五年级数学难点教学设计教案分享6篇
发布时间:2022-10-08 人教版小学数学教案 小学数学教案模板 小学数学教案通用为了使每堂课能够顺利的进展,因此,老师会想尽一切方法编写一份学生易接受的教案。对教学过程进行预测和推演,从而更好地实现教学目标,那吗编写一份教案应该注意那些问题呢?下面是我们精心收集整理,为您带来的《五年级数学难点教学设计教案》,欢迎大家阅读,希望对大家有所帮助。

五年级数学难点教学设计教案 篇1
教学目标
1. 了解计数单位、数位的产生,进一步认识万级的计数单位和数位,掌握含个级和万级的数位顺序表;理解整万数表示的意义,能正确地读、写整万数。
2. 联系实际,初步感知整万数的大小,感受整万数的实际应用。
教学过程
一、 了解计数单位和数位
由时间单位和面积单位的选择引入,说明人们在测量和计算时,需要根据具体情况选择合适的计量单位。
师:计数时要用到计数单位。你知道什么是计数吗?(不知道)
师:简单的说,计数就是数数。(出示石子计数的图片)人类祖先曾经用过石子计数,例如抓到1只羊,用1个小石子表示;(出示很多石子)这位祖先抓到的羊很多(学生笑),怎么办呢?(出示大石子)
师:猜一猜,这个大的石子表示什么?(1个十)像个、十就是计数单位。如果十不够怎么办?(用百表示)百不够呢?(用千)
师:个、十、百、千是我们已经学过的计数单位。(板书:个、十、百、千)
出示:4个小石子和2个大石子。小石子在前,大石子在后。
师:这些石子表示的数是多少?(24)为什么不是42呢,4个小石子在2个大石子前面啊?
生:1个大石子表示1个十,2个就是2个十,4个小石子就是4个一,合起来就是24。
师:对!计数时,计数单位的位置是有规定的。像计数单位十的位置就必须在计数单位个的前面。计数单位所在的位置叫做数位,像计数单位一所在的数位就是个位,十所在的数位呢?百、千呢?(对应计数单位板书:个位、十位、百位、千位)
二、 认识万级的计数单位
师:我们知道个、十、百、千都是计数单位,它们所在的数位分别是个位、十位、百位、千位。
出示:20xx年我国甘蔗产量是90 240 000吨;20xx年我国油菜籽产量是11 420 000吨。谁能把这两句话读一读?(举手的同学很少,第一个学生读不出,第二个学生准确读出,第三个学生大声地准确读出)
师:你们想知道这些大数怎么读吗?想和这两个同学读的一样好吗?(学生频频点头)今天我们就来一起认数。(揭示课题:认数)
师:比千大的计数单位是什么?(万)几个千是一万?(十个千是一万)
师:感觉一万怎么样?(很大)比万大的计数单位是什么?(十万)
出示:100 000个小正方体排成的10010100的长方体。(学生不由得发出惊叹声)
师:比十万大的是什么?(百万)比百万大的呢?(千万)咱们这个屏幕已经放不下了,你能想象一下吗?(学生不由自主地闭上眼睛想象,并不断发出惊叹声)
师:比千大的计数单位有万、十万、百万、千万,它们所在的数位是什么?
生:万位、十万位、百万位、千万位。(相机板书)
师:还有更大的计数单位吗?(有。个别学生还说出了亿)是的,还有很多。(在千万、千万位前面板书省略号)
三、 教学整万数的写法
1. 了解计数器上的数位。
师:刚才我们用小正方体表示计数单位,太麻烦了,好在我们有计数器。(出示一个四位的计数器)一个计数器够吗?(不够)那我们可以用两个(将两个计数器合并成一个计数器)。
师:千位左边是什么?(学生逐一读出万位、十万位、百万位、千万位)
2. 写五位的整万数。
师:(在计数器的万位上拨1颗珠)这表示多少?(一万)
继续在计数器的万位上依次拨出2颗、3颗、4颗珠,学生依次读出两万、三万、四万。
师:会写吗?把四万这个数写出来。
师:你是怎么写的?
生:先写一个4,再写四个0。(板书:40 000)
分别在万位接着拨出5颗、6颗、7颗、8颗、9颗珠,学生依次读数,并写出七万、九万,交流写法。
3. 初步感受万级数的意义。
师:我们在写四万时,先写4,再写四个0。(指40 000中的4)4表示什么?(4个一万)
师:(指70 000中的7、90 000中的9)7表示什么?9呢?(7个一万、9个一万)
师:这几个数有什么相同的地方?(末四位都是0)为什么?
生:都是在万位上拨珠,千位、百位、十位、个位上没有珠,所以用0表示。
师:是呀,当某个数位上一颗珠也没有时,就写0占位!写几万的时候,先写什么?
生:写几万都先写那个几。
师:哦,几万就先写几。再写(四个0)
4. 写六位的整万数。
师:(在9万上再拨1颗珠)再拨1颗珠是
生:满十进一,10个一万是十万。
将万位上的10颗珠退去,在十万位上拨1颗珠,再在万位上拨1颗珠,学生答十一万。
师:会写这个数吗?(学生写数)怎么写?
生:先写11,再写四个0。(板书: 110 000)
帮助写错的学生找出错误原因,并订正。
在万位上继续拨珠,学生依次读出十二万、十三万、十四万、十五万,写出十五万。
师:(边说边拨珠)在万位上拨9颗珠,十万位上拨9颗珠,会写吗?
生:先写99,再写四个0。
师:这些数中的111599表示什么?(11个万,15个万,99个万)怎样写出这些数?
生:是多少万就先写多少,再写四个0。
师:这些数都表示多少万,这样的数都是整万数。整万数都有什么特点?
生:末尾都有四个0。
5. 写七、八位的整万数。
师:在99万的基础上再拨一颗珠,是多少万?(一百万)
师生合作拨出一百万、一百零一万,并写数。
师:看来,要想既对又快地写出整万数,还要有一个检查的方法,怎么检查?
生:末尾都是四个0。
师:我们可以把这四个0和前面的数分开,(在1 010 000上画分级线)可以用这样的方法,检查是不是把数写对了。
先在计数器上拨出199万,学生读数、写数,接着从一百九十六万拨到一百九十九万,要求学生读数。
师:现在计数器上是199万,再拨一个珠是多少?(二百万)对,满十进一。
师继续在计数器上拨珠,学生依次读出二百零一万二百零六万,并写出二百零六万,指导学生用画线的方法检查。
出示:十万十万地数,从九百六十万数到一千零二十万。
师生共同拨珠、读数、写数、校对。
四、 介绍数级
师:刚才我们把这些整万数分成了两个部分,后面是四个0,前面这些数表示什么?
生:多少个万。
师:这些数(指万级上的数)都表示多少个万。按照中国的计数习惯,从右边起,每四个数位是一级。个位、十位、百位、千位是个级,万位、十万位、百万位、千万位,是万级。刚才将个级数与万级数分开实际上就是将整万数分级,所画的虚线叫做分级线。
师:万级的数都表示(多少个万)1 010 000中的101表示(101个万)
五、 教学整万数的读法
师:大数容易读错,用分级的方法把万级和个级分开,就不容易读错了。
完成想想做做第3题,要求把整万数先分级,再读一读、比一比。(学生正确读数)
师:既然让我们读一读,比一比,你在读的过程中比了什么?
生:先读万级的数,要在后面加上一个万。
师:(指85万)读万级中的数和我们以前读数的方法有什么联系?(一样)为什么还要加上万?
生:不加上万就变成85了。
师:对,那就变成哪一级的数了?(个级)万级的数都表示多少个万,所以读的时候要加上一个万字。
六、 感受整万数的大小
师:生活中的大数有很多。(出示图片:南京奥体中心体育馆有座位60 000个)
学生读数。
师:60 000有多大呢?我们一个班有多少人?(46人)就算50人吧,你知道要多少个这样的班级才能坐满体育馆?(学生算出结果,都很惊讶)
出示:100 000张纸摞在一起有多高?
师:猜猜这一摞纸大约有多高?(学生发表不同的意见,并引导学生通过计算得出结果)
出示:(1) 天安门广场是世界上最大的城市广场,面积有400 000平方米。
(2) 北京著名的园林颐和园面积约是2 900 000平方米。
学生读数,并通过交流感受数的实际大小。
出示课始两个数据,师:现在你会读了吗?(让开始不会读的学生读数)
七、 综合练习
师生合作,按要求拨珠、写数。(教师说要求,指名按要求拨珠,其他同学写数)
师:学习整万数可以帮助我们了解更多的知识。
出示:(1) 大约在六千五百万年前,恐龙就灭绝了,原因到现在还是个谜。(2) 全世界可确认的昆虫大约有七十万种。(3)根据联合国教科文组织统计,每年约有60 000个物种灭绝。(4) 大气污染导致每年约有300 000~700 000人因烟尘污染而提前死亡,25000000儿童患上慢性咽炎。
学生读数、写数,并适时对学生进行环保意识的教育。
八、 全课小结
师:今天我们学习了什么内容?(认识整万数)还有什么问题?(没有)老师这里有两个问题,有兴趣的可以回去了解一下。
1. 按照我国的计数习惯要分级计数,西方国家是按什么习惯计数的呢?请课后通过走访或查阅资料了解这方面的知识,并和同学交流。
2. 如果数目很大,计数单位不够了,怎么办?
反思
1. 对四年级的学生而言,要理解计数单位与数位两个概念是不大容易的。计数就是数数,学生并不清楚。而要理解计数单位,就必须从计数谈起;要理解数位,计数单位又是基础。曾看过这样一则报道:考古人员在挖掘古墓时,发现一个密封的陶罐,打开后却是一些大小不等的圆石子。经研究发现,这些石子是用来计数的,石子表示的数代表了墓主生前拥有的财富。这给了我很大的启示:石子计数这一数学史料是帮助学生了解计数单位的极好材料,教学时,可以按计数、计数单位、数位的顺序组织学生的认数活动。一个困惑了我很久的问题,竟这样意外地由一则考古新闻解决了。真是文章本天成,妙手偶得之。
2. 学生在三年级学习认数时,已经初步认识了万,并能正确地读、写10 000。这是学生利用已有的知识结构同化新知识的基础,也是本节课的教学起点。教学时,通过对五位的整万数的读、写,使学生自然地产生要写几万,就先写几,再添四个0的感受。这一过程中,教师要做的,是帮助学生将这种感受明晰起来,并引导学生通过类推,正确地读、写六位的整万数,逐渐将这种明晰的感受抽象为写整万数的方法。同时,运用这一方法正确地读、写七位、八位的整万数。
本课的教学重点是五、六位的整万数的写法,它是学生探索和理解整万数写数规则的基本材料。越在基础处,越要花时间。只有基础处想通了,想透了,后面的学习才会事半功倍。教学时,我设计了在计数器上拨数、写数、说理等活动,引导学生通过独立思考与交流,理解并掌握整万数的写法。这样,学生在自主活动中获取的知识和经验,信度高,可迁移性强。
3. 在写数中感受,在读数中应用。对学生而言,读数的难度要比写数要大,因为读数首先要会将整万数进行分级,而分级是建立在对万级数意义的理解基础之上的操作行为。所以学生写数时,在教师提问的过程中,不断地感受万级数的意义,这种感受是学生理解分级的基础。在了解分级知识之后,通过对整万数读法的学习,在读数的过程中不断地应用,进一步加深对万级数的理解。教学时,我力求为学生认知结构的发展提供良好的环境和条件,根据学生现有的认知发展水平和知识间的逻辑关系,精心设计教学过程,以利于学生理解和学习,达到自觉迁移的目的。
五年级数学难点教学设计教案 篇2
教学内容:
条形统计图
教学目标:
1、进一步认识条形统计图(1格表示多个单位),能用条形统计图直观、形象地表示数据。
2、经历简单的收集、整理、描述和分析数据的过程,进一步培养学生的统计能力。
实验目标:
1、 利用多媒体课件,创设生活情境,让学生感受统计在生活中的应用,激发学生的好奇心和求知欲。
2、运用知识的迁移,引导学生从已有知识经验出发,主动参与新知的探索与学习,提高学生的学习效率。
教学过程:
一、创设情境,引入新课
课件出示:本班学生在学校春季运动会中踢毽子比赛的一段录像,并把踢毽子的成绩统计表做例1。
教师揭示课题:今天我们继续学习统计。
二、合作学习,探案求知
课件出示例1的统计表。
教师:从收集的统计表中,你们获得了哪些信息?学生可能回答:小红踢120个,小方踢100个,小红比小方多踢20个
教师:从统计表中我们可以获得很多信息,你能根据统计表中的信息制成统计图吗?怎么制呢?学生可能回答:可用我们学过的条形统计图来表示,画3根就可以表示3个同学。
教师:1格表示多少呢?(课件出示1格表示1个)如果1格表示1个,小红踢的毽子个数要画多少格?(课件动态展示画出120格)学生产生冲突:画120格好麻烦哟。教师质疑:那怎么办?有什么好的办法来表示呢?学生可能会想到用1格表示2个,5个,10个,20个
教师:小组合作学习,思考讨论。①用1格表示多少合适呢?说说想法。②小组内绘制出条形统计图。用投影仪展示小组绘制的条形统计图。
课件展示用1格表示2个,5个,10个,20个时绘制的条形统计图
教师:观察比较这些统计图,在这里用1格究竟代表多少合适呢?通过学生的观察比较,他们可能会有这样的答案。
学生1:用1格表示10个比较合适;120个就画12格;100个就画10格,90个就画9格。
学生2:用1格表示2个,5个也可以,只是画的格子要多些。教师结合学生画的统计图的美观方面进行适当评价。
五年级数学难点教学设计教案 篇3
教学目标:
1.经历用7、8的乘法口诀求商的过程,熟练掌握用乘法口诀求商的基本方法;
2.根据具体情境,会正确用除法运算解决简单的实际问题;
3.在自主探索,合作交流过程中,进一步发展解决问题的能力。
教学重点:
熟练运用7、8的乘法口诀求商。
教学难点:
运用已有知识与经验自主探究用7、8的乘法口诀求商的一般方法。
教学教法:
学生已掌握了用2~6的乘法口诀求商的一般方法,用乘法口诀求商的思路和方法是一致的,所以针对这一情况,教学本课时,我采用“巩固旧知、导入新课——情境创设、激发兴趣——自主发现、方法探究——趣味游戏、强化练习”的教学方法,在师生交流互动中完成教学任务。
教学过程:
一、复习旧知,导入新课
1.谈话导入
我看下哈,咱们同学今天的精神气十足啊,怎么丁老师给你们上课很高兴啊?生兴奋答道:是!听你们这么说,我的心里比吃了蜂蜜还要甜!我听说人在心情好的时候记忆力是最好的,我们要不要借这个高兴劲发挥下我们的聪明呢?
2.背诵九九乘法口诀
集体背诵乘法口诀,看谁背的好!完后我会说:我发现同学们背诵的都非常棒,只有个别同学还不是很熟练,下去一定要熟背乘法口诀,倒背如流。为什么一定要背熟呢?因为它不仅可以帮我们解决用乘法计算的问题,还能帮我们解决用除法计算的问题。
3.导入新课。
前面我们已经学习了“用2~6的乘法口诀求商”,今天我们就继续接着学习“用7、8的乘法口诀求商”。
复习计算并说一说,你是怎样求商的?
24÷6= 想:( )六二十四
二、引导发现,探索新知
1.出示教材第37页主题图。
谈话:快要过六一儿童节了,我们大家预想一下怎么装扮教室,在装扮的过程当中也会有许多的数学问题。现在仔细观察“快乐的节日”这幅图,看看你能发现了什么?说一说图上的小朋友都在做什么?(引导学生观察情境图,收集数学信息。)
交流反馈
第一组做了一些红旗,要挂在教室里。
第二组做了49颗星,分给7个小组。
第三组带来了27个心形气球,每9个摆一行。
谈话:根据这些信息,你能提出哪些问题?(让学生自由发言,教师可做适当提示或引导。)
(1)第二组做了49颗星,分给7个小组,平均每组有几颗?
(2)第三组带来了27个心形气球,每9个摆一行,可以摆几行?
2.出示例1。
课件出示小旗,先出示一行,让学生看清每行有7面小旗,知道一行是一个7,接着一行一行的出示,共出示8行,也就是8个7,问共有多少面小旗?也就是求8个 7是多少?这个可以用乘法解决7×8=56(面)。然后同桌讨论:看图编应用题,引导学生说出 “有56面小旗,挂成8行,平均每行挂几面?”
(1)谈话:求“平均每行挂几面?”用什么方法计算?你是怎样想的?
教师展示课件例1图。
(2)引导学生解决问题并列出算式。
师:把一个整体平均分成几份,求每份是多少?像这种求平均分的问题,我们可以用除法计算,列式是56÷8。
(3)引导学生得出算式的商。问:你是怎么计算的?并板书(想7×8=56,口诀七八五十六,所以56÷8=7。)
(4)学生独立解决:要是挂7行呢?你能够解决吗?学生说出自己的计算结果,并把求商的过程根大家说一说,师板书。
56÷7=8 口诀:七八五十六。
(5)刚才我们计算56÷7和56÷8时都是用的哪句口诀?(七八五十六)
发现:除数是几,就想关于几的乘法口诀。
3.小结:算除法想乘法,除数是几就想关于几的乘法口诀,一句口诀可以计算两道除法算式。
三、趣味练习,巩固新知
装扮教室的问题我们已经解决了,那么下面这些练习题对我们来说就应该不是问题了。这部分设计了4个练习题
1.小小接力赛
课件出示课本第38页做一做第1题。
2.填方框
课件出示课本第38页做一做第2题。
引导学生认真读题感受方程思想。填空并说说思路,可以有不同的方法,只要合理,教师均要给予肯定和鼓励。
3.吹泡泡游戏
课件出示课本第38页做一做第3题。
4.分一分
课件出示课本第40页练习八第2题。
(三道题都是帮助学生巩固用口诀求商的方法,同时第一个练习还让学生通过观察分析,形成了一句口诀可以计算一道乘法算式和两道除法算式的认知结构。最后一题是使学生感受到数学知识来源于生活,又服务于生活,进一一步体会数学与生活的联系,从而培养学生用数学知识解决生活中的一些实际问题。)
四、总结归纳,交流体会
师:这节课你有什么收获?
学生自由发言。
教师小结:本节课大家的表现很不错,在解决装扮教室的时候学会了知识,走出教室又能用学到的知识解决生活中遇到的一些问题了。希望大家在以后多观察,多思考,其实许多的数学知识就在我们身边。
板书设计:
用7、8的乘法口诀求商
56÷8=7(面) 56÷7=8(面)
口诀:七八五十六 口诀:七八五十六
答:平均每行挂7面。 答:平均每行挂8面。
五年级数学难点教学设计教案 篇4
教学内容:小学数学第七册7475页的内容
教学目的:
1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学重点、难点:理解梯形面积计算公式的推导,并能应用公式正确的进行计算。
教具准备:课件。
教学过程:
(一)复习旧知,做好铺垫。
1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的面积公式的。
2、练习(出示)
口答下面各图形的面积。(单位:厘米)
(二)创设情景,提出问题
师:前不久,我们学校开展植树护绿活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)
师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)
师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)
(三)小组学习,解决问题。
师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)
合作要求:
(1)想一想:我们已经学过哪几种图形的面积公式?
(2)试一试:把梯形转化成已经学过的图形。(任选一种)
(3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?
五年级数学难点教学设计教案 篇5
教学内容:P47,例6,练一练,第1~4题。
教材分析:小数除法经常会出现除不尽或者商的小数位数较多的情况。但在实际生活和工作中,并不总是需要求出很多位小数的商,而往往只要求出商的近似值就可以了。本节课让学生掌握,在一般情况下用四舍五入的方法求近似值,但也有特殊的情况,要根据实际情况保留位数。
教学过程:
一、复习:
1.用“四舍五入”法求近似数:43.9095保留整数是( )
43.9095精确到十分位是( )
43.9095保留两位小数是( )
43.9095精确到千分位是( )
提问:用“四舍五入”法怎样保留位数的?你是怎样想的?
为什么要用约等于号?
2.引入新课:求商的近似值。
二、新授:
1.自学例6:五年级一班有42名学生,在一次救灾活动中共捐款384元。全班平均每人捐款多少元?
①学生试做例题,发现除不尽,然后交流怎么办?
②商为什么要保留两位小数?(根据实际情况回答)
③商要保留两位小数,只要除到小数部分第几位?用什么方法保留位数?
④说说余数的意义,表示几个几分之一?
2.小结:求商的近似值,一般先除到比需要保留的小数位数多一位,再按照“四舍五入”法取商的近似值。
三、巩固练习:
1.练一练,第1题。
求商的近似值,保留两位小数。(做完之后,让生说说怎么想的)
3.6÷1.7 19÷7
2.小结:判断说明。
如果要保留两位小数,那么只除到小数部分第二位,能不能判断出千分位上满不满五?
(如果除到要保留的商的位数以后,也可以看余数满不满除数的一半来取商的近似值…)
1. 练一练,第2题。
求商的近似值。保留三位小数。方法不限。
45.5÷38 0.2÷0.64
4.练习十二,第2题,填表。
想一想,每到除法算式,先除到商的`哪一位上 ,再分别取近似值比较方便?
5.根据实际情况去近似值:
①有一种油桶,最多能装油2.6千克,要装40千克油,需要这种油桶多少个?
②一件衬衫要钉6粒纽扣,现有100粒纽扣,能钉多少件衬衫?
做完之后肯定有不同意见,可以让学生自己商量、讨论解决。
老师可以介绍一下两种保留位数的方法:进一法和去尾法。并交流一般在什么情况下要用到。
四、全课总结:略。
五、课堂作业:第1、4题。
五年级数学难点教学设计教案 篇6
【教学目标】
1、对幻方有初步了解,知道幻方每行每列对角线和相等,三阶幻方有三行三列,每行,每列及每条对角线和为15。中心数是5,两头凑十。 四个角是双数。
2、能根据幻方的规律来判断幻方,并能将不完整的幻填写完整。
3、了解数学知识背后的文化,激发对数学学习的热情。
【教学重难点】
1、 初步认识幻方,发现幻方的规律和特征。
2、 运用幻方的特征,判断一个九宫 格是不是幻方,填缺数。
【学具准备】多 媒体课件,学习单
【教学过程】
一、创设情境,激趣导入
1、听故事“夏禹与龟”
2、认识洛书和九宫格
3、出示课题:幻方
【设计意图】 导入部分教师采用了创设情境的方法,通过听故事激起学生学 习的兴趣,进而认识洛书和九宫格并引出课题。
二、探究学 习,合作研讨
(一)初步探究幻方的秘密
出示1个幻方:
1、观察数字特点:1、2、3、4、5、6、7、8、9不重复
2、算一算每行,每列,每条对角线的和。
3、归纳:每行,每列,每条对角线的和都是15。
4、初步判断幻方
5、评价:理解星(我会判断幻方)
(二)深入探究幻方的秘密
1、观察幻方,发现规律(出示4个幻方)
(1)同桌讨论
(2)交流反馈
2、评价:探究星(我找到了幻方的小秘密)
【设计意图】 在整个探究环节分为初步探究和深入探究两个部分。在初步探究中 ,通过教师引导,运用观察法和计算的方法使学生发现幻方的数字特点和行,列对角线和的特点。而深入探究幻方的特征上对孩子来说有一定的难度,教师大胆的将问题交给学生,采用同桌合作,交流探究的方式,共同找到幻方的特征。
三、尝试迁移,练习巩固
1、根据幻方的特征做填数练习
(1)师生互动(完成第一个幻方)
(2)小组合作(完成第二个幻方)
(3)独立完成学习单第三题
(4)交流反馈
(5)评价:应用星(我会运用幻方的小秘密补全幻方)
2、根据幻方的特征做选择练习(用手势表示它的序号)
【设计意图】在内化新知的阶段,教师创设了填数练习和选择练习,练习题由浅入深,从师生互动到小组合作进而到独立完成,逐步学会运用新知来解决问题。
四、拓展延伸,课堂总结
1、出示:0、1、2、3、4、5、6、7、8
提问:中心数是几?和是几?你会把这些数填入九宫格吗?
2、欣赏幻方
3、全课总结,集体评价
【设计意图】 全课总 结的环节,教师以一道拓展题结尾 ,把问题留给学生,最后欣赏幻方,感知数学知识的博大与奥秘。
【板书设计】:
幻方
1 2 3 4 5 6 7 8 9 不重复
每行、每列、对角线三数之和为15
中心数是5,两头凑十
四个角是双数
YJS21.cOm更多幼儿园教案小编推荐
小学教案与作业设计五年级上册数学(分享8篇)
作为一名为他人授业解惑的教育工作者,就不得不需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。我们该怎么去写教学设计呢?下面是小编整理的小学五年级上册数学教学设计,欢迎阅读,希望大家能够喜欢。
小学教案与作业设计五年级上册数学 篇1
教材简析:
“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。
教学内容:
苏教版标准实验教科书《数学》五年级上册P15~P16的内容,三角形的面积。
教学目标:
1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重、难点:
重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。
教、学具准备:
CAI课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。
教学过程:
一、创设情境、导入新课
1、提出问题。
师:(出示一条红领巾)同学们,这是一条红领巾。它是什么形状的?那你们会计算三角形的面积吗?
2、揭示课题。
师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)
二、操作“转化”,推导公式
1、寻找思路。
师:是的,我们还不会计算三角形的面积。那同学们想一想,开始我们同样不会计算平行四边形的面积,后来我们通过什么方法推导出了平行四边形的面积计算公式的呢?
师:对,我们用“割补”的方法把平行四边形“转化”(板书:转化)成了一个长方形,这样推导出了平行四边形的面积计算公式。那同学们,我们能不能把三角形也“转化”成我们已经学过的图形,从而推导出三角形的面积计算公式呢?
师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?
[应变预设:同学们根据已有的经验,一般会认为可以用这种方法,教师可以选择一种方法实际“割补”,让学生明白这种方法不好,需要寻找更好的方法。]
2、动手“转化”。
师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。
小组合作拼组图形,教师巡视指导。
[应变预设:可能有些同学不会拼组,教师可指导他们用旋转、平移等方法,把两个完全一样的三角形拼成一个平行四边形或一个长方形。]
师:拼好了吗?用这种拼一拼的`方法能不能把三角形“转化”成已经学过的图形呢?谁来说一说,你们用这种方法把三角形“转化”成了什么图形?
[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]
师:同学们,为什么有些小组拼成了一个平行四边形,有的小组却拼成了一个长方形呢?你们想想,这是什么原因呢?
[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]
3、尝试计算。
师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。
师:这个平行四边形就是由两个完全相同的三角形拼成的,它的底和高分别是多少?那么,其中一个三角形的底和高又分别是多少呢?
[评析:引导学生说出拼成的平行四边形和原来的三角形等底等高,为推导三角形的面积计算公式作铺垫。]
师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。
师:算完了吗?它的面积是多大?
师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。
[应变预设:在设法求三角形的面积时,可能有部分同学不明白三角形的面积和平行四边形面积之间的关系,不会计算。这时教师应引导学生明确每个三角形的面积是拼成的平行四边形面积的一半,计算三角形的面积可用平行四边形的面积除以2得出。]
师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。
师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形(底3cm,高2cm)的面积吗?算一算。
[应变预设:学生可能不会计算,教师可以引导学生观察,图中的虚线三角形,和蓝色三角形是完全一样的,它们也拼成了一个平行四边形。使学生明确3×2是这个平行四边形的面积,求这个三角形的面积还得除以2。]
师:同学们,你们太棒了!又计算出了一个三角形的面积。再看屏幕,(课件出示,如下图)你们还能计算这个三角形(底6cm,高4cm)的面积吗?
[评析:由清晰的由两个完全相同的三角形拼成的平行四边形,到由一实一虚的两个完全相同的三角形拼成的平行四边形,再到一个独立的三角形,面积计算逐步深入,层层推进,引导学生经历了由具象到抽象的过程,思维含量非常丰富。]
4、推导公式。
师:同学们,刚才大家已经尝试着求出了三个三角形的面积,大家都算得很好。那么现在你们能把三角形的面积计算公式写下来吗?先写一写,同桌同学再商量商量吧。
[应变预设:大多数的学生可能会说出“三角形的面积=底×高÷2”。教师应给以充分的肯定:你们推导出了三角形面积的计算公式!再引导学生说出推导的过程。]
5、理解公式。
师:同学们,老师有点不明白,为什么你们写这个公式时用三角形的底乘高呢?“底×高”表示什么意思呢?为什么还要“÷2”呢?
[评析:通过请学生帮助老师解困惑,加深学生对三角形面积计算公式含义的理解:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为三角形的面积是拼成平行四边形面积的一半,所以要“÷2”。这样既突破了教学难点,更加深了
学生对三角形面积计算公式的理解。]
6、用字母表示三角形的面积公式。
师:同学们,如果用a表示三角形的底,h表示三角形的高,S表示三角形的面积,你们会不会用字母表示三角形的面积公式呢?请写一写吧。
[评析:拼一拼、算一算、说一说、写一写……不知不觉中,同学们自己推导出了三角形的面积计算公式。学生自然地成为了学习的主人。]
师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看大屏幕。(课件出示如下图,课本P85页的数学常识。)
[评析:这样表面是介绍数学常识,但实际渗透了爱国思想教育。]
三、应用公式,解决问题
师:同学们,我们已经推导出了三角形的面积计算公式,现在我们就用三角形的面积计算公式解决一些实际的问题。这是刚才看到的那条红领巾,同学们,你们知道怎样才能求出做一条这样的红领巾要用多少红布吗?
师:对,要求做一条红领巾要用多少红布,实际是求这条红领巾的面积是多少?而要求这条红领巾的面积是多少?必须了解哪些数据呢?
师:那就请大家动手量一量它的底和高吧。
[评析:这里并没有直接给出红领巾的底和高,需要学生共同合作实际测量,培养了学生解决实际问题的能力。]
师:量完了吗?请大家算一算,看看做这样一条红领巾到底需要多少红布?
[应变预设:指导学生运用公式进行正确的计算,展示学生的算式,集体订正。]
四、联系生活,适当拓展
师:同学们,你们认识这些道路交通警示标志吗?(课件出示下面这些道路交通警示标志。)知道它们的具体含义吗?
师:交通标志对于维护交通安全有着重要的意义和作用。同学们,这些交通标志是什么形状的?
师:对,它们都是三角形的。(课件出示其中一个三角形标志的底和高,如下图)请大家算一算,这个标志牌(底9dm,高7dm)的面积大约是多少?
[应变预设:指导运用公式进行正确的计算,然后集体订正。]
师:同学们,你们还能算出这三个三角形的面积吗?(课件出示如下图1:底3厘米,高4厘米;图2:底4厘米,高1.5厘米;图3:底2.5厘米,高2.8厘米)看谁算得又对又快!
五、全课总结,反思体验
教师:这节课你们学习了什么?有哪些收获?
[总评:这节课教师注重从学生已有的知识经验出发,并引导学生将“转化”的思想迁移到新知识的学习中,动手操作推导出三角形的面积公式,亲身经历了数学知识的形成过程,增强了学生学习数学的兴趣。整一节课,教师尽量把时间和空间让给学生,组织他们动手实践,引导他们自主探索,参与他们的合作交流,使学生真正成为了学习的主人。]
小学教案与作业设计五年级上册数学 篇2
教学目标:
1.通过学生的动手操作,借助图形语言,理解分数乘法的意义和分数乘以分数的算理,掌握计算方法,并能熟练地进行计算;
2.让学生经历猜想、验证等过程,体验数学研究的方法;
3.培养逻辑推理能力,渗透一定的数学思维方法。
教学重难点:
学生能够熟练的计算出分数乘以分数的结果。
教学过程:
一、创设情境激趣揭题
1.出示我国古代哲学著作的情景。
2.出示复习题
3×2/5 4/5×2
二、扶放结合探究新知
1.画图引导学生理解1/2___1/2的.算例。
2.出示3/4___1/4引导学生验证上面的计算方法,岩石推理过程。
3.出示2/3___1/5,5/6___2/3写出计算过程,小结计算方法:
分子乘分子,分母乘分母。
三、反馈矫正落实双基
1.出示教材第8页试一试1-3题。
2.引导学生发现规律。
四、小结评价布置预习
1.引导学生进行课堂小结。
2.布置预习:教材10-11页练习一。
板书设计:
意义:
求一个数的几分之几是多少?
计算法则:
分子乘分子作分子,分母乘分母作分母。
小学教案与作业设计五年级上册数学 篇3
一、教学目标:
1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。
2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。
3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。
二、教材分析:
三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。
三、学校及学生状况分析:
我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的快慢程度等也会出现差异。
四、教学设计:
(一)由谈话导入新课。
1、我们已经学过长方形、正方形、平行四边形面积的计算公式。
还记得它们的面积公式吗?(一人回答)
还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?
小结:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。
2、谁知道三角形面积的计算公式?
老师调查一下:
①知道三角形面积计算公式的举手。(可能多)
②不知道三角形面积计算公式的举手。(可能不多)
③不但知道公式,而且还知道怎样推导出来的举手。(可能不多)
今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程
[板书课题:三角形面积]
(二)探究活动。
根据你们前面的学习经验,猜一猜应怎样去探究三角形的面积?[板书:转化]
下面我们将按小组来探究三角形面积的计算公式。
1、介绍学具袋中的学具。
2、出示探究目标和建议
小组合作探究活动,三角形面积的计算公式是怎样推导出来的?
建议:边动手、边想、边说。
(1)你把三角形转化成了你以前学过的什么图形?
(2)原来的三角形和转化后的图形有什么关系?
(3)三角形面积的计算公式是什么?为什么?
3、同学们自选学具,想一想就可以开始了……
(教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)
了解一下学生们探究了几种方法(至少保证每人找到一种方法)后,叫停。(此时注意发现不同方法)
4、汇报:请××同学展示自己的探究成果,在他说的时候,同学们要注意听,以便予以补充。(交流过程注意引发学生间的争论)
①直接用两个完全一样的三角形拼成平行四边形推导……
②用一个三角形折成长方形推导……
③将一个三角形用割补法推导……
(若学生用任意三角形,注意指导沿“中位线”剪开)
5、师生共同小结:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,于是[随即板书]三角形的面积=底×高÷2 s=a×h÷2
6、请同学再用自己喜欢的其中一种方法说说为什么?(扩大战果)
总起来说,不管同学们用一个三角形,还是用两个三角形;也不管是用拼摆的方法,还是用割补的方法,都是在想方设法将新知识转化为旧知识。可见,你们学习的时候很注重学习方法,而且“转化”的这种数学思想正在你的头脑里逐渐形成。
(三)巩固练习(机动)
我们来试着运用这个公式:
1基本题先问:要想求三角形的面积必须知道什么条件?再出示数据,然后计算。
2基本题
3基本题
(由2、3题解决“等底等高三角形面积相等”)
4提高题有一直角等腰三角形,它的斜边是10厘米,你会求它的面积吗?
(四)总结
说说你这节课的感受?
(重点总结心得体会或经验教训。)
五、教学反思:
新课标不仅对学生的认知发展水平提出了要求,同时也对学生学习过程、方法、情感、态度、价值观方面的发展也提出了要求。新理念注重学生的学,强调学生学习的过程与方法,这是引导学生学会学习的关键。
如果我们将数学公式的教学仅仅看成是一般数学知识的传授,那么它就是一个僵死的教条,只有发现了数学的思想方法和精神实质,才能演绎出生动结论。
这节课,我将知识目标定位为:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。能力目标定位为:在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。情感和意志目标定位为:激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。
整节课是围绕着“通过学生发现三角形与已知图形的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子,比如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的.过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。
这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。
六、案例点评
本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。
教师设计让学生自主动手操作,目的是以“动”促“思”,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。
通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。
小学教案与作业设计五年级上册数学 篇4
教学内容:
教科书27、28页的内容
教学目标:
1、知识:经历运用平移、轴对称进行图案设计的过程,能运用图形的变换在方格纸上设计图案。
2、能力:结合图案设计的过程,进一步体会平移、轴对称在设计图案中的作用,体验图形的变换过程,发展空间观念。
3、情感:结合欣赏和设计美丽的图案,感受图形世界的神奇。 教学重点:欣赏生活中美丽的图案,培养审美意识;
教学难点:能灵活运用平移、旋转和轴对称在方格纸上设计图案。 教具、学具准备: 小黑板
教学方法:导练法 迁移法
学习方法:小组合作 互动探究
课时安排:1课时
教学过程:
一、复习导入(8分钟)
教师在黑板上出示图形,让学生回答问题。
导入新课:欣赏与设计
二、自主探究新知(8分钟)
(一)出示自学指导
1、自学教科书第27页中的内容。
2、这些图案分别是怎样得到的?与同伴交流你的.想法?
3、用多种方法进行变换。
4、你找到了什么规律。
(二)检测
做教科书第28页的练一练第2题,学生先独立做,然后汇报。学生回答时,教师要进行追问。
三、反馈交流(10分钟)
1、做教科书第28页的练一练第1题。
(1)先让学生观察图,再根据条件进行变换。
(2)教师要根据学生练习情况进行有针对性的指导。
四、精讲点拔(8分钟)
重点讲解美丽的图案是根据平移、轴对称得到的。
五、当堂训练:课本28页第3、4题
六、课堂小结:同学们,你们这节课学到了什么知识呢?给你的同桌说一说?还有什么疑惑吗?
七、作业布置 课本28页2题
板书设计:
欣赏与设计
1、用平移的方法设计图案。
2、用轴对称的方法设计图案。
3、用平移、轴对称的方法设计图案。
小学教案与作业设计五年级上册数学 篇5
教学内容
解方程:教材P69例4、例5。
教学目标
1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。
2.进一步掌握解方程的书写格式和写法。
3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。
教学重点
理解在解方程过程中,把一个式子看作一个整体。
教学难点
理解解方程的方法。
教学过程
一、导入新课
我们上节课学习了解方程,这节课我们来继续学习。
二、新课教学
1.教学例4。
师:(出示教材第69页例4情境图)你看到了什么?
生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。
师:你能根据图列一个方程吗?
生:3x+4=40。
师:你是怎么想的?
生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。
师:说得好,你能解这个方程吗?
学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)
师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?
生:先算出3个铅笔盒一共多少支,再加上外面的4支。
师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。
让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的.过程。
2.教学例5。
师:(出示教材第69页例5)你能够解这个方程吗?
生1:我们可以参照例4的方法,先把x-16看作一个整体。
学生解方程得x=20。
生2:我们也可以用运算定律来解。
师:2x-32=8运用了什么运算定律?
生:运用了乘法分配律。然后把2x
看作一个整体。
学生解方程得x=20。
师:你的解法正确吗?你如何检验方程是否正确?
生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。
三、巩固练习
教材第69页“做一做”第1、2题。
第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。
这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。
四、课堂小结
1.在解较复杂的方程时,可以把一个式子看作一个整体来解。
2.在解方程时,可以运用运算定律来解。
五、布置作业
教材第71页“练习十五”第6、8、9.题。
小学教案与作业设计五年级上册数学 篇6
教学要求
1、根据正方体特征,推导出正方体表面积的计算方法。
2、学会解决实际生活中有关长方体和正方体表面积的计算问题。
3、培养学生思维的灵活性。
教学重点
正方体表面积的计算方法。
教学用具
教师准备:一个正方体纸盒和例3的实物模型、投影仪;学生准备:一个正方体纸盒。
教学过程
一、创设情境
1.看图并回答。(投影显示)
(1)什么是长方体的表面积?
(2)怎样计算这个长方体的表面积?
2.看看各自准备的正方体回答问题。
(1)什么是正方体的表面积?
(2)正方体6个面的面积怎样?
(3)如果给你正方体一条棱的长度,你能算出它的表面积是多少吗?
师:好,今天这节课我们就来学习正方体表面积的计算方法以及长方体和正方体表面积的实际应用。(板书课题)
二、实践探索
1.小组合作学习正方体表面积的计算。
①题中的棱长就是每个面的什么?
②你能算出这个正方体的表面积吗?
③小组合作,寻找计算方法。
3×3×6或者32×6
=9×6=9×6
=54(平方厘米)=54(平方厘米)
说明:上面两种做法都对,32表示2个3相乘。
2.教学计算长方体和正方体某几个面的面积。
在实际生产和生活中,有时还要根据实际需要计算长方体或正方体中某几个面的面积,如:投影显示例3,拿出实物模型。
(1)帮助学生分析题意。
①售米的木箱是什么体?
②“上面没盖”就是没有哪一个面?
③要求的问题,实际上是算哪几个面的面积之和?
(2)再让学生分小组讨论解答方法,只列式不计算。
(3)学生讲所列出的算式的含义,确定正确后算出结果,集体订正。
三、课堂实践
做第27页的“做一做”,先让学生列出解答的算式,并讲一讲自已是怎样想的,确定正确后算出结果。
四、课堂小结。
学生小结今天学习的内容。
五、课堂实践
做练习六的第5、6、7题。
3、长方体和正方体的体积
小学教案与作业设计五年级上册数学 篇7
教材分析
义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积 》第一课时 (包括教材80-81页例1、例2和“做一做”,练习十五中的第1-4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。
学情分析
1.学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。
2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。
教学目标
知识与技能
1.使学生理解和掌握平行四边形的面积计算公式。
2、会正确计算平行四边形的面积。
过程与方法:
1.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,
2、发展学生的空间观念。
情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。
教学重点和难点
重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。
教学过程
一、复习导入
1.什么叫面积?常用的面积计量单位有那些?
2.出示一张长方形纸,他是什么形状?它的面积怎么算?
二、探究新知
1、情景导入:出示长方形、 平行四边形 。这两个图形哪一个大一些呢?平行四边形的面积怎样算呢 ?
板书课题:平行四边形的面积
2.用数方格的方法计算面积。
(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2.推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。
a.学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
b.请学生演示剪拼的过程及结果。
c.教师用教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。出示讨论题:
①拼出的长方形和原来的平行四边形比,面积变了没有?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以 平行四边形的面积=底×高。
3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
S=ah
三、 应用反馈。
1.出示教材练习十五第1题。读题并理解题意。
学生试做,交流作法和结果。
2.讨论:下面两个平行四边形的面积相等吗?为什么?
学生讨论汇报。全班订正。(通过不同形式的练习,不仅巩固了知识,同时培养了学生解决问题的能力)
四、课堂小结。
通过这节课的学习,你有什么收获?(引导学生回顾学习过程,体验学习方法。)
小学教案与作业设计五年级上册数学 篇8
教学内容:
人教版义务教育课程标准实验教科书五年级上册第84—86页。
教材分析:
三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础、《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形,平行四边形和梯形的面积公式、学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生面临三角形面积计算公式的推导过程时,可以借鉴前面"转化"的思想,且为今后逐渐形成较强的探索能力打下较为扎实的基础、
教学目标:
1、知识与技能:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程
2、过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:
探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:
三角形面积公式的探索过程。
教具准备:
课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:
每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
教学过程
一、复习旧知,导入新课。
1、我们学过求哪些图形的面积,计算公式是什么?
2、我们学校内有一平行四边形的花坛,底是5米,高是3米,学校领导要把这个花坛平均分成两份,分别种上不同颜色的花,该怎样分?每一块的面积是多少?请同学设计一下。
3、同学们,学校要为学校开学典礼准备30条红领巾,大队辅导员想请大家帮忙,算一算,需要多少布料?你们愿意吗?该怎样来计算呢?
师:是的,要先计算一条红领巾的面积,那么红领巾是什么形状的?你会计算它的面积吗?今天我们就来学习计算三角形的面积。板书:三角形的面积。
二、动手操作,探求新知。
1、猜一猜。找关系
师:
(1)同学们,长方形的面积跟它的什么有关系?平行四边形的面积跟它的什么有关系?
生:和它的底和高有关。
(2)那么,猜一猜,三角形的面积可能跟它的什么有关系呢?(学生可能说边、底、高)那么怎样来验证我们的判断呢?
2、想一想。找关系
师:想一想,我们在推导平行四边形的面积时,用的是什么方法?那么,可不可以也用转化法把三角形转化成我们会求面积的`图形呢?
3、拼一拼,摆一摆,比一比。找关系
师:请同学们拿出准备好的三角形,按照你的想法,和小组内同学一起拼一拼,摆一摆,折一折看可以把它转化成哪些我们会求面积的图形。
学生小组合作,拼摆图形。教师巡视,帮助学困生拼摆。
汇报。可能摆出正方形,长方形,平行四边形,思考,这些图形有什么共同点?(都是平行四边形。)现在,你又有什么发现?
归纳:两个完全相同的三角形,可以拼出一个平行四边形。
师:那么,我们拼出的平行四边形、跟所用的三角形有没有关系呢?有什么关系呢?
引导学生答出,平行四边形的面积是三角形面积的2倍。板书:三角形的面积=平行四边形的面积÷2,那么,还有没有其它的关系呢?
4、画一画,算一算。找关系,得结论。
师:请同学们画出平行四边形的一条高,你发现了什么?
生:平行四边形的高也是三角形的高,底也是三角形的底。
师:那么,我们刚刚得出的结论还可以怎样写?
三角形的面积=底×高÷2
用字母表示三角形的面积。
5、应用公式,解决问题。
现在我们再来解决大队辅导员老师的问题吧。学生可能会束手无措,面面相觑于是,教师趁机疑惑不解地问:你们怎么还不解决问题啊?让学生自己说出,需要红领巾的底和高。
教师出示完整题目:一条红领巾的底是100厘米,高是33厘米,做30条这样的红领巾需要多少布料?
学生独立计算,集体订正。
三、练习巩固。
1、独立完成85页做一做。
2、完成86页练习的1、题。
3、完成86页练习的3题。
4、判断下列说法是否正确。
(1)三角形面积是平行四边形面积的一半。()
(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。()
(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。()
(4)等底等高的两个三角形,面积一定相等。()
(5)两个三角形一定可以拼成一个平行四边形。()
5、求右图三角形面积的正确算式是()
①3×2÷2②6×2÷2
③6×3÷2④6×4÷2
6、学校准备在校门出口处两旁各建一块三角形交通警示标志牌,底是8分米,高是7分米,请帮忙计算需要多大面积的材料。(引导学生思考“两旁”的意思)。
四、拓展提高:
1、这节课,你有什么收获?还有那些不懂的地方?
2、如果只用一个三角形,你能通过剪,拼等方法推出三角形公式吗?
五、板书设计:
三角形的面积
三角形的面积=平行四边形的面积÷2
三角形的面积=底×高÷2
S=ah÷2
七年级数学教案教学设计
七年级数学教案教学设计 篇1
教学目标
1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念;
2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)
3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点
深化对正负数概念的理解
知识重点
正确理解和表示向指定方向变化的量
教学过程
(师生活动)设计理念知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示。这就是说:数的范围扩大了(数有正数和负数之分)。那么,有没有一种既不是正数又不是负数的数呢?
问题1:有没有一种既不是正数又不是负数的数呢?
学生思考并讨论。
(数0既不是正数又不是负数,是正数和负数的分界,是基准。这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和—5℃,这里+7℃和—5℃就分别称为正数和负数。
那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数。
问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?
“数0耽不是正数,也不是负数”也应看作是负数定义的一部分。在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。
所举的例子,要考虑学生的可接受性。“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明。这个问题只要初步认识即可,不必深究。
问题3:教科书第6页例题
说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页)。
类似的例子很多,如:
水位上升—3m,实际表示什么意思呢?
收人增加—10%,实际表示什么意思呢?等等。
可视教学中的实际情况进行补充。
这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健。这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少—2kg,但现在不必向学生提出。
巩固练习教科书第6页练习
阅读思考
教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流
小结与作业
课堂小结以问题的形式,要求学生思考交流:
1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?
2,怎样用正负数表示具有相反意义的量?
(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的`量规定为正数,而把向指定方向的相反方向变化的量规定为负数。)
本课作业1,必做题:教科书第7页习题1。1第3,6,7,8题
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。
2,“数0既不是正数,也不是负数。”(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分。在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助。由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课。
3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解。
4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识。通过实际例子的学习激发学生学习数学的兴趣。
七年级数学教案教学设计 篇2
一、教学目标
1、 通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;
2、 初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;
3、 培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点
1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法
讲练结合、注重师生互动。
四、教学准备
课件
五、教学过程(师生活动)
(一)情境引入
教师提出教科收第79页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)
教师可以在学生回答的基础上做回顾小结
问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)
教师可以在学生回答的基础上做回顾小结:
1、问题涉及的三个基本物理量及其关系;
2、从知的信息中可以求出汽车的速度;
3、从路程的角度可以列出不同的算式:
问题3:能否用方程的知识来解决这个问题呢?
(二)学习新知
1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.
如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.
2、教师引导学生寻找相等关系,列出方程.
问题1:题目中的“汽车匀速行驶”是什么意思?
问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗? 问题3:根据车速相等,你能列出方程吗?
教师根据学生的回答情况进行分析,如:
依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:
依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:
3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.
4、归纳列方程解决实际问题的两个步骤:
(1)用字母表示问题中的未知数(通常用x,y,z等字母);
(2)根据问题中的相等关系,列出方程.
(三)举一反三讨论交流
1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.
列算式:只用已知数,表示计算程序,依据是间题中的数量关系;
列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?、
建议按以下的顺序进行:
(1)学生独立思考;
(2)小组合作交流;
(3)全班交流.
如果直接设元,还可列方程:
如果设王家庄到青山的路程为x千米,那么可以列方程:
依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:,再列出方程 =60
说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.
(四)初步应用、课堂练习
1、例题(补充):根据下列条件,列出关于x的方程:
(1)x与18的和等于54;
(2)27与x的差的一半等于x的4倍.
建议:本例题可以先让学生尝试解答,然后教师点评.
解:(1)x+18=54;
(2) (27-x)=4x.
列出方程后教师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.
2、练习(补充):
(1) 列式表示:
① 比a小9的数;
② x的2倍与3的和;
③ 5与y的差的一半;
④ a与b的7倍的和.
(2)根据下列条件,列出关于x的方程:
(1) 12与x的差等于x的2倍;
(2)x的三分之一与5的和等于6.
(五)课堂小结
可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:
1、 本节课我们学了什么知识?
2、 你有什么收获?
说明方程解决许多实际问题的工具。
(六)本课作业
1、 必做题:第84--85页习题3.1第1,5题。
2、 选做题:根据下列条件,用式表示问题的结果:
(1) 一打铅笔有12支,m打铅笔有多少支?
(2) 某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?
(3) 根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。
(七)板书设计
一元一次方程
1、 定义
2、 例
3、 练习
七年级数学教案教学设计 篇3
5.4平移
教学目标:
1、了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题
2、培养学生的空间观念,学会用运动的观点分析问题。
重点:平移的概念和作图方法。
难点:平移的作图。
教学过程
一、观察图形形成印象
生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案。
观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,借助举例说明。
二、提出新知实践探索
平移:
(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的.,这两个点是对应点。
(3)连接各组对应的线段平行且相等。图形的这种变换,叫做平移变换,简称平移
探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案
引导学生找规律,发现平移特征
三、典例剖析深化巩固
例如图,(1)平移三角形ABC,使点A运动到A`,画出平移后的ΔABC
先观察探讨,再通过点的平移,线段的平移总结规律,给出定义
探究活动可以使学生更进一步了解平移
四、巩固练习
课本33页:1,2,4,5,6,7
五、小结:
在平移过程中,对应点所连的线段也可能在一条直线上,当图形平移的方向是沿着一边所在直线的方向时,那么此边上的对应点必在这条直线上。2利用平移的特征,作平行线,构造等量关系是接7题常用的方法。
六、作业
课本P30页习题5。4第3题
七年级数学教案教学设计 篇4
教学建议
(一)教材分析
1、知识结构
2、重点、难点分析
重点:找出命题的题设和结论.因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础.
难点:找出一个命题的题设和结论.因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题.但有些命题的题设和结论不明显.例如,“对顶角相等”,“等角的余角相等”等.一些没有写成“如果……那么……”形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点.
(二)教学建议
1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假.
2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:
(1)假命题可分为两类情况:
①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的命题.
②题设有多种情形,其中至少有一种情形的结论是错误的.例如,“内错角互补,两直线平行”这个命题的题设可分为两种情形:第一种情形是两个内错角都等于90°,这时两直线平行;第二种情形是两个内错角不都等于90°,这时两直线不平行.整体说来,这是错误的命题.
(2)是否是命题:
命题的定义包括两层涵义:①命题必须是一个完整的句子;②这个句子必须对某件事情做出肯定或者否定的判断.即命题是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由“题设+结论”构成.
另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的平行线.”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是命题.
(3)命题的组成
每个命题都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果…,那么…”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.
有些命题,没有写成“如果…,那么…”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果…那么…”的形式.
另外命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.
教学设计示例:
教学目标
1.使学生对命题、真命题、假命题等概念有所理解.
2.使学生理解几何命题的组成,能够区分命题的题设和结论两部分,并能将命题改写成“如果……,那么……”的形式.
3.会判断一些命题的真假.
教学重点和难点
本节的重点和难点是:找出一个命题的题设和结论.
教学过程设计
一、分析语句,理解命题
1.教师让学生随意说一句完整的话,每个小组可以派一名同学说,如:
(1)我是中国人。
(2)我家住在北京。
(3)你吃饭了吗?
(4)两条直线平行,内错角相等。
(5)画一个45°的角。
(6)平角与周角一定不相等。
2.找出哪些是判断某一件事情的句子?
学生答:(1),(2),(4),(6)。
3.教师给出命题的概念,并举例。
命题:判断一件事情中,每句话都判断什么事情.所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清.在数学课中,只研究数学命题,请学生举几个数学命题的例子,每组再选一个同学说.(不要让说过的再说)
如:的句子,叫做命题,分析(3),(5)为什么不是命题.
教师分析以上命题
(1)对顶角相等。
(2)等角的余角相等。
(3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线。
(4)如果a>0,b>0,那么a+b>0。
(5)当a>0时,|a|=a。
(6)小于直角的角一定是锐角。
在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题。
(7)a>0,b>0,a+b=0。
(8)2与3的和是4。
有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的`角度来加深对命题这一概念的理解。
4.分析命题的构成,改写命题的形式。
例两条直线平行,同位角相等.
(l)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论.已知事项为“题设”,由已知推出的事项为“结论”。
(2)改写命题的形式。
由于题设是条件,可以写成“如果……”的形式,结论写成“那么……”的形式,所以上述命题可以改写成“如果两条平行线被第三条直线所截,那么同位角相等。”
请同学们将下列命题写成“如果……,那么……”的形式,例:
①对顶角相等。
如果两个角是对顶角,那么它们相等。
②两条直线平行,内错角相等。
如果两条直线平行,那么内错角相等。
③等角的补角相等。
如果两个角是等角,那么它们的补角相等。(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等。)
以上三个命题的改写由学生进行,对(2)要更改为“如果两条平行线被第三条直线所截,那么内错角相等。”
提示学生注意:题设的条件要全面、准确.如果条件不止一个时,要一一列出。
如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:
“如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直。”
二、分析命题,理解真、假命题
1.让学生分析两个命题的不同之处。
(l)若a>0,b>0,则a+b>0
(2)若a>0,b>0,则a+b<0
相同之处:都是命题.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论。
不同之处:(1)中的结论是正确的,(2)中的结论是错误的。
教师及时指出:同学们发现了命题的两种情况。结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题。
2.给出真、假命题定义
真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题。
假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题。
注意:
(1)真命题中的“一定成立”不能有一个例外,如命题:“a≥0,b>0,则ab>0”。显然当a=0时,ab>0不成立,所以该题是假命题,不是真命题。
(2)假命题中“结论不成立”是指“不能保证结论总是正确”,如:“a的倒数一定是”,显然当a=0时命题不正确,所以也是假命题。
(3)注意命题与假命题的区别.如:“延长直线AB”.这本身不是命题.也更不是假命题。
(4)命题是一个判断,判断的结果就有对错之分.因此就要引入真假命题,强调真假命题的大前提,首先是命题。
3.运用概念,判断真假命题。
例请判断以下命题的真假。
(1)若ab>0,则a>0,b>0。
(2)两条直线相交,只有一个交点。
(3)如果n是整数,那么2n是偶数。
(4)如果两个角不是对顶角,那么它们不相等。
(5)直角是平角的一半。
解:(1)(4)都是假命题,(2)(3)(5)是真命题.
4.介绍一个不辨真伪的命题.
“每一个大于4的偶数都可以表示成两个质数之和”。(即著名的哥德巴赫猜想)
我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确.我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”.即已经证明了“1+2”,离“1+1”只差“一步之遥”,所以这个命题的真假还不能做最好的判定。
5.怎样辨别一个命题的真假。
(l)实际生活问题,实践是检验真理的唯一标准。
(2)数学中判定一个命题是真命题,要经过证明。
(3)要判断一个命题是假命题,只需举一个反例即可。
三、总结
师生共同回忆本节的学习内容。
1.什么叫命题?真命题?假命题?
2.命题是由哪两部分构成的?
3.怎样将命题写成“如果……,那么……”的形式。
4.初步会判断真假命题.
教师提示应注意的问题:
1.命题与真、假命题的关系。
2.抓住命题的两部分构成,判断一些语句是否为命题。
3.命题中的题设条件,有两个或两个以上,写“如果”时应写全面。
4.判断假命题,只需举一个反例,而判断真命题,数学问题要经过证明。
四、作业
1.选用课本习题。
2.以下供参选用。
(1)指出下列语句中的命题。
①我爱祖国。
②直线没有端点。
③作∠AOB的平分线OE。
④两条直线平行,一定没有交点。
⑤能被5整除的数,末位一定是0。
⑥奇数不能被2整除。
⑦学习几何不难。
(2)找出下列各句中的真命题。
①若a=b,则a2=b2。
②连结A,B两点,得到线段AB。
③不是正数,就不会大于零。
④90°的角一定是直角。
⑤凡是相等的角都是直角。
(3)将下列命题写成“如果……,那么……”的形式。
①两条直线平行,同旁内角互补。
②若a2=b2,则a=b。
③同号两数相加,符号不变。
④偶数都能被2整除。
⑤两个单项式的和是多项式。
七年级数学教案教学设计 篇5
教学目标
①理解一次函数与一元一次方程的关系,会根据一次函数的图象解决一元一次方程的求解问题。
②学习用函数的观点看待方程的方法,初步感受用全面的观点处理局部问题的思想。
③经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题的辩证思想。
教学重点与难点
重点:一次函数与一元一次方程的关系的理解。
难点:一次函数与一元一次方程的关系的理解。
教学设计
导语
前面我们学习了一次函数。实际上,一次函数是两个变量之间符合一定关系的一种互相对应,互相依存。它与我们七年级学过的一元一次方程,一元一次不等式,二元一次方程组有着必然的联系。这节课开始,我们就学着用函数的观点去看待方程(组)与不等式,并充分利用函数图象的直观性,形象地看待方程(组)不等式的求解问题。这是我们学习数学的一种很好的思想方法。
注:点明学习本节内容的必要性:
(1)函数与方程、方程组、不等式有着必然的联系;
(2)用函数的观点看待方程、方程组、不等式是我们学数学应该掌握的思想方法。给学生一个本节内容的大致框架。
引入新课
我们先来看下面的两个问题有什么关系:
(1)解方程2x+20=0。
(2)当自变量为何值时,函数y=2x+20的值为零?
问题:
①对于2x+20=0和y=2x+20,从形式上看,有什么相同和不同的地方?
②从问题本质上看,(1)和(2)有什么关系?
③作出直线y=2x+20(建议课前作出,以免影响本节课主题),看看(1)与(2)是怎么样的一种关系?
注:用具体问题作对比,帮助学生理解。
在学生议论的基础上,教师结合教科书38页揭示:(1)与(2)实际上是同一个问题。
探讨归纳
从前面的讨论我们可以看到:一个一元一次方程的求解问题,可以与解某个相应的一次函数问题相一致。你认为在一般情况下,怎样的解一元一次方程问题与怎样的一次函数问题是同一的?
学生小组讨论(鼓励学生用自己的语言说明为什么同一?图象上怎么看?函数方程形式上怎么看?)
师生共同归纳(教科书39页)(略)
让学生在探究过程中理解两个问题的同一性。
练习巩固
1.以下的一元一次方程问题与一次函数问题是同一个问题
序号
一元一次方程问题
一次函数问题
1、解方程3x—2=0当x为何值时,y=3x—2的值为O?
2、解方程8x+3=0
3、当x为何值时,y=—7x+2的值为O?
解:(略)
注:第4题为开放题,鼓励学生有自己的想法与见解。如“解方程3x+5=8”与“当x为何值时,函数y=3x+5的值为8”是同一个问题等等
2、根据下列图象,你能说出哪些一元一次方程的解?并直接写出相应方程的解?
解:5x=0的解是x=0;x+2=0的解是x=—2;—3x+6=0的解是x=2;
由图象可得函数关系式是y=x—1,从而得出x—1=0的解是x=1。
注:此处练习为补充。可以帮助学生在积累了一些理性认识的基础上,增加更多的形象
了解。
综合应用
教科书P.139例1(略)
对于解法2,还可以拓展成:对于函数y=2x+5,当y=17时,求x的值。鼓励学生进一步思考。
注:例1可看成是一次函数与一元一次方程关系的一个直接应用。
归纳提高
框图化小结:
从数的角度看:
求ax+b=0(a≠O)的解x为何值时y=ax+b的值为0
从形的角度看:
求ax+b=0(a≠0)的解确定直线y=ax+b与x轴的横坐标
从数和形两方面总结,帮助学生建立数形结合的观念。
布置作业
教科书P.145习题11.3第1、2题。
七年级数学教案教学设计 篇6
设计理念
课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,引导学生从身边的问题研究开始,主动寻找“现实的、有意义的、富有挑战性的”学习材料,并更多地进行数学活动和互相交流.在主动学习、探究学习的过程中获得知识,培养能力,体会数学思想方法.使学生经历建立一元一次方程模型并应用它解决实际问题的过程,体会方程的作用,掌握运用方程解决简单问题的方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识.
教材分析
本节的.重点是建立实际问题的方程模型,通过探究活动,可以进一步体验一元一次方程与实际生活的密切关系,加强数学建模思想,培养学生运用一元一次方程分析和解决实际问题的能力.由于本节问题的背景和表达都比较贴近生活实际,所以在探究过程中正确建立方程是主要难点,突破难点的关键是弄清问题的背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系.切实提高学生利用方程解决实际问题的能力.
学情分析
从“课程标准”看,在前面学段中已有关于简单方程的内容,学生已经对方程有初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程.即对于方程的认识已经经历了入门阶段,具有一定的感性认识基础.但学生在探究过程中遇到困难时,教师应启发诱导,设计必要的铺垫,让学生在经历过自己的努力来克服困难的过程中体验如何进行探究活动,而不是代替他们思考,不要过早给出答案,应鼓励探究多种不同的分析问题和解决问题的方法,使探究过程活跃起来,在这样的氛围中可以更好地激发学生积极思考,使其获得更大的收获.
教学目标
知识与技能:
1.用一元一次方程解决实际问题.
2.会通过移项、合并同类项解一元一次方程.
3.知道用一元一次方程解决实际问题的基本过程.
数学思考:
1.会将实际问题转化为数学问题,通过列方程解决问题.
2.体会数学应用的价值.
解决问题:
会设未知数,并能利用问题中的相等关系列方程,对于列出的方程能用“移项”等方法来解决手机收费问题,进一步了解用方程解决实际问题的基本过程.
情感与态度:
通过学习,使学生更加关注生活,增强用数学的意识,从而激发其学习数学的热情.
教学重、难点
重点:会用一元一次方程解决实际问题.
难点:将实际问题转化为数学问题,通过列方程解决问题.
教学方法
采用探究、合作、交流等教学方式完成教学.
教学媒体
采用多种媒体辅助教学.
教学流程
一、创设情境,导入新课(观看大屏幕)
小明的爸爸新买了一部手机,他从电信公司了解到现在有两种移动电话计费方式:用“全球通”每月收月租费50元,此外根据累计通话时按0.40元/分加收通话费;用“神州行”没有月租,按0.60元/分收通话费.小明的爸爸不知道该怎么办?你们想探究这个问题吗?谁能给出主意?
[设计意图:由于移动电话(手机)在我国已很普及,选择经济实惠的收费方式很有现实意义,以这个问题形式出现,激发学生学习数学的热情,使学生能很有兴趣来探索这个问题.]
二、学习新课,探究新知
展现问题:
小明的爸爸新买了一部手机,他从电信公司了解到现有两种移动电话计费方式:
他正为选择哪一种方式犹豫呢?你能帮助他做出选择吗?
[设计意图:本例通过表格形式给出已知数据,先了解实际背景,类似这样用表格表达数量关系的实际问题很多,因此注意培养学生这方面的读题能力.]
(一)算一算:
一个月通话200分钟,按两种计费方式各需交费多少元?300分钟呢?
通话时间,全球通,神州行
[设计意图:这里用表格形式给出答案,便于学生对后面问题的分析.]
(二)议一议:
(1)累计通话t分钟,用“全球通”收费多少元?
(2)累计通话t分钟,用“神州行”收费多少元?
(3)对于某个通话时间,两种计费方式的收费会一样吗?
[设计意图:通过讨论,先给学生感性认识,再从具体到抽象,用字母来表示,其中的相等关系便可以找到了.]
(三)解一解:
设累计通话t分钟,两种计费方式的收费会一样.
则:
0.6t=50+0.4t,
移项,得0.6t-0.4t=50,
合并,得0.2t=50,
系数化为1,得t=250.
由上可知,如果一个月通话250分钟,那么两种计费方式的收费相同.
[设计意图:列出方程后,实际问题转化为数学问题了,至此,本问题已得到初步解决,让学生练习解方程的技能.]
(四)想一想:
怎样选择计费方式更省钱呢?(可分组交流)如果一个月内累计通话时间不足250分钟,那么选择“神州行”收费少;如果一个月内累计通话时间超过250分钟,那么选择“全球通”收费少.
[设计意图:这个选择是开放性的,答案与通话时间有关,应根据通话时间与250分钟的大小关系作出选择.]
(五)试一试:
根据以上解题过程,你能为小明的爸爸做选择了吗?如果小明的爸爸活动较多,与外界的联系一定不少,手机使用时间肯定多于250分钟,那么,他应该选择“全球通”,否则选择“神州行”.
[设计意图:这个选择是个拓展性思维问题,要根据小明爸爸业务活动的多少而定,培养学生解决生活中的实际问题的能力.]
(六)猜一猜:
假如你爸爸也遇到同样问题,请为你爸爸作出选择?
[设计意图:通过类似问题的回答,可以培养学生用数学的意识,体会到数学的使用价值。]
三、巩固训练,能力提升
1.方程6x+a=12与3x+1=6的解相同,则a=()。
A.1B.2C.3D.4
2.某蔬菜生产基地10月份上市青菜x万千克,11月份上市青菜是10月份的4倍还多5万千克,那么两个月份共上市青菜()万千克。
A.3x+3B.4x+4
C.5x+5D.6x+6
3.一列火车长为150米,以每秒15米的速度通过600米隧道,从火车进入隧道算起到这列火车完全通过隧道所需时间是()秒。
A.30B.40C.50D.60
4.有一根竹竿和一条绳子,竹竿比绳子短2米,把绳子对折后比竹竿短1.5米,则竹竿长()米.
A.3B.4C.5D.6
5.三个数的比是5∶6∶7,它们的和是198,则这三个数分别是()。
A.33、44、55B.44、55、66
C.55、66、77D.66、77、88
[设计意图:通过体验解决问题的全过程,形成解决问题的一些基本策略,发展实践能力和创新精神,进一步体会小组活动在数学中的作用。]
四、知识回顾,归纳总结
1.不同层次学生对本节知识认知程度(可谈收获及感受);
2.用一元一次方程分析和解决实际问题的基本过程(师生共同总结)。
[设计意图:结合例题的具体过程,帮助学生加深认识,培养在现实生活中应用数学的意识,使学生把所学知识进一步系统化。]
五、布置作业,巩固新知
1.基础作业:教材84页第4题,85页第10题。
2.课外探究:某学校在暑假将带领该校“科技能手”去北京旅游,甲旅行社说:“如果校长买全票,则其余学生可以享受半价优惠”;乙旅行社说:“包括校长在内,全部按全票价6折优惠”;若全票价为40元.
(1)如果学生为3人或7人时,两个旅行社各收费多少?
(2)学生数为多少时,两家旅行社的收费一样?
[设计意图:及时了解学生学习效果,调整教学安排,通过课后探究,独立思考,自我评价学习效果,使得基础知识和基本技能在头脑中留下较深刻的印象。
数学教学设计教案包括设计意图(分享七篇)
作为一位兢兢业业的人民教师,有必要进行细致的教学设计准备工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。教学设计应该怎么写才好呢?以下是小编精心整理的初中数学教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学教学设计教案包括设计意图 篇1
一、教学内容分析:
本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
二、学生学习情况分析:
任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、设计思想
本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
四、教学目标
通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
五、教学重点与难点
重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。
六、教学过程设计
(一)知识准备、新课引入
提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示) a??
提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
[设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。]
(二)判定定理的探求过程
1、直观感知
提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?
生1:例举日光灯与天花板,树立的电线杆与墙面。
生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。
[学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。]
2、动手实践
教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。
[设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。]
3、探究思考
(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为平面内一条直线③这两条直线平行
(2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面?平行吗?
4、归纳确认:(多媒体幻灯片演示)
直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。
简单概括:(内外)线线平行?线面平行a符号表示:ba||? a||b??
温馨提示:
作用:判定或证明线面平行。
关键:在平面内找(或作)出一条直线与面外的直线平行。
思想:空间问题转化为平面问题
(三)定理运用,问题探究(多媒体幻灯片演示)
1、想一想:
(1)判断下列命题的真假?说明理由:
①如果一条直线不在平面内,则这条直线就与平面平行()
②过直线外一点可以作无数个平面与这条直线平行( )
③一直线上有二个点到平面的距离相等,则这条直线与平面平行( )
(2)若直线a与平面?内无数条直线平行,则a与?的位置关系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。]
2、作一作:
设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由?
先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。
[设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。]
3、证一证:
例1(见课本60页例1):已知空间四边形abcd中,e、f分别是ab、ad的中点,求证:ef ||平面bcd。
变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。
[设计意图:设计二个变式训练,目的'是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef ||平面bdd1b1分析:根据判定定理必须在平
面bdd1b1内找(作)一条线与ef平行,联想到中点问题找中点解决的方法,可以取bd或b1d1中点而证之。
思路一:取bd中点g连d1g、eg,可证d1gef为平行四边形。
思路二:取d1b1中点h连hb、hf,可证hfeb为平行四边形。
[知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。平行问题找中点解决是个好途径好方法。这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法]
4、练一练:
练习1:见课本6页练习1、2
练习2:将两个全等的正方形abcd和abef拼在一起,设m、n分别为ac、bf中点,求证:mn ||平面bce。
变式:若将练习2中m、n改为ac、bf分点且am = fn,试问结论仍成立吗?试证之。
[设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。]
(四)总结
先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):
1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。
2、定理的符号表示:ba||? a||b??简述:(内外)线线平行则线面平行
3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。
七、教学反思
本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。
本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。
本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。
本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。
数学教学设计教案包括设计意图 篇2
课题:12.3等腰三角形(第一课时)
教学内容:新人教版八年级上册十二章第三节等腰三角形的第一课时
任课教师:东湾中学李晓伟
设计理念:
教学的实质是以教材中提供的素材或实际生活中的一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新。
㈠教材的地位和作用分析
等腰三角形是新人教版八年级上册十二章第三节等腰三角形的第一课时的内容。本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。
另外,本堂课通过“活动探究”、“观察—猜想—证明”等途径,进一步培养学生的动手能力、观察能力、分析能力和逻辑推理能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的作用。
㈡教学内容的分析
本堂课是等腰三角形的第一堂课,在认识等腰三角形的基础上着重介绍“等腰三角形的性质”。在教学设计的过程中,通过展示我国今年举办的精彩绝伦的盛会—上海世博会图片中的等腰三角形,结合云南丰富的文化资源,让学生感知生活中处处有数学,感受图形的和谐美、对称美;通过学生感兴趣的数学情景引入等腰三角形定义,提高学生的学习乐趣;让学生通过动手剪等腰三角形、对折等腰三角形等活动,探究发现等腰三角形的性质,经历知识的“再发现”过程。在探究活动的过程中发展创新思维能力,改变学生的学习方式。在发现等腰三角形的性质的基础上,再经过推理证明等腰三角形的性质,使得推理证明成为学生观察、实验、探究得出结论的自然延伸,有机地将等腰三角形的认识与等腰三角形的性质的证明结合起来,从中发展学生推理能力。
在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。
二、目标及其解析
㈠教学目标:
知识技能:
1.了解等腰三角形的概念,认识等腰三角形是轴对称图形;2.经历探究等腰三角形性质的过程,理解等腰三角形的性质的证明;
3.掌握等腰三角形的性质,能运用等腰三角形的性质解决生活中简单的实际问题。
数学思考:
1.经历“观察?实验?猜想?论证”的过程,发展学生几何直观;
2.经历证明等腰三角形的性质的过程,体会证明的必要性,发展合情推理能力和初步的演绎推理能力.
解决问题:
1.能运用等腰三角形的性质解决生活中的实际问题,发展数学的应用能力,获得解决问题的经验;
2.在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性.
情感态度:
1.经历“观察?实验?猜想?论证”的过程,体验数学活动充满着探究性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心;
2.经历运用等腰三角形解决实际问题的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用;
3.在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益.
㈡教学重点:
等腰三角形的性质及应用。
㈢教学难点:
等腰三角形性质的证明。
㈣解析
本堂课是等腰三角形的第一堂课,所以对于本堂课的知识目标的定位,主要考虑如下:1.了解等腰三角形的概念,认识等腰三角形是轴对称图形,在本堂课中要达到如下要求:⑴理解等腰三角形的定义,知道等腰三角形的顶角、底角、腰和底边;⑵知道等腰三角形是轴对称图形,它有一条对称轴,即:顶角角平分线(底边上的高或底边上的中线)所在直线;
2.经历探究等腰三角形性质的过程,掌握等腰三角形的性质的证明,在课堂中让学生参与等腰三角形性质的探索,鼓励学生用规范的数学言语表述证明过程,发展学生的数学语言能力和演绎推理能力,引导学生完成对等腰三角形的性质的证明;
3.会利用等腰三角形的性质解决简单的实际问题,本堂课要达到以下要求:掌握等腰三角形的性质,会利用等腰三角形的性质解决简单的实际问题。
三、问题诊断分析
1.在这堂课中,学生可能遇到的第一个困难是等腰三角形性质的发现,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质,解决这一问题教师主要借助等腰三角形对称性的研究,并引导学生理解“重合”这个词的涵义。
2.这堂课学生可能遇到的第二个问题是证明等腰三角形的性质,这一问题主要有三个原因:第一学生刚接触几何证明不久,对数学语言表达方式还不熟悉;这一困难,并不是一堂课就能解决的,而要在以后学习中帮助学生增强数学语言运用的能力,能有条理地、清晰地阐述自己的观点。在这堂课中我通过等腰三角形性质的证明,鼓励学生运用规范的数学语言来表述,使学生数学语言能力和演绎推理能力得到提升;第二是添加辅助线的问题,这也是学生在证明中的一个难点。要解决这一问题,我借助等腰三角形是轴对称图形,通过研究等腰三角形的对称轴,让学生理解三种添加辅助线的方法,即作顶角角平分线、底边上的高或底边上的中线;第三是证明等腰三角形顶角角平分线、底边上的中线、底边上的高互相重合这一性质,要突破这一难点,我采用先证明等腰三角形两底角相等这一性质,为学生搭一个台阶,更好地解决这个难点。
3.这堂课中学生可能遇到的第三个问题是对等腰三角形的性质的应用,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质的应用;所以我在设计
课堂练习时,注重数学知识与生活实际的联系,提高学生数学学习的兴趣,让学生主动运用数学知识解决实际问题,并通过练习渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。
四、教法、学法:
教法:
常言道:“教必有法,教无定法”。所以我针对八年级学生的心理特点和认知能力水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活。因此,本堂课的教学中,我以学生为主体,让学生积极思维,勇于探索,主动地获取知识。同时,采用了现代化教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率。本堂课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础。
本堂课的设计是以课程标准和教材为依据,采用发现式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生大胆猜想,小心求证的科学研究的思想。
学法:
学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“情景问题?实践探究?证明结论?解决实际问题”的主线进行学习。让学生从活动中去观察、探索、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲身的实践活动,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会自主学习,学会探索问题的方法。
五、教学支持条件分析
在本堂课中,准备利用长方形纸片、剪刀、圆规和直尺等工具,剪出等腰三角形,利用等腰三角形,通过对折、多媒体动画演示等方法发现等腰三角形的性质,并且借助多媒体信息技术与实际动手操作加强对所学知识的理解和运用。
六、教学基本流程
七、教学过程设计
数学教学设计教案包括设计意图 篇3
一、教材分析
本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。
二、学生学习情况分析
刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。
三、设计理念
本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。
四、教学目标
1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;
2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;
3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。
五、教学重点与难点
重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.
六、教学过程设计
教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结
(一)熟悉背景、引入课题
1.让学生看材料:
材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。大家知道,世界发现的不腐之尸都是在干燥的环境风干而成,譬如沙漠环境,这类干尸虽然肌肤未腐,是因为干燥不利细菌繁殖,但关节和一般人死后一样,是僵硬的,而马王堆辛追夫人却是在湿润的环境中保存二千多年,而且关节可以活动。人们最关注有两个问题,第一:怎么鉴定尸体的年份?第二:是什么环境使尸体未腐?其中第一个问题与数学有关。
图4—1 (如图4—1在长沙马王堆“沉睡”近2200年的古长沙国丞相夫人辛追,日前奇迹般地“复活”了)那么,考古学家是怎么计算出古长沙国丞相夫人辛追“沉睡”近2200年?上面已经知道考古学家是通过提取尸体的残留物碳14的残留量p,利用t?logp 57302估算尸体出土的年代,不难发现:对每一个碳14的含量的取值,通过这个对应关系,生物死亡年数t都有唯一的值与之对应,从而t是p的函数;
如图4—2材料2(幻灯):某种细胞分裂时,由1个分裂成2个,2个分裂成4个??,如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个??,不难发现:分裂次数y就是要得到的细胞个数x的函数,即y?log2x;
图4—2 1.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数y?logax(a?0,且a?1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
1对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:注意:○ x2对数函数对底数的限制:(a?0,都不是对数函数.○5y?2log2x,y?log5且a?1).
3.根据对数函数定义填空;
例1 (1)函数y=logax的定义域是___________ (其中a>0,a≠1) (2)函数y=loga(4-x)的定义域是___________ (其中a>0,a≠1)说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理
解,所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、拓展、引入复合函数的概念。
[设计意图:新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的.理解,不妨从学生自己的生活经历和实际问题入手”。因此,新课引入不是按旧教材从反函数出发,而是选择从两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点] 2
(二)尝试画图、形成感知1.确定探究问题
教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题?学生1:对数函数的图象和性质
教师:你能类比前面研究指数函数的思路,提出研究对数函数图象和性质的方
法吗?
学生2:先画图象,再根据图象得出性质
教师:画对数函数的图象是否象指数函数那样也需要分类?学生3:按a?1和0?a?1分类讨论
教师:观察图象主要看哪几个特征?
学生4:从图象的形状、位置、升降、定点等角度去识图
教师:在明确了探究方向后,下面,按以下步骤共同探究对数函数的图象:步骤一:(1)用描点法在同一坐标系中画出下列对数函数的图象y?log2xy?log1x 2 (2)用描点法在同一坐标系中画出下列对数函数的图象y?log3xy?log1x 3步骤二:观察对数函数y?log2x、y?log3x与y?log1x、y?log1x的图象特23征,看看它们有那些异同点。
步骤三:利用计算器或计算机,选取底数a(a?0,且a?1)的若干个不同的值,
在同一平面直角坐标系中作出相应对数函数的图象。观察图象,它们有哪些共同特征?
步骤四:规纳出能体现对数函数的代表性图象
步骤五:作指数函数与对数函数图象的比较2.学生探究成果
(1)如图4—3、4—4较为熟练地用描点法画出下列对数函数y?log2x、 y?log1x、 y?log3x、y?log1x的图象23图4—3图4—4 (2)如图4—5学生选取底数a=1/4、1/5、1/6、1/10、4、5、6、10,并推荐几位代表上台演示‘几何画板’,得到相应对数函数的图象。由于学生自己动手,加上‘几何画板’的强大作图功能,学生非常清楚地看到了底数a是如何影响函数y?logax(a?0,且a?1)图象的变化。
图4—5 (3)有了这种画图感知的过程以及学习指数函数的经验,学生很明确y = loga x (a>1)、y = loga x (0(中部)
数学教学设计教案包括设计意图 篇4
一、案例实施背景
本节课是20xx-20xx学年度第一学期笔者在一乡镇中学的多媒体教室里上的一节课,课堂中数学优秀生、中等生及后进生都有,所用教材为人教版义务教育课程九年级数学(上册).
二、案例主题分析与设计
本节课是人教版义务教育教科书九年级上册第24章第1节内容——圆,圆的概念是中心对称的继续,是后面研究扇形、弧长的基础,是“空间与图形”的重要组成部分。《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标
1、知识技能:探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.
2、数学思考:体会圆的不同定义方法,感受圆和实际生活的联系
3、解决问题:在解决问题过程中使学生体会数学知识在生活中的普遍性.
四、案例教学重、难点
1、重点:圆的两种定义的探索,能够解释一些生活问题.
2、难点:圆的运动式定义方法.
五、案例教学用具
1、教具:多媒体课件、圆规、细线、铅笔。
2、学具:圆规
六、案例教学过程
(一)创设问题情境,激发学生兴趣,引出本节内容
1、如图1,观察下列图形,从中找出共同特点.
图1
2、学生活动:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.
3、教师活动:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.
(二)问题引申,探究圆的定义,培养学生的探究精神
1、如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件展示画图过程)
图2
2、学生活动:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.
3、教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径;圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.
4、师生共同归纳:
(1)圆上各点到定点(圆心)的距离都等于定长(半径);
(2)到定点的距离等于定长的点都在同一个圆上.
(3)圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.
5、讨论圆中相关元素的定义.
(1)如图3,你能说出弦、直径、弧、半圆的定义吗?
图3 (2)学生活动:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.
(3)教师活动:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决. 弦:连接圆上任意两点的线段叫作弦; 直径:经过圆心的弦叫作直径;
弧:圆上任意两点间的部分叫作圆弧,简称弧;
AB,读作“圆弧AB”或“弧弧的表示方法:以A、B为端点的弧记作AB”;
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.
优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的 ABC;
. 劣弧:小于半圆的弧叫作劣弧,如图3中的BC
(三)讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?(课件:车轮;课件:方形车轮)
1、学生活动:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.
2、教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.
图4
(四)应用提高,培养学生的应用意识和创新能力m的圆?说出你的理由
2、师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法.根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈.B所经过的路径就是所要的圆.cm,这棵红杉树平均每年半径增加多少?
图5
4、师生活动设计:首先求出半径,然后除以20即可.
解答:树干的半径是23÷2=11.5(cm).
平均每年半径增加11.5÷20=0.575(cm).
(五)归纳小结、布置作业
小结:圆的两种定义以及相关概念.
作业:请做一个正方形的车轮,体会在车轮滚动的过程中车身的情况
七、教学反思
1、教师角色的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同探讨者。在引导学生观察、画图、发现结论后,利用多媒体课件直观的、动态的展示圆的形成过程及车轮原理,激发了兴趣。
2、学生角色的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。
3、课堂氛围的转变:整节课以 “流畅、开放、合作、“隐导”为基本特征。教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
数学教学设计教案包括设计意图 篇5
【教学内容】
义务教育课程标准试验教科书青岛版小学数学四年级上册第54页
【教学目标】
1让学生在亲身实践中培养发现问题、分析问题、解决问题的能力。
2让学生经历“猜想——实验——验证”的研究过程获得一些初步的数学活动经验体会数学在解决实际问题中的`作用培养数学兴趣。
【教学过程】
一、激发兴趣导入新课
谈话同学们你荡过秋千吗好玩吗今天我们要学习的知识就和荡秋千有关感兴趣吗
二、在实验中探究
1提出问题
师看课本P54信息图同学们仔细观察这三个小朋友的身体特点和他们所荡秋千绳子长短。你猜想在相同时间内谁荡的次数多呢学生猜想并说明理由。
学生可能会有多种不同猜想老师逐一记录暂时不作评价。总的来说会有两大类猜想第一类按体重轻重来猜想。第二类按秋千绳子长短来猜想。
2进行实验
1实验一绳长相同、质量不同的物体在相同时间内摆动次数的实验。
①老师准备三个不同质量砝码用相同长度的绳吊着把三个砝码从同样高度荡起用力均匀。学生观察并分工数15秒内三个不同砝码所荡次数然后填表统计。
②教师换三个砝码进行同样实验。学生观察统计。
③师通过这个实验你能得出什么结论学生交流补充得出结论在相同时间内荡秋千次数与物体质量没有关系。学生能用自己的语言正确叙述即可2实验二绳长不同、质量相同的物体在相同时间内摆动次数的实验。
①老师准备同等质量三个砝码用不同绳长吊着把三个砝码从同样高度荡起用力均匀。学生观察并分工数15秒内三个砝码所荡次数然后填表统计。
②教师换另外砝码或换与上次不同绳长进行同样实验。学生观察统计。
③师通过这个实验你能得出什么结论学生交流补充得出结论相同时间内荡秋千次数与绳长短有关系绳越长荡起次数越少绳越短荡起次数越多。
3小结
师通过这几个实验你能总结一下我们学得知识吗学生总结在相同时间内荡秋千次数与质量无关与绳长有关。老师强调注意前提是“相同时间内”。这个结论验证了我们哪个猜想推翻了我们哪个猜想
三、全课总结
谈话荡秋千中有这么多数学知识生活中处处都有数学知识同学们平时要做个生活有心人用心发现知识、学习知识好吗
数学教学设计教案包括设计意图 篇6
本专题的主要内容:从数学活动的概念出发梳理和剖析了数学活动类型和实施策略,并结合重点案例分析了展开数学活动的几个着眼点:说话、对话、表演、操作及活动的整合。专家强调:教师应对数学活动的开展给予足够的重视,开发引起学生学习兴趣的数学活动,并在教学中不断的拓展与完善,以便帮助学生积累更多的数学活动经验,更好的体会数学学习的趣味性以及与现实生活的密切联系。两位专家关于《小学数学教学中数学活动的设计》的`专题讲座,给我们的启发很大,对于激发学生的学习兴趣,提高课堂教学效率和教师教学水平具有很强的指导意义。
现结合自己的教学实践和学习,谈谈自己的学习体会。
1.通过学习,了解数学活动的含义,认识到活动在数学学习中的重要作用。
2.通过学习专题中的一些重点案例,了解了数学活动的类型和实施策略。
3.专题中所提出设计有效的数学活动的类型和策略,特别是开展数学活动的几个着眼点,在教学实践中可操作性很强,将这次专题学习的成果应于自己的课堂教学,必将极大的激发学生学习数学的兴趣,有效提高教学效率。
数学教学设计教案包括设计意图 篇7
教学目标
1.明确等差数列的定义.
2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题
3.培养学生观察、归纳能力.
教学重点
1. 等差数列的概念;
2. 等差数列的通项公式
教学难点
等差数列“等差”特点的理解、把握和应用
教具准备
投影片1张
教学过程
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的.特点?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)
对于数列②-2n(n≥1)(n≥2)
对于数列③(n≥1)(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:即:即:……
由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)
数列②:(n≥1)
数列③:(n≥1)
由上述关系还可得:即:则:=如:三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:①等差数列定义。
即(n≥2)
②等差数列通项公式 (n≥1)
推导出公式:(V)课后作业
一、课本P118习题3.2 1,2
二、1.预习内容:课本P116例2P117例4
2.预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
数学教学教案设计中的重难点最新(通用十一篇)
作为一位杰出的教职工,很有必要精心设计一份教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计要怎么写呢?以下是小编整理的高中数学教学设计,仅供参考,希望能够帮助到大家。
数学教学教案设计中的重难点最新 篇1
20xx年寒假期间,我读《初中数学创新教学设计》一书对我很有帮助,感想很多。
教学设计作为教师进行教学的主要工作之一,对教学起着先导作用,它往往决定着教学工作的方向;同时教学设计的技能作为教师专业发展的重要内容,已成为教师从师任教必备的基本功。所以教师了解初中数学教学设计的内容很有必要。新理念下的初中数学教学设计的内容可以包括:
(1) 教学目标。
在新理念下,教学目标一般包括过程性目标和结果性目标两个方面,也可以进一步细分为知识技能,数学思考,解决问题,情感态度等多方面。
(2)任务分析
进行任务分析的重点在于关注几个要点:
一是关注学生的起点;二是关注学生主要的认知障碍和可能的认知途径;三是分析教学内容的重点、难点和关键;四是研究达成目标的主要途径和方法。
在这里,有两个问题十分重要:第一,要关注学生的经验基础,第二,要正确认识教材。对于前者,意味着不仅要考虑学科自身的特点,更应遵循学生学科学习的心理规律;要把学生的个人知识、直接经验和现实世界作为初中数学教学的重要资源。对于后者,意味着要“用教材教,而不是教教材”。创造性的使用教材是本次新课程对我们提出的新要求,教材是极其宏观性的一个蓝本,覆盖着非常广阔的时空,主要对教师教什么、学生学什么起到指向作用。但教材仅仅是教师组织数学课堂教学活动的素材,使学生进行数学学习的平台。新理念下的教材给教师留下了比较大的创造空间,进行任务分析,就必须改变“以教材为本处理教材”的现象,根据学生实际、教学实际和当地实际,模拟教材,重组教材,编制教材,消减技巧性训练,增加其探索性、思考性和现实性的成分,为实施开放式、活动式的探究、合作、参与等新型学习方式创造条件。事实上,对初中生来说,喜好数学问题,对有关的数学活动充满好奇心,这是进一步学习数学的首要前提和发展动力。
(3)教学思路。
主要考虑具体的教学过程,包括创设的情景、活动的线索、学生可能提出的问题,可能的情况下必须附设计说明。
(4)教学反思。
主要针对如下一些问题开展反思:
是否达到预期目标?如果没有达到,分析其原因,并提供改进的方案。有哪些突发的灵感,印象最深的讨论或学生独特的想法?哪些地方与教学设计的不一样,学生提出了哪些没有想到的问题?为什么会提出这些问题?
了解了教学设计的内容,为我们以后教学设计具有很重要的指导意义。
今天,李老师带着我们去看舞剧《羚羚的故事》。到那里以后,先是主持人讲话,之后是大队辅导员李老师讲话,她带我们一起回顾了羚羚的故事的精彩镜头,看完了我觉得他们太辛苦了!
第一幕讲的是在美丽的可可西里,有很多很多的羚羊在玩,羚羚和妹妹跟妈妈在说话,妈妈说:“你们看,蓝蓝的天空多漂亮啊!”羚羚说:“是啊,你看那朵云彩多像我啊!”妈妈说:“这美丽的一切是很多很多妈妈的牺牲换来的!”之后,一位来西藏旅游的少年来了,她和小羚羊玩耍,对小羚羊特别好。
第二幕讲的是羚羚听见“砰”的一声,她问妈妈是怎么回事,妈妈说:“这是枪声,咱们赶快跑吧!”羚羚说:“妹妹呢?”她们到处找,突然发现妹妹已经被击中了!羊妈妈刚想去救她,但是来不及了,偷猎者来了!妹妹被偷猎者带走了,羚羚非常伤心!
第三幕讲的是小羚羊们又累又饿,走不动了。羊妈妈说:“孩子,坚持一下吧!”羚羚问:“妈妈,我们要去哪儿?我们为什么要离开可可西里?”妈妈说:“我们要去一个没有人类的地方,因为现在的可可西里已经不是我们的家园了。”羚羚问:“妈妈,您不是说人类是我们的好朋友么?我们为什么要远离他们?”羊妈妈说:“因为现在来可可西里的人是魔鬼,他们要杀掉我们,用我们的毛皮做衣服,我们要离开这里!”小羚羊们走着走着,大雪来了,大雨来了,大风来了,羚羚实在受不了了。这时,她们的面前出现了一片沼泽地,小羚羊们很着急,怎么过去呢?羊妈妈说:“我们已经没有选择了!”说着,所有的羊妈妈都跳了下去,她们背着小羚羊过去了,但是羊妈妈们却被埋在了沼泽地里。羚羚和小羚羊们大喊着:“妈妈!妈妈!”这时少年来了,她正在寻找小羚羊,小羚羊看到她,跑了过去。少年说:“羚羚,是你吗?你身上怎么这么多伤?你的妈妈呢?”羚羚伤心地说:“妈妈死了,妹妹也死了!”
第四幕讲的是少年带着她的朋友们来了,他们都是动物保护者,他们同小动物们一起打败了偷猎者。小羚羊们又有了新的家园。这时候羚羚也当妈妈了,她们过上了幸福的生活!
看完这个故事,我想说:“可恶的偷猎者,不许再杀害小动物了!”因为中国的珍稀动物越来越少,比如大熊猫、扬子鳄、白鳍豚,我必须要保护小动物,我们每个人都要保护小动物,它们是我们人类的好朋友!让我们每个人都做环保的小卫士!
研究教学方法的组合运用这一课题,对提高思想政治课教学质量有重要的意义。教学方法是多种多样的,每一种方法都有自己的特点和适用范围。师生在教学中可以也应该自主选择不同的教和学的方法,努力创造新的教和学的方法。教学有法,但无定法,贵在得法,教师教学时必须注意方法选择。我在教学中常用的方法有:演讲法、发现教学法与探究教学法 、训练与实践式教学方法、复习测验式教学法、小组讨论法等。其中用得最多的是演讲法,其优势在于:
(1)演讲法可以说明一些原则,可以叙述一些事实,解决高中政治教学当中某些内容抽象学生难以理解的问题和概念。在新课程标准下,高中政治教学目的在于向学生传授基本的理论知识从而让学生具备正确是世界观和方法论,从而具有在现实生活当中解决问题的能力。
虽然高中政治是一门与时事关系非常密切的学科,但是它同样具有抽象性和蒙蔽性,这些仅仅靠学生的自发理解是解决不了的,这时候,演讲法就具备了相当的优势。通过演讲法,教师可以将政治学科当中难以理解的问题结合时事和例子深入浅出的讲述清楚,插入有趣的例子和时事,这样就可以将时效性和趣味性结合起来,既解决了教学重点和难点,同时也可以提高学生对政治这门学科的兴趣,让他们明白,这门学科对他们而言具有相当的实用性,而又不显得课堂空荡荡。教师就可以通过“演讲法”,把教学内容和例子相结合,就可以解决这些对学生而言非常抽象的概念和理念,毕竟,高中的学生的理解能力在挖掘发展当中。
(2)可以节省教学的时间,在高中政治教学的过程当中,有时候教学任务繁重在一节课当中,这个时候,“单向式”的演讲法就可以节省时间,能够顺利完成当节教学任务;
正如之前所说的,任何事物都有其两面性,演讲法有其优点,自然也有它的缺陷。它主要是在于「单向教学」的问题,教师不易掌握学生对教材的接受情况与了解的程度,同时也容易发生灌输式教学的危险,如果教师对课堂出现的问题处理能力不强或者语言表达能力不够,那么在使用演讲法时就很容易陷入让学生觉得枯燥乏味的情绪当中,因为毕竟来说高中政治这门学科对于学生来说已经有“枯燥无味”和“学了也没什么用”的这种先入为主的观念了,所以这时候对于高中的政治老师的课堂处理能力和语言表达能力就提出更高的要求对于使用演讲法来说。因此,当高中政治教师在使用演讲法之时,应当配合其它一些可以使学生参与的方法来使用,譬如:讨论式、问题式、游戏式等等,尽量让学生参与到课堂当中,同时通过语言的渲染力提高学生上课的情绪。
比如在讲述到“公民的政治权利”这个概念时,就可以提出当前社会当中易让人困惑的问题让学生参与讨论,通过这样的设问讨论,学生的情绪就非常高涨,纷纷发表自己的看法,最后再通过演讲法由教师进行总结,这样既可以加深对问题的理解,也可以调节课堂气氛,增强师生之间的互动性,这样就可以很好的弥补了演讲法本身的缺陷。教学的重点并不完全在于将一大堆的知识或材料倾倒给学生。学生积极、热切地参与在教与学的过程中是非常重要的。让学生多有运用手及脑的机会是有益处的。对高中这些年纪稍大一点的学生而言,他们自主性很强,有自己独立的思想,愈给他们参与的机会,就学习得愈好。
在教学目标的落实方面需要改进的主要是加强与学生的沟通,因为不管多好的方法,只有能被学生有效分享,为学生的学习提高助力,帮助学生理解教学内容的教学方法才是真正有效的方法。
数学教学教案设计中的重难点最新 篇2
教学内容:
课本P13——-P15练习二
教学目标:
1、巩固两位数与两位数的加法运算,加深加法意义的理解,为退位减法的学习做准备。
2、让学生有机会在不断探索和创造的气氛中培养解决问题的能力,激发学习数学的兴趣。
3、引导学生在辨识的练习中体验数学学习的趣味性、挑战性,使不同的学生在数学学习的能力上得到不同的发展。
教学重点:
1、通过练习,使学生能比较熟练的进行两位数与两位数的加法运算,提高学生的运算技能。
2、培养学生运用所学知识解决实际问题的能力。
教学难点:
通过练习,使学生比较熟练而准确的进行两位数与两位数的加法运算。
教学准备:
实物投影、卡片
教学过程:
一、创设情景,引入新课
1、学习了关于两位数与两位数的加法运算。你们有哪些收获呢?指名汇报。
2、总结得真不错。今天这节课我们继续来研究,通过这节课的学习相信大家会有更大的收获。
〔设计意图〕:使学生明确学习的`目标。
二、合作探索,巩固知识。
1、完成第14页练习二第5题。教师巡视、指导。做完以后请小朋友在小组内说一说是怎样计算的。
2、名汇报、并说明计算方法。计算两位数与两位数的加法时,要注意什么问题?指名回答。
3、完成第14页练习二第6题。这些计算对吗?和小组的同学说一说,把错误的改正过来。指名汇报,并说出错误应该如何改正。
4、完成第15页练习二第9题。教师巡视。指名汇报,并说明解题思路。
5、完成第14页练习二第7题。仔细读题,理解题意后完成填表。指名汇报,并说说是怎样计算的。观察表格,你了解到了哪些信息?说给你的同桌听一听。指名汇报。学生汇报,并说明解题思路。
6、完成第15页练习二第8题。有四只小白兔一起上山采蘑菇,现在它们正在为谁采的蘑菇最多而吵闹,你能帮帮它们吗?
7、怎样做才能解决它们的问题?指名汇报。
8、完成第15页练习二第10题。请在小组内讨论、交流完成。教师巡视。指名汇报。
〔设计意图〕:加深理解并使不同的学生得到不同的发展。
三、课堂总结:通过这节课的练习,你有什么新的收获?
学生从知识、方法上进行总结。
四、随堂练习
数学教学教案设计中的重难点最新 篇3
教学目标
(1)初步认识角,知道角的各部分名称;学会用尺子画角。
(2)通过让学生观察、操作分析,培养学生的观察能力、动手操作能力和抽象思维能力,发展学生独立学习能力和创造意识。
(3)培养学生良好的合作精神。
教学重难点
学生对于角的认识往往只是借助于实物停留在感性认识阶段,对角缺乏系统的认识,所以本课时的重点是让学生形成角的正确表象,知道角的各部分名称,初步学会用直尺画角。难点是引导学生画角的方法。
教学工具
ppt课件
教学过程
(一)谈话引入课题
1、师:老师给大家带来了数学王国图形家族成员中的几个成员,大家还认识它们吗?黑板上画的'正方形,三角形,圆形等。(学生回答)今天我们来认识图形家族中的另一个新成员:角,引入课题“角的初步认识”。今天我们就要学习“角的初步认识”。
2、老师板书:角的初步认识
(二)联系实际,引导探究
1、师:同学们对角一定都非常熟悉,(放PPT)让学生看图,这几个图形里都有角,同学们睁大你的眼睛看,这就是角。
放有关学校的情景图的幻灯片让学生找角。学生一一做答。
2、师:同学们真了不起,找到了这么多角。
3、师:那么,我们现在身边是不是也有很多角呢?同学们找找看,(请学生来指一指。)学生回答:课桌的角、课本的角、门和窗的角等等。
4、师:同学们找了那么多角,那么角是由哪几部分组成的呢?(放PPT)边放边说,角是由一个顶点两条边组成的,再放一遍,老师说顶点,边,边。然后板书:顶点、边、边。
5、师:我们都知道什么是角,也知道角的各个部分,那么角是怎么画出来的呢?同学们看大屏幕(放PPT),同学们看懂了吗?画角时,要先定顶点再画两条边。老师在黑板上再演示一遍。
6、仔细观察,一个角有几个顶点,几条边组成?(生答)由一个顶点和两条边组成。我们在表示角的时候,不能就这么点一下。看老师是怎么表示角的。(教师动作演示:一个顶点,两条边,再用手画)拿起你的小手,我们一起来指一指。现在,谁用这种方法来指一指这把尺上的角?(还有其他的角吗?)
7、师:想一想看,角可以怎么画?要注意什么?(学生回答)先画一个点,从这点起,用尺子向不同的方向画两条线就成了一个角。请同学们照这个方法画一个,试试。把你画的角的顶点与边指给同桌看。(一生板演,反馈时指出顶点和边即可。)
8,比较角的大小,放两个同样大小的角,但是边不一样长,提问学生,哪个角大,同学可能要说,边长的那个角大(放幻灯片),老师问学生是不是边越长角就越大哪?同学们看到了角的大小与边的长短没有关系,与它开口的大小有关。
9、师:再画一个和刚才大小不一样的角。请你为自己画的角打分。
10、折角:让同学们拿出自己准备的纸折几个角,同桌比较一下大小。再用一张圆形纸折,看学生能否折出角,老师巡视、指导。
(三)巩固拓展,课外延伸
1、师:刚才画了一个角,老师在这里再添一条线,现在这里有几个角了?(学生指,教师画弧。)
2、师:我这里还有一个长方形的图形,如果剪去一个角,请你猜猜还剩几个角?
3、师:你能告诉同伴们,今天你有哪些收获吗?
数学教学教案设计中的重难点最新 篇4
前言
为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。
在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。
不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!
1、集合与函数概念实习作业
一、教学内容分析
《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。
二、学生学习情况分析
该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的`“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。
三、设计思想
《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。
四、教学目标
1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;
2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;
3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。
五、教学重点和难点
重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;
难点:培养学生合作交流的能力以及收集和处理信息的能力。
六、教学过程设计
【课堂准备】
1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。
2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。
数学教学教案设计中的重难点最新 篇5
一、教材分析
本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。
二、学生学习情况分析
刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。
三、设计理念
本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。
四、教学目标
1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;
2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;
3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。
五、教学重点与难点
重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.
六、教学过程设计
教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结
(一)熟悉背景、引入课题
1.让学生看材料:
材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。大家知道,世界发现的不腐之尸都是在干燥的环境风干而成,譬如沙漠环境,这类干尸虽然肌肤未腐,是因为干燥不利细菌繁殖,但关节和一般人死后一样,是僵硬的,而马王堆辛追夫人却是在湿润的环境中保存二千多年,而且关节可以活动。人们最关注有两个问题,第一:怎么鉴定尸体的年份?第二:是什么环境使尸体未腐?其中第一个问题与数学有关。
图4—1 (如图4—1在长沙马王堆“沉睡”近2200年的古长沙国丞相夫人辛追,日前奇迹般地“复活”了)那么,考古学家是怎么计算出古长沙国丞相夫人辛追“沉睡”近2200年?上面已经知道考古学家是通过提取尸体的残留物碳14的残留量p,利用t?logp 57302估算尸体出土的年代,不难发现:对每一个碳14的含量的取值,通过这个对应关系,生物死亡年数t都有唯一的值与之对应,从而t是p的函数;
如图4—2材料2(幻灯):某种细胞分裂时,由1个分裂成2个,2个分裂成4个??,如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个??,不难发现:分裂次数y就是要得到的细胞个数x的函数,即y?log2x;
图4—2 1.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数y?logax(a?0,且a?1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
1对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:注意:○ x2对数函数对底数的限制:(a?0,都不是对数函数.○5y?2log2x,y?log5且a?1).
3.根据对数函数定义填空;
例1 (1)函数y=logax的定义域是___________ (其中a>0,a≠1) (2)函数y=loga(4-x)的定义域是___________ (其中a>0,a≠1)说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理
解,所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、拓展、引入复合函数的概念。
[设计意图:新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的.理解,不妨从学生自己的生活经历和实际问题入手”。因此,新课引入不是按旧教材从反函数出发,而是选择从两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点] 2
(二)尝试画图、形成感知1.确定探究问题
教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题?学生1:对数函数的图象和性质
教师:你能类比前面研究指数函数的思路,提出研究对数函数图象和性质的方
法吗?
学生2:先画图象,再根据图象得出性质
教师:画对数函数的图象是否象指数函数那样也需要分类?学生3:按a?1和0?a?1分类讨论
教师:观察图象主要看哪几个特征?
学生4:从图象的形状、位置、升降、定点等角度去识图
教师:在明确了探究方向后,下面,按以下步骤共同探究对数函数的图象:步骤一:(1)用描点法在同一坐标系中画出下列对数函数的图象y?log2xy?log1x 2 (2)用描点法在同一坐标系中画出下列对数函数的图象y?log3xy?log1x 3步骤二:观察对数函数y?log2x、y?log3x与y?log1x、y?log1x的图象特23征,看看它们有那些异同点。
步骤三:利用计算器或计算机,选取底数a(a?0,且a?1)的若干个不同的值,
在同一平面直角坐标系中作出相应对数函数的图象。观察图象,它们有哪些共同特征?
步骤四:规纳出能体现对数函数的代表性图象
步骤五:作指数函数与对数函数图象的比较2.学生探究成果
(1)如图4—3、4—4较为熟练地用描点法画出下列对数函数y?log2x、 y?log1x、 y?log3x、y?log1x的图象23图4—3图4—4 (2)如图4—5学生选取底数a=1/4、1/5、1/6、1/10、4、5、6、10,并推荐几位代表上台演示‘几何画板’,得到相应对数函数的图象。由于学生自己动手,加上‘几何画板’的强大作图功能,学生非常清楚地看到了底数a是如何影响函数y?logax(a?0,且a?1)图象的变化。
图4—5 (3)有了这种画图感知的过程以及学习指数函数的经验,学生很明确y = loga x (a>1)、y = loga x (0(中部)
数学教学教案设计中的重难点最新 篇6
教学目标
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力。
教学重点和难点
重点:四种命题之间的关系;
难点:反证法的运用。
教学过程设计
一、导入新课
【练习】
1、把下列命题改写成“若p则q”的形式:
(1)同位角相等,两直线平行;
(2)正方形的四条边相等。
2、什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论。
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题。
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”。
值得指出的是原命题和逆命题是相对的。我们也可以把逆命题当成原命题,去求它的逆命题。
3、原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真。但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真。
学生活动:
口答:
(1)若同位角相等,则两直线平行;
(2)若一个四边形是正方形,则它的四条边相等。
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础。
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?
【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题。
【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?
学生活动:
口答:若一个四边形不是正方形,则它的四条边不相等。
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。把其中一个命题叫做原命题,另一个命题叫做原命题的否命题。
若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定。
【板书】原命题:若p则q;
否命题:若┐p则q┐。
【提问】原命题真,否命题一定真吗?举例说明?
学生活动:
讲论后回答:
原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真。
原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真。
由此可以得原命题真,它的否命题不一定真。
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性。
教师活动:
【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?
学生活动:
讨论后回答
【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的.逆否命题。
教师活动:
【提问】原命题“正方形的四条边相等”的逆否命题是什么?
学生活动:
口答:若一个四边形的四条边不相等,则不是正方形。
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题。
原命题是“若p则q”,则逆否命题为“若┐q则┐p。
【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真。
原命题真,逆否命题也真。
教师活动:
【提问】原命题的真假与其他三种命题的真
假有什么关系?举例加以说明?
【总结】
1、原命题为真,它的逆命题不一定为真。
2、原命题为真,它的否命题不一定为真。
3、原命题为真,它的逆否命题一定为真。
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性。
教师活动总结。
PF2|2、P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。
3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。
4、(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。
x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM平面bcd。
变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)
变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。
[设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef
数学教学教案设计中的重难点最新 篇7
课题:12.3等腰三角形(第一课时)
教学内容:新人教版八年级上册十二章第三节等腰三角形的第一课时
任课教师:东湾中学李晓伟
设计理念:
教学的实质是以教材中提供的素材或实际生活中的一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新。
㈠教材的地位和作用分析
等腰三角形是新人教版八年级上册十二章第三节等腰三角形的第一课时的内容。本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。
另外,本堂课通过“活动探究”、“观察—猜想—证明”等途径,进一步培养学生的动手能力、观察能力、分析能力和逻辑推理能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的作用。
㈡教学内容的分析
本堂课是等腰三角形的第一堂课,在认识等腰三角形的基础上着重介绍“等腰三角形的性质”。在教学设计的过程中,通过展示我国今年举办的精彩绝伦的盛会—上海世博会图片中的等腰三角形,结合云南丰富的文化资源,让学生感知生活中处处有数学,感受图形的和谐美、对称美;通过学生感兴趣的数学情景引入等腰三角形定义,提高学生的学习乐趣;让学生通过动手剪等腰三角形、对折等腰三角形等活动,探究发现等腰三角形的性质,经历知识的“再发现”过程。在探究活动的过程中发展创新思维能力,改变学生的学习方式。在发现等腰三角形的性质的基础上,再经过推理证明等腰三角形的性质,使得推理证明成为学生观察、实验、探究得出结论的自然延伸,有机地将等腰三角形的认识与等腰三角形的性质的证明结合起来,从中发展学生推理能力。
在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。
二、目标及其解析
㈠教学目标:
知识技能:
1.了解等腰三角形的概念,认识等腰三角形是轴对称图形;2.经历探究等腰三角形性质的过程,理解等腰三角形的性质的证明;
3.掌握等腰三角形的性质,能运用等腰三角形的性质解决生活中简单的实际问题。
数学思考:
1.经历“观察?实验?猜想?论证”的过程,发展学生几何直观;
2.经历证明等腰三角形的性质的过程,体会证明的必要性,发展合情推理能力和初步的演绎推理能力.
解决问题:
1.能运用等腰三角形的性质解决生活中的实际问题,发展数学的应用能力,获得解决问题的经验;
2.在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性.
情感态度:
1.经历“观察?实验?猜想?论证”的过程,体验数学活动充满着探究性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心;
2.经历运用等腰三角形解决实际问题的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用;
3.在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益.
㈡教学重点:
等腰三角形的性质及应用。
㈢教学难点:
等腰三角形性质的证明。
㈣解析
本堂课是等腰三角形的第一堂课,所以对于本堂课的知识目标的定位,主要考虑如下:1.了解等腰三角形的概念,认识等腰三角形是轴对称图形,在本堂课中要达到如下要求:⑴理解等腰三角形的定义,知道等腰三角形的顶角、底角、腰和底边;⑵知道等腰三角形是轴对称图形,它有一条对称轴,即:顶角角平分线(底边上的高或底边上的中线)所在直线;
2.经历探究等腰三角形性质的过程,掌握等腰三角形的性质的证明,在课堂中让学生参与等腰三角形性质的探索,鼓励学生用规范的数学言语表述证明过程,发展学生的数学语言能力和演绎推理能力,引导学生完成对等腰三角形的性质的证明;
3.会利用等腰三角形的性质解决简单的实际问题,本堂课要达到以下要求:掌握等腰三角形的性质,会利用等腰三角形的性质解决简单的实际问题。
三、问题诊断分析
1.在这堂课中,学生可能遇到的第一个困难是等腰三角形性质的发现,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质,解决这一问题教师主要借助等腰三角形对称性的研究,并引导学生理解“重合”这个词的涵义。
2.这堂课学生可能遇到的第二个问题是证明等腰三角形的性质,这一问题主要有三个原因:第一学生刚接触几何证明不久,对数学语言表达方式还不熟悉;这一困难,并不是一堂课就能解决的,而要在以后学习中帮助学生增强数学语言运用的能力,能有条理地、清晰地阐述自己的观点。在这堂课中我通过等腰三角形性质的证明,鼓励学生运用规范的数学语言来表述,使学生数学语言能力和演绎推理能力得到提升;第二是添加辅助线的问题,这也是学生在证明中的一个难点。要解决这一问题,我借助等腰三角形是轴对称图形,通过研究等腰三角形的对称轴,让学生理解三种添加辅助线的方法,即作顶角角平分线、底边上的高或底边上的中线;第三是证明等腰三角形顶角角平分线、底边上的中线、底边上的高互相重合这一性质,要突破这一难点,我采用先证明等腰三角形两底角相等这一性质,为学生搭一个台阶,更好地解决这个难点。
3.这堂课中学生可能遇到的第三个问题是对等腰三角形的性质的应用,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质的应用;所以我在设计
课堂练习时,注重数学知识与生活实际的联系,提高学生数学学习的兴趣,让学生主动运用数学知识解决实际问题,并通过练习渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。
四、教法、学法:
教法:
常言道:“教必有法,教无定法”。所以我针对八年级学生的心理特点和认知能力水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活。因此,本堂课的教学中,我以学生为主体,让学生积极思维,勇于探索,主动地获取知识。同时,采用了现代化教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率。本堂课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础。
本堂课的设计是以课程标准和教材为依据,采用发现式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生大胆猜想,小心求证的科学研究的思想。
学法:
学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“情景问题?实践探究?证明结论?解决实际问题”的主线进行学习。让学生从活动中去观察、探索、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲身的实践活动,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会自主学习,学会探索问题的方法。
五、教学支持条件分析
在本堂课中,准备利用长方形纸片、剪刀、圆规和直尺等工具,剪出等腰三角形,利用等腰三角形,通过对折、多媒体动画演示等方法发现等腰三角形的性质,并且借助多媒体信息技术与实际动手操作加强对所学知识的理解和运用。
六、教学基本流程
七、教学过程设计
数学教学教案设计中的重难点最新 篇8
一、 基本情况分析
1、学生情况分析:
通过上学期的努力,我班多数同学学习数学的兴趣渐浓,学习的自觉性明显提高,学习成绩在不断进步,但是由于我班一些学生数学基础太差,学生数学 成绩两极分化的现象没有显着改观,给教学带来很大难度。设法关注每一个学生,重视学生的全面协调发展是教学的首要任务。本学期是初中学习的关键时期,教学 任务非常艰巨。因此,要完成教学任务,必须紧扣教学目标,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教 学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。经过与外校九年级数学教学有丰富经验的教师请教交流, 特制定以下教学复习计划。
2、教材分析:
本学期教学内容共四章,第二十六章、二次函数主要是通过二次函数图像探究二次函数性质,探讨二次函数与一元二次议程的关系,最终实现二次函数的 综合应用。本章教学重点是求二次函数解析式、二次函数图像与性质及二者的实际应用。本章教学难点是运用二次函数性质解决实际问题。
第二十七章、相似
本章主要是通过探究相似图形尤其是相似三角形的性质与判定。本章的教学重点是相似多边形的性质和相似三角形的判定。本章的教学难点是相似多这形的性质的理解,相似三角形的判定的理解。
第二十八章、锐角三角函数
本章主要是探究直角三角形的三边关系,三角函数的概念及特殊锐角的三角函数值。本章的教学重点是理解各种三角函数的概念,掌握其对应的表达式,及特殊锐角三角函数值。本章的教学难点是三角函数的概念。
第二十九章、投影与视图
本章主要通过生活实例探索投影与视图两个概念,讨论简单立体图形与其三视图之间的转化。本章的重点理解立体图形各种视图的概念,会画简单立体图形的三视图。本章教学难点是画简单立体图形的三视图。
二、 教学目标和要求
1、 知识与能力目标知识技能目标
理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,掌握锐角三角函数有关的计算方法。理解投影与视图在生活中的应用。
2、过程与方法目标
通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。
3、情感、态度与价值观目标
(1)进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教。
(2)通过体验探索的成功与失败,培养学生克服困难的勇气。
(3)通过小组交流、讨论有关的数学知识,培养学生的合作意识和交流能力。
(4)通过对实际问题的分析和解决,让学生体会数学的价值,培养学生的应用意识和对数学的兴趣。
三、 提高教学质量的主要措施
l、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流的氛围,分享快乐的学习课堂,让学生体会学习的快乐,享受学习。
4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
6、加强学生解题速度和准确度的培养训练,在新授课时,凡是能当堂完成的作业,要求学生比速度和准确度,谁先完成谁就先交给老师批改,凡是做的全对要给予奖励。
7、加强个别辅导,加强面批、面改,加强定时作业的训练。并进行作业展览,对作业书写的好又全部正确的贴在学习园地中。
8、积极主动的与其他教师协同配合,认真钻研教材,搞好集体备课,不断学习他人之长处。
数学教学教案设计中的重难点最新 篇9
教材内容:
人教版小学数学第十册《解简易方程》及练习二十六1~5题。
教材简析:
本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。
教学目标:
(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。
(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。
(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
教学重点:
理解方程的意义,掌握方程与等式之间的关系。
教具准备:
天平一只,算式卡片若干张,茶叶筒一只。
教学过程:
一、创设情境,自主体验
本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的'平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。
二、突出重点,自主探索
理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。
三、自学思考,获取新知
在教学解方程和方程的解的概念时,通过出示两道自学思考题
(1)什么叫方程的解?请举例说明。
(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。
正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。
四、使用交流,注重评价
要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。
数学教学教案设计中的重难点最新 篇10
教学目标
1、知识目标:使学生在生活中领会“左右”的意义,认识左右的位置关系,理解其相对性。
2、能力目标:培养学生能用“左右的知识解决实际问题的能力。
3、情感目标:在活动中使学生感受学习数学的乐趣,从而获得积极的情感体验。
教学重点:认识左右的位置关系,正确确定左右。
教材分析
《左右》是第五单元中继“前后”“上下”之后的第三课。本课时的教学内容是根据学生已有的经验和兴趣特点,从学生最熟悉的左手和右手引入教学,让学生在具体的操作和探索中观察、感知“左、右”的含义及其相对性。在体验左右的位置关系和变换的过程之后,引导学生把左右的知识应用于生活,激发学生探索数学的兴趣。教学时要注意结合学生已有的生活经验,组织学生亲身经历各种生动有趣的活动,充分感知左右,从而体会左右的意义。备课前经过了解,我发现这些一年级的孩子大多数已经能区分自己的左手和右手,但由于没有经过刻意的培养和训练,所以对左、右的反应比较迟缓,大部分学生区分左右的方法是:先想想哪只手会写字,再判断哪边是右边,然后想另外一边是左边。并且,左右的相对性在他们的思维上还是一片空白,所以,“理解左右的相对性”是这节课的难点。
学生情况分析
我所执教的班级学生共50人。学生的语言表达能力一般,合作交流能力尚在培养之中。由于条件限制,执教时学生分成两大组,每大组中4人一排作为一个学习小组。
教学设计理念
从学生最熟悉的左手与右手以及小朋友之间的座位关系教学左、右,易于学生理解和掌握新知。找自已身上的`左右这一活动让学生充分利用自身的左右朋友来认识左右,让学生从自己的身体中获取大量的感性材料,感知左右,经历形成左、右方位感的过程,这样的教学联系实际,操作性强,使学生在轻松、愉快的学习氛围中,理解和掌握左右相对的位置关系,体会数学与生活的密切联系,逐步发展空间观念。游戏的学习方式让学生在玩中学,体会到生活中处处有数学。介绍自己左边右边的同学,这是对“左右”知识的延伸,把学到的知识用到生活中,使学生体验到学习与生活的联系。淘气要去小明家玩让学生用学过的知识帮淘气和老师解决困难,有助于调动学生的积极性,并且练习巩固了新知,做到了“学以致用”。体验“相对”,确定“左右”。对于一年级的学生,理解左右的相对性,应该建立在充分的感性认识基础上,这样的设计让学生体会相对性,突破难点。
教学过程
一、感知自身的左和右。
1、感知左右手
(1)学生用掌声欢迎来听课的老师。请学生说说在鼓掌时用到了我们身上的哪一对好朋友。(左手和右手)
(2)请同学们举起右手,放下,再举起你们的左手,放下。
(3)大家说说,我们平时常用右手做哪些事呢?左手呢?
2、请学生找出我们身上这样的一对好朋友。(左耳、右耳;左眼、右眼;左脚、右脚等)
3、游戏——听口令做动作
伸出你的左手,伸出你的右手。
用你的左手摸左耳,用你的右手摸右耳,
用你的左手摸右耳,用你的右手摸左耳。
用你的左手拍左肩,用你的右手拍右肩,
用你的左手拍右肩,用你的右手拍左肩。
用你的左手拍左腿,用你的右手拍右腿,
用你的左手拍右腿,用你的右手拍左腿。
4、揭示课题。
刚才同学们已经熟悉了自己身体的左和右,其实生活中的左和右还有许许多多。这节课,我们就一起来学习“左右”。(课件出示课题并请生齐读)
【设计意图:从学生课堂上经常发生的动作――举手出发,直奔主题,有效组织课堂,符合一年级学生的年龄特点,使这节课开始就洋溢着轻松愉快的气氛。从学生最容易感受到的自己的身体展开活动,让学生充分体验自身的左右,从而理解左右的位置关系,同时也让学生亲自体会到学习数学的乐趣,感受到人的身体上也有数学。】
二、实际操作,探索新知
1、摆一摆。
同桌的同学互相合作,按老师的要求摆。
请你在桌上放一块橡皮;
在橡皮的左边摆一枝铅笔;
在橡皮的右边摆一个铅笔盒;
在铅笔盒的左边,橡皮的右边摆一把尺子;
在铅笔盒的右边摆一把小刀。
生摆好后,师出示正确的排列顺序,生检查自己的排列。
2、数一数。
从左数橡皮是第几个?从右数橡皮是第几个?
从左数橡皮是第二个,从右数橡皮是第四个。
为什么橡皮一会儿排第二?一会儿又排第四?
什么东西反了?能讲得更清楚一些吗?
(数的顺序反了,开始是从左数,后来是从右数。)
师小结:也就是说,同样一个物体,从左数和从右数,结果就可能不一样。
3、说一说。
师生对口令游戏
尺子的左边是什么?
尺子的右边是什么?
……
同桌的同学互相对口令
请学生说说自己的左边是谁,右边是谁?
(提问两个同学,然后每个人说给自己的同桌听。)
4、找一找。
(课件出示教材第60页“找一找”挂图。)
星期天,东东想去小明家玩,他没到过小明家,但他记得小明说他家住在三楼,上楼梯后往左走。你们能告诉东东小明家住几号房吗?
【设计意图:评析通过“摆一摆”“数一数”“说一说”“找一找”引导学生亲身经历知识形成的全过程,锻炼学生的操作能力、观察能力、语言表达能力,体现“让学生动手实践”这种重要的数学学习方式。】
三、体验左右的相对性
1、想一想。
刚才同学们帮东东解决了困难,现在愿不愿帮老师一个忙。
师:老师举的是哪只手?(师举右手。)
有的同学说左手,有的同学说右手,老师举的到底是哪一只手?
(学生七嘴八舌,还是有的说左手,有的说右手。)
同组的同学讨论一下,交流一下意见。
(小组讨论交流。)
汇报结果。
师转身验证。
体验:同桌左边的同学向右转,右边的同学向左转,同时举右手。
师小结:如果面对着面,你的左手就会对着同桌的右手,你的右手就会对着同桌的左手。
【设计意图:教师巧妙地用设疑的方法让学生判断教师举的是左手还是右手,很能吸引学生的注意力,激发他们的求知欲,使他们积极主动地思考,亲身经历“猜测――验证――数学解释”的过程,从而发现:方向不同,左右不同。】
2、小游戏。
老师和学生面对面站着,老师举右手,学生也举右手,老师举左手,学生也举左手,看谁举得又对又快。
(生十分投入地做游戏。)
3、爬楼梯。
上楼梯时我们要靠哪边走?下楼梯时我们又要靠哪边走?
(学生说法不同)
请两位同学示范一下,把教室中间过道当楼梯,一个从前往后走是下楼梯,另一个从后往前走是上楼梯。
(生观察时师提醒:下楼梯的同学是靠哪边走?)
(生还是有的说左边,有的说右边。)
全体学生进行室外活动:走上楼梯,又走下楼梯。下楼梯时,师又提醒:下楼梯时你靠哪边走?
现在同学们明白下楼梯时靠哪边走吗?
为什么上、下楼梯都靠右边走?
4、练一练。
【设计意图:当观察别人判断左右时,学生容易以自己为标准来确定,错误率较高。教师在此及时地让学生到室外实地进行活动,以学生表演的方式让学生更清楚地经历了方向的变化,再次体验“方向不同,左右不同”,从而使学生自主探索、合作交流的学习方式得到充分的体现。】
四、解决问题,增强运用意识
课件出示书P61第3题,其中有几辆顽皮的小汽车就躲在树底下,这里共有几辆车?先听听大客车是怎么说的?(课件:从右数大客车是第5辆,一共有几辆车?)小组讨论、汇报,说一说是怎样想的?(借助课件演示,帮助学生理解)
五、课堂总结
这节课你有哪些收获?
数学教学教案设计中的重难点最新 篇11
教学内容:
教材P47-P48例4 做一做,练习十第4-6题
教学目的:
1、使学生进一步理解用字母表示数的意义和作用。
2、能正确运用字母表示常用数量关系。
3、能较熟练地利用公式、常用数量关系求值。
教学重、难点:
能正确运用字母表示常用数量关系。
教学准备:
投影仪
教学过程:
一、复习。
1、用字母表示数,有哪些好处?但要注意什么?
2、用字母a、b、c表示加法结合律、乘法交换律、乘法分配律等。请学生结合字母表示的运算定律说说其含义。
3、用S表示面积,C表示周长,a表示边长,b表示宽,写出长方形、正方形的面积和周长公式。
4、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。
2×3 a×7 14+b a÷7 a×a 5-x 0.6×0.6
二、新授。
1、教学例4(1):
(1)引导学生看书提问:从图、表中你了解到哪些信息?
A、爸爸比小红大30岁。 B、当小红1岁时,爸爸()岁……
师:这些式子,每个只能表示某一年爸爸的年龄。
(2)启发学生:你能用一个式子表示出任何一年爸爸的年龄吗?(可让同桌的两个同学小声讨论)
结合讨论情况师适时板书:
法1:小红的年龄+30岁=爸爸的``年龄
法2:a+30
提问:比一比,你比较喜欢哪一种表示方法,为什么?让学生发表各自意见。
在式子a+30中,a表示什么?30表示什么?a+30表示什么?
(a表示小红的年龄,30表示爸爸比小红大的年龄,a+30即表示爸爸的年龄)
想一想:a可以是哪些数?a能是200吗?为什么?
(3)结合关系式解答:当a=11时,爸爸的年龄是多少?学生把算式和
结果填在书上。
2、小结:用含有字母的式子不仅可以表示运算定律、公式,也可以表示数量。
3、教学例4(2):
引导学生看书讨论:(可分成四人小组进行讨论)
(1)从图、表中你了解到哪些信息?
(2)你能用含有字母的式子表示出人在月球上能举起的质量吗?
(3)式子中的字母可以表示哪些数?
(4)图中小朋友在月球上能举起的质量是多少?
请小组派代表回答以上问题。
4、总结:今天你学会了什么?有哪些收获?
三、巩固练习:
1、独立完成P48做一做 集体评议。
2、请学生结合自己的身高、体重情况,算算自己的标准体重,并讨论:比标准体重轻说明什么?如果比标准体重重,又说明什么?
3、独立解答P49 第4题 做完后在投影仪上展示评议。(问问字母、式子表示的含义)
四、作业:
1、独立完成P50 第5题
2、独立完成P50 第6题
解答第6题时可提问:u = t = 让学生掌握三种量之间的数量关系。
注意巡视指导求式子值的书写格式。
即:S=ut=150×30=4500 (注:这里求出来的值不带单位名称)
