趣,出一些比较难的思考题,能够让这部分学有余力的同学能有所提高。
5、从课堂的效果来看学生对象客观题这样的题型(如:选择题、填空题)用特殊方法解题的思维还不够,他们总是担心会出问题,特别是选择题缺乏比较和分析的能力,因为选择题是一种比较特殊的题型,它的特殊性在于这类题目的答案是已知的,有的学生在做题的时候根本就不看题目中的四个选择答案,实际的解题过程中对于选择题来讲能把四个答案选项分析清楚对提高解题的速度和准确性是很有好处的。但本节课中出现的解客观题的一些特殊的方法在解与不等式有关的题目时特别的有效,但是如果不等式的问题中出现了分类讨论的情况,特殊的方法就有它的局限性,这时就需要学生能够灵活处理了。问题中出现了分类讨论的题目一般来讲都是比较难的题目,教学上我的处理是在教学的过程中如果出现了这类问题就具体跟学生讲解,在学期末的复习时候再跟学生总结。因此要求学生在使用特殊方法用选不等式教学反思教育。
最新不等式教学反思(篇6)
在教学过程中看出,由于学生的知识结构的差异思维品质的不同,其解题的方法也不相同。上课时,我面对学生各种解法,让同学们先小组讨论,充分暴露思维过程,然后全班讨论,对各种解法及思维过程给与评价。由于启发得好,本节课的教学效果感觉良好,在学习知识的同时发展了学生的思维。下面就如何发展学生的思维谈谈自己的一些看法。
暴露思维过程是发展学生思维的有效手段。教学活动中,师生双方都必须充分暴露思维过程。教师经常把自己置于困境中,然后再现从中走出来的过程,让学生看到教师的思维过程。学生自己动脑、动手,在尝试、探索的过程中,鼓励学生发表自己的看法,充分暴露学生的思维,通过多维的交流,从而找到解决问题的方法。我们要在暴露学生思维的过程中,评价学生的思路,改善学生的思维品质,着重培养思维的敏捷和灵活,使他们在分析中学会思考,需要把面对的问题通过转化、分析、综合、假设、对比等中求得简捷,在运用中变得灵活,在疏漏后学得缜密。
系统性、逻辑性是数学的主要特征之一。数学本身的知识间的内在联系是很紧密的,各部分知识都不是孤立的,而是一个结构严密的整体。数学教学主要是思维活动的教学,只有根据学生的认知特点,引导学生按照思维过程的规律进行思维活动,才能提高学生的思维能力。为此,教学应从较好的知识结构出发,把教学的重点放在引导学生分析数量关系上,依据知识之间的逻辑关系和迁移条件,引导学生抓住旧知识与新知识的连接点,抓住知识的生长点,抓住逻辑推理的新起点。这样就自然地把新的知识与已有的知识科学地联系起来。新的知识一经建立,便会纳入到学生原有的认知结构中去,建成新的知识系统。
在课堂教学中,教师生动活泼的教学语言,具体的教学内容,灵活多样的教学形式,在唤起学生数学思维情趣的基础上,适时适度地调控,让学生在"心求通而未通"、"口欲书而不能"的"愤徘"状态之中,这种"道弗牵、强弗抑、开弗达"的思维激发,有助于学生的数学思维欲望的提高,有助于学生探究数学知识,数学问题的兴趣。这样,学生的思维活动也就启动、开展,学生的数学思维能力和素质得到发展,得到提高。
最新不等式教学反思(篇7)
今天的学习内容一次函数与一元一次不等式是上一课内容的延续,一个问题的三种不同的表述是最难理解的,求不等式ax+b>0的解集,等价于求x为何值时函数y=ax+b的值大于零,等价于求直线y=ax+b在x轴上方的部分x的取值范围,同样的,求不等式ax+b<0的解集,等价于求x为何值时函数y=ax+b的值小于零,等价于求直线y=ax+b在x轴下方的部分x的取值范围。
在今天早上我们几个老师的共同研究下,我的设计教学程序时,作了如下安排:用图象法求方程2x—6=0的解,进而研究求不等式2x—6>0的解集,转化为求x为何值时,函数y=2x—6的值大于0,转化为求x为何值时,直线y=2x—6在x轴上方,在此基础上进行练习前置学习的训练,提升到一般情况:利用图象回答,x为何值时,方程mx+n=0的解,不等式mx+n>0的解集,不等式mx+n<0的解集,例题2的教学是本课难点,每个老师在课堂上用各种不同的方法进行分析,协助学生理解。
陶老师在教研课上的处理方法很好,由学生分析,取x的值计算函数值进行比较,评课交流时,老师们提出还可以列举更多的x的值进行计算比较,学生理解起来更为便利,在这个问题上,我在辅导学生时,从交点出发通过函数的增减性研究解读,感觉学习困难的学生还是好理解的,在下一课的课上,用这样的分析方法再做辅导,看效果应该可以的。不断地学习,不断地实践,不断地提高。
最新不等式教学反思(篇8)
数学知识体系是一个前后连贯性很强的知识系统,在空间与图形领域,中小学数学主要体现为由直观几何、实验几何向论证几何逐渐过渡。初中数学教师在教学中要注意与小学教学相衔接,适当复习小学内容,在小学的基础上提高。下面从中小学衔接的角度,对“平行四边形的性质”(新人教版)这节课做了一些反思。
一、反思备课
备教材:
备课时,我首先查阅了本届学生小学时学过的教材。发现,小学教材中“平行四边形”的定义用粗体作了明确界定,“对边相等”的特征学生是用度量或折叠的方法得到的。平行四边形的面积是通过割补转化为长方形进行重点学习的。所以学生应该对平行四边形的概念和特征已经有所认识并会求其面积。
“平行四边形”是全章重点内容之一,它是在学生已掌握了平行线的性质、全等三角形和多边形的有关知识的基础上研究的。平行四边形是平面几何的又一典型图形,它既是以前知识的综合应用也是下一步研究各种特殊平行四边形的基础,具有承上启下的作用。矩形、菱形、正方形的性质和判定都是在平行四边形的基础上扩充的,它们的探索方法也都与平行四边形的性质和判定方法一脉相承。梯形的性质、三角形中位线定理等的推证,也都是以平行四边形的有关定理为依据的。而“平行四边形的性质”又是本章的第一节,这一节的学习对学平行四边形的判定和其它特殊四边形起着关键的作用。教材中平行四边形的“对边相等”、“对角相等”、“对角线互相平分”三个性质是分两部分说明的,因这节课是采用探索式教学法,预计学生在同一节课中就能够得到这三个性质,所以把三个性质放在一节课中进行处理。
备学生:
为了清楚的了解学生的认知情况,我深入学生中间,调查了学生对平行四边形的掌握程度。发现,将近90%的学生能够说出平行四边形的定义;50%多的学生了解“平行四边形对边平行且相等”这一特征;而对“平行四边形对角相等”和“对角线互相平分”的性质,只有很少一部分学生因超前学习才了解。鉴于学生的认知结构,我把探索平行四边形的性质放在了角和对角线方面。
备教法:
《数学课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。我看了一位老师针对平行四边形上的一节公开课。这位老师可能是为了调动学生的主体性,让学生对“平行四边形”下一个定义。结果,学生把平行四边形的定义和所有判定方法全部说了出来,并说出这样定义的原因。听起来真是婆说婆有理,公说公有理,难以分辨用哪一个做定义更合适。最后老师说习惯上用“两组对边分别平行”来定义。看了这节课后再结合小学教材和学生的认知情况,我认为,小学教材已对“平行四边形”作了明确叙述,在“平行四边形”是如何定义的这一方面再做文章只能又陷入老师给学生解释为什么不能用平行四边形判定(学生并不知道是判定)来定义,而定义本身常常又是一个规定性的东西。因此,我在这个地方采取让学生事先准备好两张完全相同的三角形纸片,然后在课堂上让学生拼出平行四边形并把拼的图形展示在黑板上,在调动学生积极性的同时,既能发现学生对平行四边形的理解情况,也为下面平行四边形性质的证明做好铺垫。
在探索平行四边形性质上,采取自主探索、合作交流的方式,并把探索到的结论和证明过程填写在事先发给的探究报告里,使学生的思维和落实密切联系在一起。让学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,感受公理化思想。
恰当的利用多媒体课件。为了让学生对平行四边形的三条性质有更明确的认识,我从旋转的角度准备了形象生动的性质探索课件。
整节课采取探索式证明方法,即采取观察、猜想、直观验证、推理证明、得出性质的方法。向学生渗透化复杂为简单,化新知为旧知的“转化”的数学思想方法。
二、反思上课
进入初中以后,随着学生逻辑思维能力和抽象思维能力的加强,不能再仅局限于一些结论的获得,而要注重结论的推导过程,揭示知识的来龙去脉,也就是不仅要知其然还要知其所以然。教材也要求学生要对发现到的结论进行推理论证。
对“平行边形的对边相等”这一性质在小学是通过观察、测量对边的长度进行比较得到的。能否证明这一结论呢?学生在学多边形知识时曾经采取把多边形分割成三角形来研究,所以课堂上当对这一结论进行证明时,学生很快想到把四边形分割成三角形利用全等的知识来解决。但学生在推理时符号语言说的还不太顺畅,推理也还缺乏规范性。所以在学生的叙述下教师进行规范的推理板书,给学生做出示范。
最新不等式教学反思(篇9)
一、教材内容的地位与作用:
函数与方程、不等式在初中数学教学中有重要地位,函数是初中数学教学的重点和难点之一。方程、不等式与函数综合题,历年来是中考热点之一,主要采用以函数为主线,将函数图象、性质和方程及不等式的相关知识进行综合运用,渗透数形结合的思想方法。
二、教学设计的整体构思
㈠ 教学目标
1.复习和巩固一次函数和二次函数的图象与性质等基础知识。
2.加强一次函数,一次方程和一元一次不等式三者的联系
3.加强二次函数,一元二次方程和一元二次不等式三者的联系
4.会结合自变量的取值范围求实际问题的最值
㈡ 教学重点
1、函数、方程和不等式三者的区别与联系。
2、运用函数、方程与不等式的关系及转化的思想方法解决函数与方程、不等式的综合问题。
㈢ 教学难点
对实际问题中二次函数的最值要结合自变量的取值范围及图像来解决,从而深化数形结合的思想方法。
㈣ 学情分析
教学班为中等层次的班,学生的学习基础比较均衡,学习积极性高,但是拔尖的学生不多。本节课在学生第一轮复习了函数、方程、不等式有关知识的基础上,进一步研究解决函数、方程、不等式之间的联系与区别及三者相结合的综合题。
㈤ 教学策略
以学生练习为主,讲练结合,通过环节二、环节三的练习及课件突出本节课的重点:加强了函数、方程和不等式三者的区别与联系,从而渗透数形结合和转化的思想。利用环节四让学生学会用函数和方程的思想来构建函数模型来解决实际问题,通过小组讨论,用集体的智慧突破本节课的难点:求实际问题的最值时,需对所得的函数结合自变量的取值范围及结合图像才能求得最值,从而让学生更深刻体会数形结合的数学思想。
三、教学反思:
㈠ 结构严谨,环环相扣,层现清晰
本节课用五个环节组织教学。环节一是知识的回顾,这部分复习了函数、方程、不等式的基础知识,引入部分简单过渡,激发兴趣,为后面作铺垫。环节二的问题1是有关一次函数,一次方程和一元一次不等式的联系与区别,环节三的问题2是二次函数、一元二次方程和一元二次不等式之间的相互转化,这两个环节的两个问题是姐妹题,加强了学生对一次函数和二次图象的认识以及通过观察函数图象得出变量的范围,渗透数形结合的思想,同时由环节二的一次函数过渡到环节三的二次函数,由浅入深地把函数、方程、不等式三者联系起来。然后过渡到本节课的难点――环节四:二次函数的实际应用。环节四是实际问题的应用及其变式训练,这一环节的训练,旨在拓展深化,发展学生智能,让学生学会用函数与方程的思想来解决实际问题,通过对实际问题的分析,寻找出变量之间的函数关系,并能利用函数的图象和性质求出实际问题的答案。体会函数模型是解决实际问题的一种重要的数学模型,便于获得解决问题的经验。养成积极探索的学习态度,感受数学的应用价值,培养学数学用数学的观念,这也是本节课的知识点的拓展与提升。最后环节五的总结提高部分由学生讨论归纳,对整节课的内容进行回顾整理,让每一部分的内容重新清晰呈现。五个环节紧密联系,层层递进,环环相扣,清晰明了地突破重难点。
㈡ 教师为主导、学生为主体,把课堂还给学生
在教学的过程中,学生是教学的主体,所以发挥学生的主动性相当的重要。本节课是在学生第一轮复习了函数、方程、不等式有关知识的基础上教学的,是学生学习的又一次综合与扩展。如何引导学生进一步研究解决函数、方程、不等式之间的联系与区别及三者相结合的综合题,是我设计本堂课时应特别注意的。我设计的教学方法是讲练结合,学生练习用了20-22分钟,学生小组讨论3-4分钟,老师大概讲了12-15分钟,引导.提问个别学生分析问题及回答问题约8-10分钟,整节课以学生的练习为主,留充分的时间和空间给学生思考。教师精讲多练,且能讲在关键处,注重引导学生分析问题并解决问题,师生互动较多,教学方式灵活多样,充分调动了学生学习的积极性。整节课充分体现了新课标的教学理念:教师为主导、学生为主体,把课堂还给学生。
㈢ 及时小结,及时反馈
课堂教学是一个有序的教学过程,教材知识的内在逻辑顺序和学生认知结构发展的顺序决定了教学过程必须是一个循序渐进、环环相扣的过程。因此,对于每一环节的教学,我都能恰到好处进行点评、反馈及小结,总结该环节用到的知识点及其解决问题的方法与技巧,对教学目标中的思想内容、能力要求、知识要点进行简明扼要的梳理概括,这样既可概括前一个问题的主要内容,有助于学生理解、掌握,又能巧妙地引出后一个问题的讲解。起到承前启后的作用,使知识有机衔接起来,形成一个有序的整体,既可使整堂课的教学内容系统化,增强学生的整体印象,又可以促使学生的思维不断深化,诱发继续学习的积极性。
㈣ 课件精美,提高效率
本课节主要是以PPT载体,中间穿插了几何画板,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启发学生思维。通过课件,充分体现了数形结合,突出了本节课的重点:方程或不等式的解实质就是函数值y取特殊值时对应自变量x的取值.从而使题目化难为简。另外对于一些重要地方用批注形式加以解释,引起学生的有意注意,让学生更容易理解、印象更深刻,大大提高了课堂教学的有效性。
㈤ 小组讨论,突破难点
本节课的最亮点是环节四问题3的变式练习“若把‘墙长20m’改为‘墙长15m’,情况又会如何?”的处理,我采用的方法是让学生通过小组讨论找出本题与问题3在解答上的异同,并要求学生把不同之处用另一颜色笔在问题3的求解过程的基础上改动,然后引导学生(个别提问)分析讲解,老师再用PPT演示加以点评。学生通过此变式训练能发现当二次函数顶点坐标的纵坐标不是最值时,需对所得的函数结合自变量的取值范围及结合图像才能求得最值,学生更深刻地体会了数形结合的数学思想。数学课堂上也显示出情感态度价值:用集体的智慧突破本节课的难点,学生有了成功的喜悦。
四、不足之处
环节三的巩固练习的反馈,我采用课件演示讲解。如果用实物投影来点评学生的答案,更深入一点讲解,教学效果会更好。
最新不等式教学反思(篇10)
回顾本节课,我有以下感受:
1、整体的思路比较清晰:
先从实际生活中遇到的问题出发引出一元一次不等式组的概念(同时也体现了数学是源于生活的),然后通过练习进行辨析,并让学生自己归纳注意点(巩固概念),再接下去是应用新知、巩固新知、再探新知、巩固新知、探究活动、知识梳理、布置作业,整个流程比较流畅、自然;
2、精心处理教材:
我选的例题和练习刚好囊括了解由两个一元一次不等式组成的不等式组,在取各不等式的解的公共部分时的四种不同情况,以便为后面的归纳小结做好准备;
3、能给学生以鼓励,能较好地激发学生的学习兴趣;
比如在知识梳理环节安楠同学区分了解一元一次不等式组和解二元一次方程组是不一样的,它们是有本质的区别的,我觉得她非常善于总结、类比和思考,所以我及时予以肯定;
4、在对整节课的时间把握上有所欠缺,致使拖了堂,当然这也存在着经验不足,在做课件时没预先设计的问题;如果我再上一次这个内容我会把探究活动直接作为学生课后探究的问题,而且在小结后我将让学生利用本节课所学知识解决引例中的问题,让学生领会到数学也是应用于生活的,让学生能体会到所学知识的用处,借此也可引出下一节课,起到抛砖引玉的作用;
5、在知识梳理环节有同学提出疑问:
若出现两个一样的不等式它的公共部分怎么找?若有三个不等式组成的一元一次不等式组它的解又是怎样的?能否直接就在数轴上画出它的公共部分等问题时有些没能及时给学生以肯定,有些引导不够到位。
最新不等式教学反思(篇11)
本节课我采用从生活中假设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间、生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而示得,口欲言而示能”的境界,使他们有兴趣进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。
下来出示的问题1从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。
问题2、3的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
过问题4让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握、发展学生的辩证思维。
在运用符号评议的.过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予。这样既调动了学生的学习兴趣,也培养了学生的符号评议表达能力。
练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答音量的时候有点耽误时间。
让学生通过总结反思,一是进一步学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育丰功,用自信蕴育自信,学生以更大的热情投入致以捕捞学习中去。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。
6的加法教学反思800字
有备无患,是一名教师所必备的素质,教案必须掌握教学大纲规定的基本知识和技能,要理解透彻,记忆牢固,掌握熟练忽视教案设计,则不仅难以取得好的教学效果,而且容易影响教学任务的完成。怎么写教案,才能把重点总结出来呢?考虑到你的需要,幼儿教师教育网小编特地编辑了“6的加法教学反思”,欢迎大家参考阅读。
6的加法教学反思(篇1)
开学已经一周,学生已经知道了两位数加两位数不进位加法的竖式及两位数加一位数的口算加法。因此我设计这节课时,结合数学20xx版《数学课程标准》我觉得学生完全可以根据已有的知识,通过自主探究和小组合作的方式,得出两位数加两位数进位加法的计算方法。学生用小棒、计数器、凑十法都在我的预料之中,但是用竖式计算出现的几种情况,尤其是进位1写的位置多样,我真没有预料到。
在上课之前我已经给学生利用课余时间进行了预习,预习的方式为我在黑板上写出几个问题,结合问题去预习新课!这节课我课前预习的问题预设为:
1、结合问题该如何列式?
2、用什么方法解决问题?
3、若列竖式该如何列竖式?应注意什么?
4、列完竖式后,个位相加满十,怎么办?
为了更好的让学生知道进位加法的计算方法,我首先先让孩子们自己去独立思考后,然后在小组交流算法,最后全班小组汇报的方式去上好这节课。汇报时学生的方法是多样的,有摆小棒法,计数器,有数数凑十法和列竖式的方法去解决同一个问题,充分的体现了算法的多样化。说完之后,对比不同的方法,从而优化出最优方法——列竖式。于是,我接着引导竖式如何去列?着重问为什么?让学生能用自己的话说出两位数加两位数的计算算理,进而总结两位数加两位数进位加法的计算方法。多找学生说算理,培养学生的语言组织能力和表达能力。
在上完本节课后,仔细想想,觉得本节课的成功之处在于学生能熟练的说出计算的算理及方法。不足之处在于时间分配不太合理,对于课堂检测环节时间太少,以至于学生在写进位1的时候,写法成多样化,但都是错误的趋势。因此,我觉得在以后的教学中,更应该注重教学时间的分配问题,争取在同样的时间里,创造和谐,有趣,生动,活泼的高效课堂。
作为刚刚迈入教育界的我,结合数学课程标准,学习课标,用课标,写好每一节的反思与思考以及其他教师的建议是提升自我素质的良好方法。
6的加法教学反思(篇2)
《笔算两位数加两位数的进位加法》是在学生已经掌握了两位数加一位数进位加法口算和两位数加两位数不进位加法笔算的基础上进行教学的。由于学生已经有了知识经验基础,所以本节课主要让学生在自主探索的基础上提炼出问题,再进行合作交流得出计算方法,从而让学生理解个位满十向十位进“1”的算理,并能正确进行笔算加法。
整堂课“运用低段教学环节”将算法思维、算法多样化渗透于“创设情景,激发兴趣;图引导学,提炼问题;解决问题,构图小结;反馈练启,体验成功;拓展创新,再构提升”中。体现数学知识从生活中来,又用数学解决生活中的相关问题的教学理念。
课初,先由学生自主观察主题图,找出已知条件,然后根据已知条件提出问题,再从学生提出的问题中提炼出本节课要探究的问题“他们一共有多少张邮票?”,然后列式解答。在本环节中,学生都能积极参与提问,由于学生们都想提问题,而时间有限,所以我巧妙地让同桌之间互相提一个问题,这样既给了学生充分发表自己见解的空间,也合理利用了时间。
课中,进行了两次小组合作。第一次是各组学生合作交流“如何计算”,学生在交流过程中,得出了多种方法,如:摆小棒、口算、拨计数器、竖式等,并且学生都能主动上台与其他组的同学进行交流。第二次是在学生计算完“例题”和“试一试”后,合作讨论“列竖式时需要注意什么”这一问题,引导学生总结出笔算进位加法时需要注意的事项,并根据学生回答适时构图小结,且把注意事项编成儿歌的形式,不仅利于学生记忆,而且也能提高学生学习的兴趣,提高计算的正确率。
最后,通过拓展创新题,不仅使学生感受到了笔算加法在生活中的应用,同时也拓展了学生的思维,提高了学生解决问题的能力。在全课总结时,先让学生根据构图复述本节课重点,帮助学生巩固记忆笔算的方法,而后让学生畅所欲言谈收获,提升学生概括能力及语言表达能力。
但是整堂课上完后我觉得还有些不足:
1、在学生汇报交流时,我虽然及时点拨,但没有强调“计算时应先从个位加起”、“个位和个位相加的和应如何在竖式中写”,进而造成学生在后面的练习计算中有从十位相加的,也有不进位的,或是进位后忘记加的。
2、在出示儿歌后,直接让学生读,所以造成有些学生因不认识字而不会读。应先一句一句的领读,然后再一句一句的帮助学生分析,进而有利于学生记忆儿歌及更好地掌握计算方法。
针对以上问题,在今后设计教学设计时,一定要做到课前精心准备,不仅备教材,更重要的是要备学生,这样才能做到课中善于调控,才能引导学生更好地学习数学知识。
6的加法教学反思(篇3)
本课时是二年级上册的内容,教材提供了教学的基本内容、基本思路。要想使教学内容变的更加丰富,更能激发学生探究知识的欲望,教师就要在尊重教材的基础上,根据学生已有知识、生活经验与当前要讨论问题的实际距离,对原有教材进行开发,创造性的使用教材,为学生创设一个实践与创新的机会,使学生体验到成功的快乐,实现对知识的再创造。
因为在学习这部分内容之前,学生已经学过两位数加两位数不进位加法的竖式及两位数加一位数的进位加法。所以设计这节课时,我特别注意以下两点:
一、根据学生的特点,选用学生感兴趣的素材。一开始,我就创设同学们一起观赏鱼的情境,这不仅是旧知的复习和回顾,而且极大地调动了学生的学习兴趣。在探究新知的过程中,我让学生充分利用已有的知识经验,发现个位上的数相加满10了,怎么办呢?然后引导学生自主探究算理、通过摆小正方体,满了十个先把他们摆一起,找到计算这道题的关键。最后通过目标明确、形式多样、层层递进的练习使学生进一步学会竖式计算进位加的方法。
二、用好学生的“错误”资源。教学中我善于发现错误背后隐含的教育价值,引领学生从错中求知,从错中探究,充分利用这一“错误”资源。练习中,我把学生出现的错误一一展现出来,让学生自己来发现、改正。我想,这样的课堂才更真实。
6的加法教学反思(篇4)
我把这堂课的立足点放在培养学生的学习能力上,把知识学习作为一种载体,以线—面—整体的观察方法作为设计本堂课的主要线索,从实际出发,层层递进,第一个环节采用的是自主观察的方法,第二个环节采取引导观察的方法,第三个环节提供自主学习的空间,使学生对每个层次的学习都感到十分有趣,不同的学生得到不同的发展需要。我观察了学生在这堂课中的整个学习过程,发现学生的表现既自主又自我,是积极主动的发现者、探索者、实践者。许多学生不由自主地从位置上站了起来,一个个高举着小手争先恐后发表自己的意见和建议。小组内经常会看到孩子与孩子之间的交流与争论。我想这可能是新的课程标准下,学生应有的学习方式。
重新审视这堂课,发现也有不少败笔之处,比如本堂课就出现了这样的一个片段:当学生从上往下观察时,发现结果分别是1、2、3时,我就急于带领全班小朋友在没有验证的前提下,来齐读后面可能发生的结果4、5、6……这无意中破坏了学生的猜测、验证的过程,用新的课程标准来衡量这就是只注重过程不注重结果的表现。
6的加法教学反思(篇5)
在上周上完这节《两位数加两位数进位加法》课之后,数学组进行了教研活动,让我也有机会听到各位老师对我这节课的一些意见和建议,结合老师们的评价,我又一次对这节课在设计上的一些细节进行了思考,针对学生在学习进位加法上存在的困难分析原因。有如下几点收获:
一、完整讲解算法。
本节课我把教学的重点放在了解释算理上,解释“个位满十要怎么办?”怎么出现进位的‘1’的?”对于这些问题,我通过摆小棒来解决突破。但是,我忽略了一个非常重要的问题,那就是:班级里的部分学困生,搞明白了个位上怎么算,但是进了位之后,怎么算就很模糊了。于是就有学生在作业里反应出一个现象,个位满十只管进位,小“1”也大大方方地写在横线上,但进位之后的十位加法,依旧如不进位加法一样算。并不把这个“1”当一回事儿。再问她,这个“1”怎么不算啊?他(她)也是一脸的茫然。
分析原因:学生明白了个位满十要进位,但怎么进位并没有很好的掌握,主要因为我在教学中也是一句话带过。没有在新授的最后,概括地、完整地讲述计算的过程,也没有引导学生来说一说。可能对算理讲得比较多而忽视了算法。张老师提到的建议颇有几分道理。算理固然要讲,但讲了也不一定学生们都懂,因为学生之间的存在一定的差异,但算法一定要讲透,先学会怎么算,等学生的知识水平成长到一定程度,他就自然而然地理解了算理。注重算理的同时,不能忽视了算法的重要性。
二、练习中的连续进位的问题设置合适吗?
在专项练习中,有一道4555的连续进位题,当初在备课时,也考虑了一番,是否将此题列入本节课的练习中。因为连续进位超出了本节课的知识范围,但在书本的课后练习里又有涉及。在评课过程中,老师们的意见出现了分歧。在教研活动之后,我认真回想了当初课堂上的情况,学生在连续进位的时候,不知道十位和百位上的数要怎么填,甚至出现了550或10100等情况。而我给出的只有口头上的解释,学生似懂非懂的情况下,我开始讲解下一题。显然,这道题对学生而言是有困难的。学生掌握了个位满十向十位进“1”,但是学生在遇到十位也满十的时候,就手忙脚乱,不知所措了!事后我考虑再三,认为这题不放在练习里,放在第二节课上,而且可以借助小棒、正方体或是计数器等教具帮助学生理解连续进位。这样,学生的理解可以更透彻,掌握可以更扎实。
三、比较的方法不仅仅在利用“<”和“>”
在解决“带50元钱够吗?”的问题时,我直接想到的是拿算出来的56与50比较,因为56>50,所以不够。老师评课的时候,提出了一个很好的建议:比较两数的大小,不仅仅只能用直接比较的方法,还有很多其他的方法,比如减法,再比如以后学习分数的性质之后利用的除法等等。而我的教学就将我思维的局限性固着了学生的思维,不利于知识的拓展和学生发散思维的发展。
6的加法教学反思(篇6)
两位数加两位数连续进位加法是在“万以内的加法(一)”的基础上教学的。掌握连续进位加法的计算方法是本课的重点。以往计算教学总是让学生感到比较枯燥,为避免这一点,又顺利达到教学目标,在教学中我努力做到以下三点:
一、通过解决实际问题来学习计算。
《标准》提出要让学生在生动具体的情境中学习数学,将应用题与计算有机结合。本课就从学生熟悉的关于中国特有动物的统计表中获得数学信息,产生数学问题进行计算解答,使学生感到计算与生活的联系。
二、注意运用知识的“迁移”方法来学习新知。
运用迁移,使已掌握的知识技能对新知识、新技能的学习产生积极的促进影响,是经常采用的有效方法。学生已学过几百几十加几百几十的进位加法,本课通过对旧知的回顾,激起了学生对加法计算法则的记忆,再引导学生采用尝试、讨论的方法学习新的内容,充分发挥了知识的迁移效力,又体现了学生学习的自主性。
三、多种形式的练习提高计算的准确率。
针对计算的枯燥,在巩固的环节中,我设计了形式不同的练习题让学生练习,激发学生做计算的兴趣。
一节下来,我发现虽然进位加法不是新知识,但学生在计算连续进位的加法时容易发生忘记加进位1的情况,造成错误率较高。所以除了提高练习的强度外,还要有一些针对性的练习,来强化提示学生容易忽视的问题。
6的加法教学反思(篇7)
今天的数学课堂教学很顺利,学生反应比较灵活。在计算35+89的计算中学生大致出现两种情况:第一种,30+80=110,5+9=14,110+14=124;第二种是笔算。或许课堂太顺利了,于是我忽视了对计算方法清晰的演示,只是利用学生的板演进行讲评,算理的归纳也显得简单,而作业则要求学生全部独立完成,为是了解学生真实的计算水平和状态。作业批改中发现不够理想,错误情况
原因1计算基础性错误;
原因2:除了做一做的第1题,其它计算全部是看横式直接写得数;
原因3:有4个孩子方法未掌握。
提高措施:
1、巩固训练孩子20以内进位加法;
2、课堂上老师清楚的演示过程看似重复学生的板演,但这样的重复还是很有必要的。
3、培养孩子细心的习惯,要有相应的激励手段。
4、个别困难孩子进行及时的个别辅导。
在自修课中,我和孩子们一起板演、手演了一道笔算计算题,清楚完整地再现连续进位加法的笔算过程,算法清晰明确,操作性强,效果非常好。一页的练习作业还是由学生独立完成,正确率有明显提高,有一半多孩子全对,真的很是安慰。孩子们作业正确率提高的原因或许还有两个:一是在书本作业批改中对于全对的作业老师打上了笑脸,并且告诉孩子们得5个笑脸就能评一个“作业优秀”,同时让书本作业得了第一个笑脸的孩子举手示意。第二个原因或许是通过书本作业的操练,孩子们也在完善和提高自己的计算能力。
好好努力,这是说给孩子们的,也是说给自己的。
6的加法教学反思(篇8)
一、教学内容
教科书第50 ~ 51页
二、教学目标
1、让学生经历对几个事物进行搭配的过程,按一定的顺序有条理地进行思考,并用自己喜欢的方式表示对几个事物进行搭配的所有方案,探索搭配的规律。
2、让学生通过观察、操作、验证、归纳,并主动与他人开展交流,体会解决问题策略的多样性和逐步优化的过程,发展符号感。
3、结合具体,让学生经历解决实际问题的过程,进一步体会数学与日常生活的密切联系,增强应用数学的意识。
4、让学生在探索规律的活动中获得成功的体验,增强对数学学习的兴趣和信心;在他人的帮助下,能及时调整自己的探索策略
三、教学准备
3种点心、2种饮料的贴图;3件衬衫、2条裤子、3条裙子的贴图
四、教学过程
(一) 创设情境,提出问题
谈话:同学们平时早餐喜欢吃什么?如果给你提供汉堡、馒头、蛋糕3种点心,(贴3种点心图)你准备选什么?如果只选1种点心,共有几种选择?
再给你提供牛奶、豆浆2 种饮料,(贴2种饮料图)如果只选1种饮料,共有几种选择?
如果请你选1种饮料再配1 种点心做早餐,你准备怎样搭配?
谈话:看来我们有多种不同的搭配,那一共有多少种不同的搭配呢?猜一猜。
(二) 独立探索,合作交流
1、独立探索
谈话:是不是6种呢?每个小朋友动手验证一下,你能写写画画表示出各种不同的搭配吗?
2、小组交流
谈话:你是怎样选择的,说给你小组里的同学听,比比谁的方法最好。
3、全班交流
谈话:哪一组先来交流你们的方法。
展示,并让展示的学生说说是怎样想的。(如果学生无序找,让其余学生评价这种方法好不好。这一环节要让学生充分交流不同方法)
谈话:刚才同学们都用了自己的方法解决了问题,通过交流你现在觉得哪种方法比较简便?
4、谈话:你能用符号再来解决这个问题吗?
5、教师贴出符号。谈话:这是老师用的符号,谁来说说怎样选择,才能做到既不重复又不遗漏?
(1) 边演示边小结学生找的顺序:先找1种饮料,可以分别和3 种点心搭配,两种饮料就有2个3种不同的搭配,共6种。
(2) 谈话:有没有其他的找法了?边演示边小结学生的方法:先找1种点心,可以分别和2种饮料搭配,3种点心一共有3个2种搭配,共6种。
6、饮料的种数和点心的种数,与有多少种搭配有什么关系?你找到规律了吗?
学生回答后板书:饮料的种数X点心的种数=搭配的方法数
(三) 教学“想想做做”
1、做第2题。谈话:早餐吃完了,接下来你通常做什么事?(上学)
上学前我们搭配一套衣服穿。
出示一组服装,说说有些什么衣服?(3件衬衫、2条裤子、3条裙子)
问题1:穿衬衣和裙子,有几种不同的搭配方法?学生独立解决。小组里说说想法。(3X3=9种)
问题2:穿衬衣和裤子,有几种不同的搭
配方法?学生独立解决。小组里说说想法。(3X2=6种)
问题3:不管怎样搭配,一共有多少种不同的穿法?学生独立解决。小组里说说想法。(方法1:6+9=15种。方法2:3X5=15种)
问题4:你最喜欢怎样搭配?
2、做第1题。谈话:穿上你最喜欢的衣服,我们一起到学校去。今天老师要带大家到少年宫去,(出示路线图)说说你获取了什么信息?要我们解决什么问题?学生独立解决。小组里说说想法。
3、谈话:少年宫双休日开设了很多兴趣班,你知道星期六开哪些班,星期天开哪些班吗?如果两天你都去少年宫你准备怎样选择?一共有几种不同的搭配?
五、小结拓展
谈话:生活中有很多有趣的搭配,你找到搭配的规律了吗?同桌说说,生活中还有哪些奇妙的搭配?(小组合作出题)
解读:
1、创设了充满情趣的问题情境。
《数学课程标准》强调数学与现实生活的联系。本课教师选择了生活中最常见的搭配,如:早餐、服饰、兴趣班课程的选择等搭配问题,并有几句过渡语很自然地把几个环节串成一个有机整体,课堂充满生机。
2、让学生经历知识的再创造过程。
教师重视让学生找的过程,提倡解决问题方法的多样化,让学生通过独立探索、小组交流经历知识的再创造进程。
3、引导学生构建数学模型。
本课让学生经历了从实物到图、从具体到抽象的几个过程,并通过“饮料的种数和点心的种数和有多少种搭配有什么关系”这一问题引导学生逐步构建数学模型。
6的加法教学反思(篇9)
一年级上册教材在最后一个单元安排学习20以内的退位减法,这是本册学习的重点和难点内容,20以内的退位减法是在学生学习了10以内加减法以及10加几等与十几的基础上学习的,学生如果能熟练背会20以内退位减法的题目,能帮助他们顺利解决很多后续的学习。所以这部分内容非常重要。
这部分内容分两段教学,我是这样做的:
一、学习9、8、7、6加几
学习20以内的进位加法,最先学习的就是9+几,学习9+4时,我先带学生复习了凑十歌和10加几等与十几的题目,出示例题后,我让学生先摆小棒算得数,学生有的想到接着数的办法,10、11、12、13,。有的学生就想到了用凑十法算,先给9一根凑成10,10再加3等与13,我让学生代表分别汇报了这两种想法,然后问学生喜欢哪种办法,班里学生都说喜欢凑十法。于是就多练了几遍凑十法,学生熟练掌握了。而且初步形成认识,是把小数拆开给大数凑成十。
学生学习9+几时还比较顺利,学习8、7、6加几时有的学生有点迷糊了,还是把小数拆成1和几,于是我又引导学生想,你需要把大数凑成十,因此拆小数时要好好想一想,到底拆成几和几合适。当时有一些家长也给我说有的孩子有时犯迷糊,我安慰家长不用着急,一年级的孩子出现这种情况很正常,以前每年我们都遇见过,多练习就好了。
我还告诉学生和家长,用凑十法计算时,一般是拆小数给大数凑成10,也可以拆大数给小数凑成10,要灵活运用。凑十法只是一种计算方法,还是要尽快让孩子把得数背下来。
我还告诉学生和家长,以前学的10以内加减法,和现在学习的20以内的进位加法必须让孩子背会得数,因为20以内的进位加法非常重要,例如:如果能熟练背会,填未知数9+( )=15这种题就能快速做出来,不用再费脑子计算思考。再比如以后要学习20以内的退位减法,14-6=,学生只要会背6+8=14,那么直接就能想到14-6=8。试想,数学考试时那么多进位加法题目,孩子怎么可能每道题都现算,现想得数?
一天上课我检查9加几和8加几,发现多数孩子背的不熟练。有家长签字说孩子只能提高计算速度,背会得数可能性不大。我告诉这些家长不要低估了自己孩子的能力。以前我们教的每一级学生都要求背会,难道我们班的孩子就背不会?只要天天练习,天天背,一定能背会。
二、5、4、3、2加几
前面学习的9、8、7、6加几,一般都是大数加小数,一般用拆小数给大数凑成十,学习5、、4、3、2加几,都是小数加大数,最快的计算方法是先想大数加小数等于多少,这进一步体现了9、8、7、6加几的重要性。如果想不起来大数加小数的得数,也可以用凑十法计算,拆小数或大数都可以。在课堂上我发现经过几天的训练,多数学生对于9、8、7、6加几的得数已经熟练背会了。
总之,学生学习20以内的进位加法时,所有的方法都只是一种计算方法,最快的方法就是把所有题目的得数熟练背会,做到张口就来,只有这样,才能提高做题的速度和正确率。希望全班孩子在老师和家长的帮助下,都能尽快背会所有题目的得数。
6的加法教学反思(篇10)
反思这节课的教学,存在着一些优势和不足的地方,主要有以下几点:
(1)通过回顾旧知的学习,再转化为新知,学生很容易发现两位数加两位数进位加法和不进位加法的区别,对理解算理,突破教学难点有很强的针对性。其次,变摆小棒为在计数器上拨珠来理解算理很算法,给学生留下了深刻的印象。对于学生理解算理和突破教学难点有很强的直观引导作用。
(2)在学生通过拨珠的操作过程理解算理时,引导过于急切,没有给学生留下相应的思考余地,如果在这个环节给学生留下足够的操作和思维空间,这样对学生理解算理就更有帮助了。
(3)在讲解竖式的写法时,为了让学生更好的理解进位算理,我本来设计了8+5=13结果中个位1和十位1的走向,以及25+38=63结果中动画效果,但在实际教学中,我高估了学生的理解能力,动画显示过快,导致学生对进位这一步骤的印象不够深刻,练习时容易忽略加上进位1.
(4)让学生讨论的时间可以稍短,这样就有足够的时间独立完成两道笔算题,以进行教学效果的测评。
在今后的教学中,我将更多的去钻研教材,不仅要备教材,更要备学生,以求达到最佳的教学效果。
雪孩子教学反思800字
一朝沐杏雨,终生念师恩。教案可以把学生从广泛的教材中解放出来,好的教案有助于教学水平的提高,你会为应该怎么寻找一篇好的教案而忧愁嘛?相信你应该喜欢幼儿教师教育网小编整理的雪孩子教学反思,请阅读,或许对你有所帮助!
雪孩子教学反思(篇1)
我始终认为,培养学生丰富的想象力尤为重要。从小让孩子们伴随童心、插上想象的翅膀,畅游在想象的海洋中,将来才会做出别人想不到的事、挖掘出别人没挖掘到的财富、创造出更伟大的奇迹。没有想象力何谈创新能力。
在教学《雪孩子》一课时,课文是以雪孩子变成气飞到空中不见了为结束。我便请学生想象一下:“雪孩子是一个舍己为人、品德高尚的人,他会飞到哪呢?又会为人们做些什么呢?”学生们有的会说:“雪孩子飞呀飞,飞到一个一年都没有下过雨的地方,看见这里的泥土已经裂开了很多缝,并且都不长庄稼了,人们都快要饿死了。雪孩子找来了许多云,和他们一起变成雨落下来,浇灌了这里的土地。不久,那里的庄稼长出来了、小草漫山遍野、鲜花盛开,到处一片生机勃勃。”有的说,雪孩子去了森林,给大树喝水。去了池塘,和小青蛙做伴……。在学生们都兴致饱满的要说出自己的想法时,我让他们立刻把想说的写下来,再读给好朋友、爸爸妈妈听,学生们不但体会到了想象的乐趣,也获得了写作上的成就感,可以说一举多得,事半功倍。
对同一篇课文,对同一个人物,学生站在不同的角度往往会有不同的感受。如在朗读课文第八自然段时尊重学生的独特感受,让学生根据自己的理解读出不同的感情色彩。有的学生读出了难过,因为雪孩子舍己救人,小白兔失去了雪孩子;也有的学生读得高兴,理由是小白兔得救了,而且雪孩子变成了一朵很美很美的白云是一件好事。学生不同的见解代表了个性化的审美价值,是应该受到尊重的。
本课教学中,我觉得在指导朗读方面还是比较有效果的。如:课件出示课文的第一句话"下了一天一夜的大雪"后,我让学生带着自己的想象读这句话,有的学生就能通过自己的朗读反映出雪的信息。接着出示第一幅插图,通过语言渲染引导学生进入情境,把自己想象成图中的小白兔,分别用"咦","哦!","啊!"续说句子,学生如临其境般的面带一种或疑惑或兴奋或顿悟或咏叹的表情和语气,使语言的感受能力有了很大的提高,在学生尽情地描述中也使雪后的场景更加开阔,更有感染力。又如,在学习课文的第三段时,出示雪孩子的图片,让学生说说这是一个怎样的雪孩子,如果你拥有了这样一个小伙伴,你喜欢吗,你高兴吗顺势引导学生欢欢喜喜地,高高兴兴地读这一段,感觉学生读得也比较有气氛。
“读书百遍,其义自见”。在教学过程中,应充分信任学生,把读的权利还给学生,相信学生能读懂课文,鼓励学生不断探索,寻找自信的力量,在自悟自得中感受朗读的乐趣,培养了学生学习语文的乐趣。
雪孩子教学反思(篇2)
上完了《雪孩子》这节课,我很明显地感觉到:学生作业中存在着“画面内容不够丰富,情感表达不能凸显。”这个问题。我调整了上课的部分内容,将课的重点放在创作内容的启发、引导上,上了一节对比课。这节课淡化了表现技法的探索,通过视频、作品欣赏等方面加强了对雪的感受和思考,加强了创作内容多样性的启发和探讨。从两课作业效果和学生上课的情况看有如下几点感受:
一、缺少生活体验,创作内容较单一。
孩子们生活在南方,缺少生活体验,确实造成了创作内容比较单一的主要原因。
孩子们的画中,雪人的造型比较可爱、多样。但多数同学的构图都是:雪人加雪花。对场景的刻画简单,而且人物动态比较呆板,内容单一,造型比较概念,画面不够生动。
二、侧重技法探讨的课,能较好表现雪景的氛围,学生探究新的表现方法的热情很高,冲淡了对创作内容的思考、表现。
三、侧重创作内容探讨的课,学生没有很主动地去探究如何用不同的工具更好地表现雪。但由于所用的工具比较熟悉,在创作中会出现一些非常童趣的作品。学生创作时造型也比较自由。创作内容相对丰富些。
四、不管是侧重技法课还是侧重创作内容的课,学生对《雪孩子》的学习兴趣还是很高的。
美术课堂的时间是有限的,不可能面面俱到。如何设计课堂的重点和亮点,让孩子们在每一节课中都有所收获,让孩子们在不同环境下都能得到艺术的熏陶。因材施教,这个“材”是“教材”、是“人才”,也是“材料”的“材”。
雪孩子教学反思(篇3)
《雪孩子》是一篇由多幅图及文字组成的课文。按说学习这样的课文,如果能借多媒体辅助教学是最好的,但遗憾的是班上的电脑一直都没有好过,所以学习这篇课文时,也只好放弃利用课文指导学生理解课文的想法了。
学生手里的绘本让我有了新的想法,为什么不让马老师指导孩子们自己画课文插图呢?于是,把这个想法告诉了马老师,并希望她能利用兴趣小组活动时间指导学生完成这些插图,马老师很痛快地答应了。
第二天,满怀希望去找马老师,想看看昨天学生们的成绩如果。没想到,马老师看着我是一个劲地摇头,并告诉我说,孩子们画不出来,我真是失望极了。许是看出了我的失望,马老师请我放心,说这任务由她来完成。听马老师这样说,我心里一阵高兴,这任务由马老师来完成,那一定没有问题了,不过,那可是八幅图呀,两天的时间,行吗?
“没有问题,保证不耽误你上课。”马老师的话让我放下心来,感激的话,自不必再说。
那天与孩子们一起学习课文的情景仿佛就在眼前,虽然已经过去几天了。
学习课文时,我先让学生看第一幅图,并让他们自己说一说图意。从学生的叙述中看出,孩子们词汇的积累真是太少了,孩子们太需要读书,太需要积累了。这个时候学生们已经是预习课文了,为什么在说图意的时候不用课文中的句子呢?这是有积累不会运用的具体表现吗?
看图,说图意,比我预设得要困难得多,尽管如此,也还是指导他们看一幅图说一幅图,遇到学生说不出来的时候,我则提示。后面几幅图比前几幅图说得好,这个时候,他们已经开始明白应该怎样说了。在整个看图,说图意的过程中,孩子们对马老师的八幅画表现出极大的兴趣,观察得特别仔细,每贴上一幅图,他们都会发出“哇”的声音,他们跟我一样喜欢这八幅图。
在后面的学习中,始终没有离开这八幅图,指导孩子看图朗读课文,看图练习背诵课文,在图的帮助下,孩子们很快背会了课文,因时间关系,没能检查孩子背诵课文的情况。这节课学习结束,我有了新的想法。
初接这个班的时候,不少孩子在作自我介绍的时候都说自己喜欢画画,我为什么不能很好地利用孩子们的这个爱好呢?低年级课文,大多是图文并茂,完全可以让他们照着课文画出课文的插图来,对,也就是完成自己的课文绘本。画画的过程,也是他们很好地理解课文的过程。
我不知道班上多少孩子有这样的能力,但有一个算一个,希望越来越多。现在虽说是课文学完了,但我仍是要求他利用双休日完成另外四幅画的任务,一是复习的时候可以用,二是从此四班有了第一本自己的绘本,三是让雨潇给其他想画画的孩子做一个榜样。
雪孩子教学反思(篇4)
《雪孩子》配有八幅漂亮的插图,以连环画的形式讲述了一个雪孩子为了拯救小白兔而牺牲的的童话故事。在教学时,为了全面培养学生的语文素养,我精心的设计,引导学生在理解课文的基础上充分体会雪孩子的善良和勇敢,从而激发孩子对雪孩子更深一步的情感,敬仰!从而教育孩子在生活中热情的帮助有困难的小伙伴。
在课例中,我设计的是边看图说话,边学习课文,这样可以训练孩子的语言表达能力,在表达不出来的情况下,再图文对照,丰富积累。教学时以文本为载体,以图画为支架,练习有感情的朗诵。效果很不错。看着图,孩子说着,我补充着,用激情的语言描述着,精彩的描述创设了一个情感的磁场,75位小朋友被感情包围着,被语言浸泡着,被文字熏染着,置身于这样的环境里,有谁能不增色呢?有谁不为之动容呢?在学到雪孩子化了的时候,小朋友纷纷落泪,那滴滴泪水分明是对雪孩子的心疼与不舍!小朋友们含着晶莹的泪花,读着感人至深的文字,孩子们的声音颤抖了,我分明感觉到了一颗颗火热的爱心在跳动,一种强烈的感情在升腾,那就是爱。
在充分考虑情感态度价值观的同时,语文的工具性也得到了充分的体现,文中的词组的“又—又—”的训练扎实扎实有效,不叫教会了孩子们应该怎么做,而且也请他们判断了什么样的是不对的。重点强调了里边不能填反义词。又如“——真——”怎么样。训练孩子们的感叹句,也丰富多彩。
不足之处,整节课围绕课文进行,对字的教学除了在课始体现了一点其他时间没有彰显出来,对生字的书写就更无时间进行了。这也是我教学的一个盲区,总觉得处理课文生字书写就得让步,单独一节课进行生字书写的指导,不知是否合适。
雪孩子教学反思(篇5)
第一,重视朗读训练,提高学生的朗读能力,因本篇课文篇幅较长,所以有针对性地让学生朗读人物之间的对话,读好人物语气,初读入情,读中生情,通过不同形式的朗读,引导学生在朗读中理解文本,体会感情。
第二,本篇课文首次对学生提出默读的要求,在教学中明确默读要求,不张嘴,用眼睛看,速度比朗读快,让学生尝试默读课文。
第三,引导学生合理想象。为了给学生体工充分想象的空间。引导学生想象小白兔和雪孩子之间玩耍的各种情景,体会两者之间的快乐;体会小白兔家里着火时的危险情况,雪孩子救小白兔的情景,体会雪孩子的勇敢,通过想象,促进对课文内容的理解。
第四,提供多种表达的机会。雪孩子无私的爱感动着小白兔,美好的童话故事感动着我们。在教学中结合文本内容,创设机会鼓励学生进行说话联系。比如,看着雪孩子变成了白云,小白兔心里会想些什么呢?读了这个故事,你想对雪孩子说些什么呢?续编故事,如果雪孩子回来了,他和小白兔之间会发生什么?学生进行说话练习,也是对课文内容进一步的理解,对雪孩子无私勇敢品质的深刻感悟。
走和跑教学反思800字
经验时常告诉我们,做事要提前做好准备。在幼儿教育专业的学生的学习中,常常会提前准备一些资料。资料意义广泛,可以指一些参考素材。有了资料才能更好地安排接下来的学习工作!那么,你知道优秀的幼师资料是怎样的呢?下面是小编精心整理的"走和跑教学反思800字",更多信息请继续关注本网站。
走和跑教学反思 篇1
我今天主要运用了随文释义的方法上了一堂古文教学课《郑人买履》。平时,在教授文言文时我主要以板块式教学来展开的。今天运用“随文释义”的方法,也是一种尝试!
教学过程中我主要抓住题目中的题眼“买”来设计主问题的,并且以“读”为抓手,展开整个教学过程。
在设计问题时,我考虑到学生的认知规律。让他们先明了买鞋的经过,再到结果。在朗读方面的要求,也有一个梯度,要求逐步提升。先是读准字音,然后读出停顿,最后要求读出语气语调。
最后,在理解文意和读中,体悟人物的形象和故事所要揭示的道理。
20xx版新课标中提到“评价学生阅读古代诗词和浅易文言文,重点考察学生的记诵积累,考察他们能否凭借注释和工具书理解诗文大意。”因此,我的课前预习作业是“读课文,并借助书下注释和工具书疏通文意。”我也要求班上学生人手一本《古代汉语词典》。让他们知道学习文言文的方法之一是能凭借注释和工具书理解文本大意。
其次,我在本节课中,让学生在理清买鞋经过的过程中,一定程度上完成了本文重要字词句的理解、掌握与积累。
关于文言现象中的一些语法、句法等问题,我也是在随文释义时点到为止。初一学生刚刚接触文言文,我觉得先了解一下即可。我相信随着学习的深入,三年下来,他们定会在这个有更深刻的认识。而且,20xx版新课标中也说道“词法、句法等当面的'概念不作为考试内容。”所以,在处理“通假字、倒装句、省略句”等文言语法知识时我也简单化处理了一下,让他们知道即可。
纵观这堂课,我觉得在小组合作方面运用的少了些,在具体设计教案时这方面考虑欠妥。还有,文中有一矛盾处,即“已得履”和“遂不得履”是一处矛盾,可惜我在具体讲授时并没有抓住这一精彩点展开更为深刻的交流讨论,或者我也设想,以后再有机会,可以抓住这一矛盾处为切入点,激发学生的兴趣,带动全文的学习。
总之,今天这堂课我运用了“随文释义”法也是一种尝试。有不足之处,请大家批评指正!
走和跑教学反思 篇2
本节课是在学生掌握两位数乘一位数,一位数除整十、整百数口算的基础上展开教学的,突出让学生在具体的情境中,探索并掌握一位数除两位数的口算方法,并能正确的运用所学的知识解决一些简单的实际问题。教学中我把计算教学与解决实际问题相结合,联系学生实际创设教学情境,创造性的使用教材。让学生在现实背景中,探索除法的计算方法、解决实际问题。在教学中,主要体现以上几点做法。
1.提倡算法多样化
由于学生的知识背景及个性差异,面对同一个数学问题、同一道口算题时,学生解决问题的策略和思维方法必然会不一样,他们往往会从自己的生活经验和思考角度出发,产生不同的计算方法。另外,学生在计算时口算的方法也不尽相同。教学中我把计算教学与解决实际问题相结合,让学生在情境中,探索除法的计算方法、解决实际问题。教学中我注重培养学生思维的独立性和灵活性,鼓励学生独立思考,组织学生进行交流,在交流比较中体会算法的多样化。
2.促进学生主体参与
教学中我并不急于提示孩子们怎么做,而是给孩子们足够的时间和空间让他们思考怎么做,当出现问题的时候,则引导学生通过观察发现问题,探索解决问题的方法。
3.尊重学生思维方式
通过“自主―合作―探究”的学习过程,给学生展示自我的机会。在展示与汇报中,学生学会了口算除法的方法,体验到成功的快乐,增强了学生的自信心。
从学生生活出发,从学生的家庭入手,从学生周围环境着眼,是我们对如何实现数学从生活中来到生活中去的几点感悟。教师对教材的理解一定深入,所选择的方法更是不尽相同,不论怎样,只要注意挖掘,就会发现身边处处有数学,数学更是无时无刻不在为我们服务!让我们的数学教学更贴近生活。
走和跑教学反思 篇3
教学本文已经多次,这次有学生提出了质疑:“船长为什么与船一起沉入深渊?”老实说,每次教这课,我也有这样的疑问,只是没有同学质疑,我也就不想深究,怕学生会觉得哈尔威牺牲没啥必要。但这次不同,有学生问:船长为什么要与船一起沉入大海?我觉得船长的牺牲是没有必要的,他完全有机会逃生。如果我们从课文文字上来看,20分钟逃生的时间够了,而且船上其他船员都与乘客一起安全撤离了,按说船长也完全可以撤退。此时的我,真有些担心,怕讲不好会影响学生对于雨果笔下的这位英雄船长给他们留下的高大形象。但是事实是:我们真不能小看了我们的学生,绳伟同学很快举手:“我想哈尔威船长和诺曼底号之间有深厚的感情,我想从这艘船诞生起,船长就和它在一起。在船长心里,它是战友,是亲兄弟。所以他才会选择和船一起沉入海底。”宋思雯说:“在哈尔威船长心中,船长就应该与船共存亡,他是不会抛弃诺曼底号独自逃生的,表现他忠职守”学生的回答真精彩!
由此看来,我们的学生并不是一无所知,也并不是什么事都要我们老师、家长越俎代庖的。他们脑子灵活,求知欲旺盛,接受新事物比我们快,好记性更是我们这些成年人望尘莫及的。因此,我们做教师的。一定不能再用老眼光来审视学生,因为今天的小学生真的不容“小看”。我们要与时俱进,用现代的眼光,依据现代的心理学、教育学规律来走进学生的心灵,了解他们,研究他们。这样,我们才能有的放矢、对症下药,开辟新的教育捷径,少走弯路,更好地为我们的教育教学服务。
走和跑教学反思 篇4
下午上课时,全部内容临近尾声时我发现有些孩子坐不住了(一年级),这时内容没有完全上完,离下课还有十多分钟,但我有感觉再继续我的内容有些孩子可能会“回不来”,心已经走了。这时我听到了铃声,我们离学前班很近,我就做了“倾听”的动作,让小朋友跟我一起听铃声,然后皱皱眉说“老师好象不太喜欢这个声音……,小朋友有什么好的点子吗?“小朋友们一下子来劲的,有的说可以用打呼噜的声音,有的说要歌声,有的说要狼叫,警报,还有的更直接,建议用很可爱的声音直接在喇叭里喊”下课了,下课了——
“我就顺着他们的意思做一些很有趣的动作,象开玩笑一样进行点评,还请小朋友们模仿自己设计的铃声,大家开心极了,十分钟好象变得特别短,最后我发现设计铃声的环节居然跟我们这课内容中的音色能挂上钩,就正好来个很”方便“的小结,小朋友们也高兴,出教室时还口中念念有词!我的感受是有时不必太拘泥与一些规矩内容,一定要把自己的内容讲到自认为很透,抓住一些小小的细节开展教学,让孩子换换口味,我们开展音乐教学的目的是一致的,有变化地开展教学对孩子们很重要,反正条条大路通罗马,过分方正了会扼杀孩子的兴趣!
走和跑教学反思 篇5
《中彩那天》是一篇精读课文,讲述了发生在二战前一个穷苦的汽车修理工家里的故事。故事中的主人公中彩得了一辆自己梦寐以求的汽车,但是他并不高兴,原来中彩的彩票是他的朋友的,但是朋友并不知道,因此他面临着留下汽车还是把汽车还给朋友这一道德难题。最后他毅然把汽车还给了朋友。这个动人的故事反映了一个普通工人的崇高的精神世界,告诉我们,诚信是人的精神财富,它比物质财富更为重要。虽然他失去了梦寐以求的汽车,而得到的是人情和道义,是更多的真正的朋友,是心灵的宁静和快乐。这同样是一笔很大的财富,是金钱所买不来的。
在教这篇课文的时候,我紧紧抓住母亲经常用以安慰大家的“一个人只要活得诚实,有信用,就等于有了一大笔财富。”这句话为切入口,以及当中彩领取汽车时, “我”与父亲迥然不同的神情去引导学生思考,为领悟下文父亲正面临一个道德难题做铺垫。这一处是课文的教学难点,我首先让学生思考什么事道德难题? “道德难题”具体指的是什么?学生很快联系上下文读书回答问题很不错,接着,我又围绕父亲是怎样解决这个道德难题的展开讨论,假如你就是这位生活贫穷,靠一个人的工养活一家六口人的父亲,你的心里会怎样想?这一环节,旨在拓展想象,联系说话,深入体会父亲的内心世界。我觉得这一环节设计的不错。最后我设计了一个拓展阅读,当讲完课文后,我给学生讲述了一则真实的故事,并设计了两个问题:
1.想一想,中国留学生缺的是什么?
2.请你送给这位留学生一句话。
这一环节的目的是通过课外的一则资料,结合课文中学到的知识,帮助学生实力正确的价值观。
一节课下来,不足之处还是很多的:在讲课的过程中,由于自己总给学生提问,就束缚了学生的思维,学生只能根据老师的提问来回答问题。也使学生在学习这节课显得很被动。因此,学生的积极性没有调动起来。在练习说话的时候,我对学生的评价语激励性不高。板书不及时,这与平时自己的课堂随便有很关系。
每节课下来,总是出现这样那样的问题,很是遗憾。但我会在今后的教学中,取长补短,使自己的教学趋于完善。