有理数的乘方教案(精华十篇)
发布时间:2025-12-12 有理数的乘方教案有理数的乘方教案 之 一
有理数大班教案主题范文:引入今天我们要学习有理数这一知识点,那么我们先来了解一下什么是有理数。有理数又称分数,是可以表示成两个整数的比值的数,包括正整数,负整数,零以及类似于1/2、0.75等的分数。有理数在日常生活中既出现在几何问题中,如平行线,角度,圆等等,也出现在实际应用问题中,比如比例,利率,平均数等等。在今天的课程中,我们将会具体了解有理数、有理数的四则运算、有理数的比较大小及其应用。
一、有理数的概念及求法
有理数是可以表示成两个整数的比值的数,其中分母不为零。通常有理数写成分数的形式,如7/5,0.25,2.33333等也是有理数。
我们来看一张图表,负数是整数以及0“向下”延伸的,数轴上的任意两个点A,B都表示一个有理数。
数轴上,从0点往左可以取得的有理数如-1、-2、-3、-4……也就是整数,而从0点往右可以取得的有理数如1、2、3、4……也是整数,这些在数学中被称为正有理数。
而0左边的从-1.1、-1.23、-1.8356、-1.9999999……,称之为负有理数;0右边的从1.1、1.23、1.8356、1.9999999……,称之为正有理数。0为它们的分割点,也称之为有理数零点。
求1/2、0.6、-1.2对应的点和它们在数轴上的位置。
二、有理数的四则运算
1、加减法的计算规律
①异号翻车规律
异号数相加减,先把绝对值大的数减去绝对值小的数,差的符号为绝对值大的数的符号。
②同号结队规律
同号数相加减,把它们的绝对值加起来,结果与原来数的符号相同。
2、乘除法的计算规律
①同号得正,异号得负;
②有0相乘或相除,结果为0。
三、有理数的大小比较及其应用
1、带数比较法
①带0或带相同数比大小,带数相同则个数多的大。
②带同正数比大小,带数相同则带数翻转,带数大的小。
③带0和其他带数比大小,带0小。
④带相反数比大小,绝对值大的小。
2、还原同分比较法
①两数同分比。转换成分数,分母相同,比较分子大小。
例如:比较-5/3和7/3的大小。
-5/3
3、改变符号比较法
①改变符号比大小。若a>b,则-a
②改变符号相反数两两比较,绝对值大的小。
四、练习题
1、小诈欺
如果一个卖家将一件100元的商品打五折,然后又加收8元的运费,那么费用最后是多少?
2、快递运费
A公司和B公司分别刚到一批货物,重量相同,运费的计算方式也完全一样,且两公司承下的运费项目均具有门-门服务,但A公司的运费有一定折扣,从而运费费用少了10元。如果A公司的这批货的运费是200元整,那么这批货的运费是多少?
3、分解因式
xy+3x+2y+6可以分解成什么因式?
4、复合函数
已知p(x)=2x+3,q(x)=x-2,r(x)=3x-1,求(p○q○r)(2)。
有理数的乘方教案 之 二
1.教学目标
1.1地位、作用
在初中阶段,要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把实际问题转化成数学问题的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,也是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
1.2学情分析
在初中数学教学中,非智力因素在认知过程中起十分重要的作用,而兴趣在非智力因素中占有特殊的地位,它是学生学习自觉性和积极性的核心因素,是学习的强化剂。因此,从初一开始培养学生对数学的兴趣,是其学好数学的重要保障。围绕这一点,在教学中要让不同程度的学生都有体验成功的机会,教学中教师为导、学生为主,充分认识初一学生这个年龄段的心理特征:好奇心强;好胜心强;抽象思维能力弱,过分依赖直观;意志薄弱,缺乏毅力。
另一方面,课本知识的传授是符合学生的认知发展特点的。在前期段,学生已经储藏了两个正数的加法,较大数减较小数的减法,引入了负数,有必要再学习有理数的加法,然后过渡到有理数的其它运算,再到式的运算、方程、函数的运算;同时,负数、数轴、绝对值的学习又为这节课的学习方法奠定了基础。
1.3教学目标
根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:
知识目标:通过将生活中的问题转化为有理数加法的全过程,使学生直观形象地理解有理数加法的意义,掌握有理数的加法法则,并能正确运用。
能力目标:通过情境的设计,培养学生的探索创新精神。在学生学习的过程中,渗透分类思想、数形结合思想与及综合、归纳、概括的能力。
情感目标:通过教师引导下的探索,让学生感受到数学学习的价值与乐趣。
1.4教材处理
根据本节教材的内容,我把有理数的加法划分为两个课时,第一课时学习有理数的加法法则并能准确进行两个数的加法运算;第二节课学习有理数的加法运算律并能准确进行多个数的加法运算。
2.重点、难点
2.1教学重点:有理数加法法则的理解与运用(而不是简单地记忆法则)。
2.2教学难点:异号两数加法的实际意义及法则的归纳。
3.教学方法与教学手段
本课采用多媒体辅助教学,从学生熟悉的人物出发,激发学生探索欲;通过层层铺垫,引导学生利用已学数学工具探索新知;在学生探索的基础上,有意识地引导学生对多样化的结果进行分类整理;在法则的提炼过程中,培养学生类比、归纳和概括的学习能力。
在本节的设计过程中,利用了一道开放性习题引出课题,让学生在研究中学习,对学生进行能力培养,充分跨越学生的最近发展区。
4.教学过程:
4.1创设情境,让学生的思维“动”起来
[生活情境]刘翔是世界男子青年锦标赛110米栏的冠军,是中国人的骄傲。从他的体育精神中我们应该学习他坚忍不拔的刻苦精神,激励学生爱国、立志。将跑道抽象为数轴,起跑点为原点,将生活问题数学化。
说明:这种从生活到数学的建模,从学生感兴趣的题材出发,为创设下文的探索情境作一个兴奋点的刺激,让每个学生都有信心并且能够积极尝试、探索。
4.2体验进程,让学生的思维“活”起来
“数学是问题的心脏”,是教学的出发点,由问题引入课题能使学生产生较强的未知欲。
[开放式探索]刘翔在一条东西方向的跑道上往返跑步进行训练,他连续跑了两段路,共跑了80米。问刘翔两次以后的位置可能在哪里?设计意图:这是一道条件不唯一,结果也不唯一的开放性题型,对学生有一定的挑战性。它的优点在于:只要理解题意,任何一个学生都能答对至少一种正确答案;同时它的答案又分多种情况,学生由于思维的不完备性,很容易丢失答案,并且这种错误在别人的提醒中能马上恍然大悟。这是一道能锻炼学生思维的灵活性、严谨性及答案适用分类讨论、培养学生概括能力的好题。在本题中,包含学生对有理数加法的意义的理解及探索有理数加法加数的几种类别(从正负性上区分),在求和的过程中,让学生有机会经历从实物模拟到表象操作再到符号操作的转化。
教学方法:用课件帮助学生思维从“实物操作”过渡到“表象操作”并优化思路;给予学生充分的思考机会;善于抓住学生思维的弱势因势利导。
预计困难:①学生直观思维理解“共跑了80米”就是在离出发点80米远的地方。这是一个距离与位移的概念混淆并且教学中不宜新增概念。 ②条件中的“两段”和“80米”分别对应加法中的什么量?有的学生不理解题意,可能放弃。
处理方法:①教学中学生思维上的弱点也可能会成为他这堂课思维的亮点,让学生在练习纸上尝试“实物操作”思维方式,自己突破思维瓶颈。②在学生正确理解80米的条件使用方法后,再让学生比较80与加数的绝对值、和的绝对值的关系,在理解能力上更上一层楼。③区别不同程度的学生,可以从“列式子”,“列等式”,问“为什么”逐步递进,让尽可能多的学生尝试最近发展区。
教学注意点:要明确本堂课的教学重点和目标,对开放题的探索浅尝止,不深究问题的所有可能性,剪辑学生答案尽快引出课题。
4.3探究规律,让学生的思维“跳”起来
用分类讨论的方法进行有理数的加法规律的归纳是本节课的重点和难点,教师要依据学生现有得出的学习发现组织语言,减少指示或命令性语言,争取把课堂静止或学生不理解时间减至最少。
在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲。让学生作课堂的主人,陈述自己的结果。对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径。
预先设想学生思路,可能从以下方面分类归纳,探索规律:
①从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)
②从加数的不同数值情况(加数为整数;加数为小数)
③从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)
④从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)
⑤从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)
教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏。
有理数的乘方教案 之 三
有理数大班教案
一、教学目标:
1. 理解有理数的概念及其性质。
2. 掌握有理数的加减乘除运算规则。
3. 能够运用有理数解决实际问题。
二、教学重点:
1. 有理数的概念及其性质。
2. 有理数的加减乘除运算规则。
三、教学难点:
有理数的应用及解决实际问题。
四、教学准备:
多媒体教学设备、教学板书。
五、教学过程:
1. 导入新知:通过问答的方式引入有理数的概念。
老师:小明,你爸爸带你去参加一个700米长的马拉松比赛,在比赛过程中,你走过的路程是有理数还是无理数?
小明:是有理数。
老师:对,因为马拉松比赛的路程是竞赛组织者提前测量好的,是一个确定的数值,所以是有理数。
...
通过类似的问答,引出有理数的概念及性质。
2. 有理数的加减乘除运算规则:
(1) 有理数的加法和减法:
老师:小明,你去买东西,买了一个10元的零食和一个20元的玩具,你需要支付多少钱?
小明:30元。
老师:很好,我们可以用数学符号表示为10 + 20 = 30。这就是有理数的加法运算。
老师出示例题,让学生自主完成。
(2) 有理数的乘法和除法:
老师:小红,你去超市买了3个草莓,每个草莓1元,请问你需要多少钱?
小红:3元。
老师:对,我们可以用数学符号表示为3 × 1 = 3。这就是有理数的乘法运算。
老师出示例题,让学生自主完成。
3. 有理数的应用及解决实际问题:
老师出示一个关于购物的问题,让学生应用所学知识解决实际问题。
六、课堂小结:
通过本课的学习,我们了解了有理数的概念及性质,掌握了有理数的加减乘除运算规则,并能够应用有理数解决实际问题。
七、作业布置:
1. 完成课堂练习题。
2. 思考并写出3个与有理数相关的实际问题,并利用有理数解答。
八、教学反思:
本节课通过问答的方式导入新知,能够增强学生的思维活跃度,激发学生的学习兴趣。通过实际问题的运用,能够让学生更好地理解有理数的应用,提高解决问题的能力。在教学过程中,我充分利用多媒体设备进行辅助教学,提高了教学效果。但在教学过程中,也要注意学生的参与程度,鼓励学生积极思考和回答问题,提高课堂互动性。
有理数的乘方教案 之 四
有理数大班教案主题范文:
有理数的引入
一、教学目标
1. 理解和掌握有理数的概念;
2. 能正确运用有理数的运算规则;
3. 能将实际问题转化为有理数的表示并解决问题;
4. 培养学生的逻辑思维能力和解决问题的能力。
二、教学重难点
1. 有理数的定义和性质;
2. 有理数的运算规则。
三、教学准备
1. 教师准备有理数的教学课件、实例题和习题;
2. 学生准备课本、笔记本。
四、教学过程
1. 导入
教师出示一段视频,视频中展示了一个划圆规、直尺和米尺的实验,引导学生思考实验的结果,提出问题:你们知道为什么我们把直尺上的刻度分为厘米呢?
学生讨论一下,可以得出直尺上的刻度是有理数。
引导学生了解实数的划分重要性及其相关概念。
2. 引入
通过巧妙地引入实数的划分,教师引导学生概括出有理数的概念,引进有理数的概念。
3. 提出问题
教师提出以下问题:
(1)负整数、零和正整数都是什么数?
(2)两个有理数相加(减)的结果怎样?
(3)两个有理数相乘(除)的结果怎样?
4. 学习
(1)有理数的定义
教师对有理数进行定义,包括整数的定义、正数和负数的定义,同时解释零的定义。
(2)有理数的绝对值
教师引导学生了解绝对值的概念,并介绍绝对值的性质。
(3)有理数的大小关系
教师通过实例,引导学生掌握有理数的大小关系及其性质。
5. 练习
(1)基本运算
教师出示基本运算实例,让学生进行计算,并帮助学生理解加法、减法、乘法和除法的运算规则。
(2)解决实际问题
教师出示一些实际问题,让学生通过将其转化为有理数的表示进行解决,培养学生的解决问题的能力。
6. 归纳总结
教师引导学生总结有理数的概念、性质和运算规则。
7. 拓展延伸
教师介绍无理数的概念,与有理数进行对比,引发学生对实数的思考与讨论。
8. 课堂小结
教师与学生一起总结本节课的重点、难点,并夯实学生对有理数概念和运算规则的理解。
五、课后作业
1. 完成课后习题,巩固有理数的运算规则;
2. 准备参与下节课的讨论。
有理数的乘方教案 之 五
有理数大班教案
一、教案概述
本节课主要围绕有理数的基本概念、比较大小、四则运算以及实际应用展开,通过实际生活中的例子引导学生建立与应用有理数的思维方式和解决问题的能力。
二、教学目标
1. 知识目标:
(1) 掌握有理数的定义及性质;
(2) 理解有理数的大小比较;
(3) 掌握有理数的加减乘除法运算;
(4) 掌握有理数的实际应用。
2. 能力目标:
(1) 能够灵活应用有理数进行问题求解;
(2) 培养学生的逻辑思维和分析问题的能力;
(3) 培养学生的合作意识和创新意识。
3. 情感目标:
(1) 培养学生对数学的兴趣和学习的主动性;
(2) 培养学生解决问题的积极性和自信心;
(3) 培养学生团队合作和分享的精神。
三、教学重点
1. 有理数的基本定义和性质;
2. 有理数的大小比较;
3. 有理数的四则运算;
4. 有理数的实际应用。
四、教学内容与教学过程
1. 导入环节:
引入有理数的概念,通过讲述实际生活中的例子,如温度变化、海拔高度等,让学生了解有理数的存在是为了方便描述和比较各种实际情况。
2. 基础知识讲解:
(1) 有理数的定义和性质:讲解有理数的定义,包括整数和分数,以及有理数的相反数、绝对值等性质。
(2) 有理数的大小比较:引导学生掌握有理数大小比较的方法,如同分母相同、同正负比较、换算法等。
(3) 有理数的加减乘除法运算:讲解有理数的加法、减法、乘法和除法的口诀和规则,并通过例题进行演示和练习。
3. 拓展应用:
(1) 实际应用中的有理数:引导学生通过实际问题,如地图上的比例尺、购物折扣、游戏得分等,将有理数与实际应用结合起来。
(2) 探索问题:设置一些有趣的问题,让学生分组探讨并总结解题思路,鼓励学生动手实践和探索,培养他们的自主学习和解决问题的能力。
4. 巩固练习:
布置一定数量的课后作业,包括选择题、填空题和计算题,以巩固学生对有理数的掌握和运用能力。
五、教学评价与总结
1. 教学评价:
(1) 师生互动的评价:通过课堂上的问题解答和讨论,教师可以及时评价学生的回答是否正确并给予指导;
(2) 作业评价:通过对学生的课后作业进行批改和评价,及时发现学生的错误和不足,并给予及时的指导和反馈。
2. 教学总结:
(1) 总结所学内容:对本节课所学的有理数的基本概念、比较大小、四则运算以及实际应用进行总结;
(2) 学生反馈:鼓励学生分享自己的学习心得和体会,对他们的合作、创新以及问题解决的能力进行表扬和鼓励。
通过本节课的教学,学生可以系统掌握有理数的基本知识和运算方法,并培养学生将有理数与实际问题相结合的思维能力和解决问题的能力,为今后的学习打下坚实的基础。
有理数的乘方教案 之 六
本节课学生对新知识的掌握情况比较好,课堂气氛活跃,有效地完成了教学目标。通过本课的设计我深深的感到,教师必须要调动学生的主动性,要正确地认识课堂教学中的师生交流,要让学生真正参与课堂,才有效,才是真实的教学,通过富有创意的实践和探究,建构一个生动活泼和富有个性的师生、生生交往的课堂情景,促进每一个学生的充分发展,以提高课堂教学的效率。有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。因此要从有理数乘方的意义。有理数乘方的符号法则,有理数乘方运算顺序入手。从有理数乘方书写格式,有理数乘方常见错误以及拓展等五个方面来教学。不足之处是在小组交流过程中学生的发言过分地注重于探索的结果,尤其是问题8的探究学习,忽视了学生探索过程的展示。同时教师有些提问限制了学生的思维,不能最大限度的发挥学生自主探究的能力。
有理数的乘方教案 之 七
有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以我们在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则的分类讨论,有理数乘方的易混淆点三个方面来教学。
一、 要求学生深刻理解有理数乘方的意义。
即一般地n个相同的因数相乘。在教学中,这一部分主要采用学生自学的方式,我通过学案后的相关问题检测学习的效果。利用学案让学生能自己学会乘方各部分的名称、意义,把学生放在学习的主体地位。我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学。始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上。例如,通过实际计算,让学生自己体会到负数的乘方不全是负数,而需要分不同的情况来讨论。
二、特别注意有理数乘方的符号法则的分类讨论。
有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例题中,设计了两组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想。符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显。
三、讲清有理数乘方中的常见易混淆点。
如 与—2 ; 与— 在意义、读法、结果上的区别。最主要的是弄清底数的不同。同时会把他们转换乘法,观察各自的特点,与其他几个的区别。要学生明确写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来学乘方。
有理数的乘方教案 之 八
《有理数乘方》这节课在刚学完有理数的加、减、乘、除运算后,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。王老师在本节课的学习中全面系统的加以讲述
有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以王老师在本节课的教学中予以简单明白,深入浅出的分析逐渐让学生掌握本节课的学习目标。
由于七年级学生具有好动、好问、好奇的心理特征。所以王老师在教学中抓住学生这一特征,一开始通过拉面问题直观生动的形象,引发学生的兴趣,;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动
根据本节课的教学目标,教材内容并结合七年级学生的理解能力和思维特征。王老师以多媒体为教学平台,采用启发式教学法与师生互动式教学模式。通过精心设计的问题与活动,不断创造思维兴奋点,让学生在学习过程中亲自动手操作,探索结论。教给学生多观察、勤动手、大胆猜、肯钻研的研讨式学习方法,使学生在动脑、动手、动口的过程中获得充足的体验与发展,从而调动起学生的学习主动性与积极性。
本节课立足于学生的认知基础来确定适当的起点与目标。内容安排是从引入概念出发,到有理数乘方符号规律的发现与应用,逐步展示知识的过程,使学生的思维层层展开、逐步深入。在教学中利用多媒体及学具辅助教学,展示图片与动画,使学生体会到数学无处不在,运用数学无时不有,并能从数学的角度发现和提出问题。
本节课也有一些不足的方面,建议王老师在授课过程中注意各个环节的链接,设置好过渡语,放手让学生自己去探究一些问题。这样才能更好的发挥学生的主动性。
有理数的乘方教案 之 九
有理数的乘除法
一、教学目标
知识与技能:
①使学生在了解乘法的基础上,掌握有理数乘法法则并初步掌握有理数乘法法则的合理性。
②会进行有理数乘法运算。
③了解有理数的倒数定义,会求一个数的倒数。
过程与方法:
①经历探索有理数乘法法则,发展,观察,归纳,猜想,验证的能力以及培养学生的语言表达能力。
②提高学生的运算能力
情感与态度:通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。
二、 教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法中的符号法则.
三、教学过程
(一) 创设问题情景,激发学生的求知欲望,复习旧知,导入新课
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:甲水库的水位每天升高3㎝,乙水库的水位每天下降3㎝。4天后,甲、乙水库各自水位的总变化量是多少?
如果用正号表示水位的上升、用负号表示水位的下降。那么,4天后,甲水库水位的总变化量是:3+3+3=34=12㎝
乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)4=-12㎝引出课题:有理数的乘法
(二)学生探索新知,归纳法则
学生分为四个小组活动,进行乘法法则的探索
设蜗牛现在的位置为点O,若它一直都是沿直线爬行,而且每分钟爬行2cm,问:
(1)向右爬行,3分钟后的位置?
(2)向左爬行,3分钟后的位置?
(3)向右爬行,3分钟前的位置?
(4)向左爬行,3分钟前的位置?
(学生思考后回答) 要确定蜗牛的位置需要知道:距离和方向。
为了区分方向:我们规定向右为正,向左为负;为区分时间:我们规定现在的时间前为负,现在的时间后为正。
(1) 情形一:蜗牛在现在位置的右边6㎝处。式子表示为:
(+2)(+3)=+6
数轴表示如右:
(2)情形二:蜗牛在现在位置的左边6㎝处。式子表示为: (-2)3=-6
数轴表示如右:
(3)情形三:蜗牛在现在位置的左边6㎝处。式子表示为: (+2)(-3)=-6
数轴表示如右
(4)情形四:蜗牛在现在位置的右边6㎝处。式子表示为: (-2)(-3)=+6
数轴表示如右:
仔细观察上面得到的四个式子:
(1)(+2)(+3)=+6
(2)(-2)3=-6
(3)(+2)(-3)=-6
(4)(-2)(-3)=+6
根据你对乘法的思考,你得到什么规律?
(三)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)(+)=( ) 同号得
(-)(+)=( ) 异号得
(+)(-)=( ) 异号得
(-)(-)=( ) 同号得
b.任何数与零相乘,积仍为 。
(四)师生共同用文字叙述有理数乘法法则。
归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0。
(五) 运用法则计算,巩固法则。
例1计算:(1) (-5) (2) (-7) (3) (-3) (4)(-3) (- )
引导学生观察、分析例1中(4)小题两因数的关系,得出:有理数中仍然有:乘积是1的两个数互为倒数.
例2. 见课本P30页
(六)分层练习,巩固提高。
(1)计算(口答):
① ② ③ ④
⑤ ⑥ ⑦ ⑧
四.课题小结
(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。
(2)如何进行两个有理数的乘法运算: 先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。
五.作业布置
课本P30页练习1,2,3.
1.4.2 有理数的乘法
(第2课时)
一、教学目标:
1、经历探索多个有理数相乘的符号确定法则.
2、会进行有理数的乘法运算.
3、通过对问题的探索,培养观察、分析和概括的能力.
二、教学重点和难点
学习重点:多个有理数乘法运算符号的确定
学习难点:正确进行多个有理数的乘法运算
三、教学过程
(一)、学前准备
请同学们先合作做个游戏: 用9张扑克牌(可以替代的纸片也行)全部反面向上放在桌上,每次翻动其中任意2张(包括已翻过的牌),使它们从一面向上变为另一面向上,这样一直做下去,看看能否使所有的牌都正面向上?
结果怎么样,你能明白其中的数学道理吗?
(二)、探究新知
1、观察:下列各式的积是正的还是负的?
234(-5),
23(-4)(-5),
2(3) (4)(-5),
(-2) (-3) (-4) (-5).
思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
分组讨论交流,再用自己的语言表达所发现的规律:
几个不是0的数相乘,负因数的个数是 偶数 时,积是正数;负因数的个数是 奇数 时,积是负数.
2、利用所得到的规律,看看翻牌游戏中的数学道理。
(三)、新知应用
1、例题3,(30页)例3,
请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由 几个数相乘,如果其中又因数为0,积等于0
例:7.8(-8.1)O (-19.6)
师生小结:几个数相乘,如果其中又因数为0,积等于0
2、练习
计算
1)、58(7)(0.25) 2)、
四、课堂小结
1、通过这节课的学习,我的感受是:几个数相乘,如果其中又因数为0,积等于0
五.作业布置
一、选择
1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )
A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负
2.若干个不等于0的有理数相乘,积的符号( )
A.由因数的个数决定 B.由正因数的个数决定[励志的句子 wWW.dJZ525.cOM]
C.由负因数的个数决定 D.由负因数和正因数个数的差为决定
3.下列运算结果为负值的是( )
A.(-7)(-6) B.(-6)+(-4); C.0 (-2)(-3) D.(-7)-(-15)
4.下列运算错误的是( )
A.(-2)(-3)=6 B.
C.(-5)(-2)(-4)=-40 D.(-3)(-2)(-4)=-24
二、计算 1、(-7.6) 2、 .
1.4.3 有理数的乘法
(第3课时)
一、教学目标:
1、熟练有理数的乘法运算并能用乘法运算律简化运算.
2、让学生通过观察、思考、探究、讨论,主动地进行学习.
3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程.
二、教学重点和难点
教学重点:正确运用运算律,使运算简化
教学难点:运用运算律,使运算简化
三、教学过程
一、学前准备
1、下面两组练习,请同学们选择一组计算.并比较它们的结果:
1)(-7)8 8(-7)
[(-2)(-6)]5 (-2)[(-6)5]
2)(- )(- ) (- )(- )
[ (- )](-4) [(- )(-4)]
3)
请以小组为单位,相互检查,看计算对了吗?
二、探究新知
1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流.
2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?
3、归纳、总结
乘法交换律:两个数相乘,交换因数的位置,积 相等 .
即:ab= ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等
即:(ab)c= a(bc)
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加
即:a(b+c)=ab+bc
三、新知应用
1、例题
用两种方法计算 ( + - )12
2、看谁算得快,算得准
1)(-7)(- ) 2) 9 15.
四、课堂小结
怎么样,这节课有什么收获,还有那些问题没有解决?
乘法交换律:两个数相乘,交换因数的位置,积 相等 .
即:ab= ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等
即:(ab)c= a(bc)
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加
即:a(b+c)=ab+bc
五.作业布置
1、(-85)(-25) 2、(- )15(-1 );
3、( ) 4、 (7).
5、-9(-11)+12(-9) 6、
1.4.4 有理数的除法
(第4课时)
一、教学目标:
1、理解除法是乘法的逆运算;
2、掌握除法法则,会进行有理数的除法运算;
3、经历利用已有知识解决新问题的探索过程.
二、教学重点和难点
教学重点:有理数的除法法则
教学难点:理解商的符号及其绝对值与被除数和除数的关系
三.教学过程
(一)、学前准备
1、师生活动
1)、小明从家里到学校,每分钟走50米,共走了20分钟.
问小明家离学校有 1000 米,列出的算式为 50 20=1000 .
2)放学时,小明仍然以每分钟50米的速度回家,应该走 20 分钟.
列出的算式为 1000 =20
从上面这个例子你可以发现,有理数除法与乘法之间的关系互为逆运算
(二)、合作交流、探究新知
1、小组合作完成
比较大小:8(-4) 8(一 );
(-15)3 (-15)
(一1 )(一2) (-1 )(一 )
再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于 乘这个数的倒数.
2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .
2,运用法则计算:
(1)(-15)(-3); (2)(-12)(一 ); (3)(-8)(一 )
3,师生共同完成P34例5.
(三)1、练习:P35
2、P35例6、例7、
3、练习: P36第1、2题
四.课堂小结
通过这节课的学习,你的收获是:
1)、除以一个不等于0的数,等于 乘这个数的倒数.
2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .
五.作业布置
1、计算
(1)(+48)(+6); (2) ;
(3)4(-2); (4)0(-1000).
2、计算.
(1)(-1155)[(-11)(+3)(-5)]; (2)375
1、P39第1、2、3、4题
1.4.5有理数的除法
(第5课时)
一、教学目标:
1、学会用计算器进行有理数的除法运算.
2、掌握有理数的混合运算顺序.
3、通过探究、练习,养成良好的学习习惯
二、教学重点和难点
1、学习重点:有理数的混合运算
2、学习难点:运算顺序的确定与性质符号的处理
三、教学过程
(一)、学前准备
1、计算
1)(0.0318)(1.4) 2)2+(8)2
(二)、探究新知
1、由上面的问题1,计算方便吗?想过别的方法吗?
2、由上面的问题2,你的计算方法是先算 乘除 法,再算 加减 法。
3、结合问题1,阅读课本P36P37页内容(带计算器的同学跟着操作、练习)
4、结合问题2,你先猜想,有理数的混合运算顺序应该是 先算乘除法,再算加减法 。
5、阅读P36,并动手做做
三、新知应用
1、计算
1)、186(2) 2)11+(22)3(11)
3)(0.1) (100)
四.课堂小结:请你回顾本节课所学习的主要内容:
1、有理数的混合运算顺序应该是 先算乘除法,再算加减法 。
2、计算器的使用。
五、作业 1、P39第7题(4、5、7、8)、 第8题
有理数的乘方教案 之 十
教学目标:
1、知识与技能:
了解科学记数法的意义,会用科学记数法表示绝对值比较大的数。
2、过程与方法:
在科学记数法中,其中a是整数位只有一位的数,n是原数的整数位数减1。
重点、难点:
1、重点:用科学记数法表示绝对值较大的数。
2、难点:熟练用科学记数法表示绝对值较大的数。
教学过程:
一、创设情景,导入新课
太阳的半径大约是696000千米;光的速度大约是300000000米/秒。这些数读、写都有困难,可把696000记作6.96×105,这就是科学记数法。
二、合作交流,解读探究
1、填空
= , = , =
2.8×= ,2.8×= ,2.8×=
2、学生探究:从前面的填空可知:
100=, 1000=, 10000=280=2.8×,2800=2.8×,28000=2.8×
从上面你能发现什么规律吗?
(1)10的指数比原数的整数位少1,一个数可以写成一个整数位数只有一位的数与10的n次幂相乘的形式。
三、应用迁移,巩固提高
1、做一做:课本P44例2
解答见教材,注意10的指数比原数的整数位少1
2、科学记数法:把一个绝对值大于10的数记成的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。
3、做一做:用科学记数法表示下列各数:
(1) 108000;(2)-3200000
两生上台练习,指出学生存在的错误,如对科学记数法中a的要求理解的错误。
4、P44练习第1、2、3题
四、总结反思
用科学记数法表示时要注意:(1)a是整数位只有一位的数,(2)10的指数n比原数的整数位数少1。
五、作业:P45习题1.6A组第3、4、5题
-
需要更多的有理数的乘方教案网内容,请访问至:有理数的乘方教案