幼儿教师教育网,为您提供优质的幼儿相关资讯

函数概念课件

发布时间:2024-05-30 函数概念课件 函数课件

函数概念课件通用十一篇。

想要更好地了解“函数概念课件”栏目小编为您推荐这篇详细的解读文章,希望这篇文章能够为你提供关键信息建议你收藏起来。教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。设计教案需要注重课堂气氛的营造和调动。

函数概念课件(篇1)

教学目标:

1、进一步理解的概念,能从简单的实际事例中,抽象出关系,列出解析式;

2、使学生分清常量与变量,并能确定自变量的取值范围.

3、会求值,并体会自变量与值间的对应关系.

4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的的自变量的取值范围的求法.

5、通过的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.

教学重点:了解的意义,会求自变量的取值范围及求值.

教学难点:概念的抽象性.

教学过程:

(一)引入新课:

上一节课我们讲了的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的.

生活中有很多实例反映了关系,你能举出一个,并指出式中的自变量与吗?

1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.

2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.

解:1、y=30n

y是,n是自变量

2、 ,n是,a是自变量.

(二)讲授新课

刚才所举例子中的,都是利用数学式子即解析式表示的.这种用数学式子表示时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.

例1、求下列中自变量x的取值范围.

(1) (2)

(3) (4)

(5) (6)

分析:在(1)、(2)中,x取任意实数, 与 都有意义.

(3)小题的 是一个分式,分式成立的条件是分母不为0.这道题的分母是 ,因此要求 .

同理(4)小题的 也是分式,分式成立的条件是分母不为0,这道题的分母是 ,因此要求 且 .

第(5)小题, 是二次根式,二次根式成立的条件是被开方数大于、等于零. 的被开方数是 .

同理,第(6)小题 也是二次根式, 是被开方数,

.

解:(1)全体实数

(2)全体实数

(3)

(4) 且

(5)

(6)

小结:从上面的例题中可以看出的解析式是整数时,自变量可取全体实数;的解析式是分式时,自变量的取值应使分母不为零;的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.

注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要 即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使成立的自变量的取值范围.二次根式的问题也与次类似.

但象第(4)小题,有些同学会犯这样的错误,将答案写成 或 .在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里 与 是并且的关系.即2与-1这两个值x都不能取.

函数概念课件(篇2)

(一)教材的地位和作用

从数学自身的发展过程看,变量和函数的引入标志着数学从初等数学向变量数学的迈进。而一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。

(二)教学目标

1.知识目标

(1)理解一次函数和正比例函数的概念,以及它们之间的关系。

(2)能根据所给条件写出简单的一次函数表达式。

2.能力目标

(1)经历一般规律的探索过程、发展学生的抽象思维能力。

(2)通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

3.情感目标

(1)通过函数与变量之间的关系的`联系,一次函数与一次方程的联系,发展学生的数学思维。

(2)经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。

(三)教材重点、难点

1、重点

(1)一次函数、正比例函数的概念及关系。

(2)根据具体情境所给的信息确定一次函数的表达式

2、难点

根据具体情境所给的信息确定一次函数的表达式

接下来我来谈谈第二方面:教法与学法:

在本节课的教学中我准备采用的教学方法主要是指导——自学方式。根据学生的理解能力和生理特征,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上,另一方面要创造条件和机会,让学生发表意见,发挥学生的主动性。通过本节课的学习,教给学生从特殊到一般的认知规律去发现问题的解决方法,培养学生独立思考的能力和解决问题的能力。

函数概念课件(篇3)

一、教材分析及处理

函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。

对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。

教学重点是函数的概念,难点是对函数概念的本质的理解。

学生现状

学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。

二、教学三维目标分析

1、知识与技能(重点和难点)

(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。

(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。

(3)、掌握定义域的表示法,如区间形式等。

(4)、了解映射的概念。

2、过程与方法

函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:

(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。

(2)、面向全体学生,根据课本大纲要求授课。

(3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。

3、情感态度与价值观

(1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案《《函数》教学设计》。

(2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。

三、教学器材

多媒体ppt课件

四、教学过程

教学内容教师活动学生活动设计意图

《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活

知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫

思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接

新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题

对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识

函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法

注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点

习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系

映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫

小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点

五、教学评价

为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。

在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。

虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。

函数概念课件(篇4)

一、教材分析

本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1 函数的概念》共3课时,本节课是第1课时。

托马斯说:“函数概念是近代数学思想之花”。 生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。

函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。函数的的重要性正如恩格斯所说:“数学中的转折点是笛卡尔的变数,有了变数,运动就进入了数学;有了变数,辩证法就进入了数学”。

二、学生学习情况分析

函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;(三)高中用导数工具研究函数的单调性和最值。

1.有利条件

现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

初中用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

2.不利条件

用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

三、教学目标分析

课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

1.知识与能力目标:

⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

⑵理解函数的三要素的含义及其相互关系;

⑶会求简单函数的定义域和值域

2.过程与方法目标:

⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.

3.情感、态度与价值观目标:

感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

四、教学重点、难点分析

1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。 但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

2.教学难点:第一:从实际问题中提炼出抽象的概念;第二:符号“y=f(x)”的含义的理解.

难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

五、教法与学法分析

1.教法分析

本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

2.学法分析

在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

函数概念课件(篇5)

各位专家、各位老师:

大家好!

今天我说课的题目是《函数的概念》,本课题是人教A版必修1中1、2的内容,计划安排两个课时,本课时的内容为:函数的概念、三要素及简单函数的定义域及值域的求法。下面我将以“学什么、怎么学、学了有何用”为思路,从教材、教法、学法、教学评价、教学过程设计、板书设计等几个方面对本节课的教学加以说明。

一、教学目标

1、课程标准

课节内容的课标要求是:

(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

(2)在实际情景中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

(3)通过具体实例,了解简单的分段函数,并能简单应用。

(4)通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

(5)学会运用函数图像理解和研究函数的性质。

2、课标解读

关于函数内容的整体定位和基本要求解读:

(1)把函数作为刻画现实世界中一类重要变化规律的模型来学习,是一种通过某一事物的变化信息可推知另一事物信息的对应关系的数学模型;

(2)强调对函数本质的认识和理解,因此要求在高中数学学习中多次接触、螺旋上升;

(3)关注背景、应用、增加了函数模型及其应用;

(4)削弱和淡化了一些内容,如函数的定义域、值域、反函数、复合函数等;

(5)注重思想和联系——增加了函数与方程、用二分法求方程的近似根;

(6)合理地使用信息技术,旨在帮助学生更好地认识和理解函数及其性质。

【依据意图】

(1)教材如此要求的根本目的是希望帮助学生更好地从整体上认识和理解函数的本质,而真正理解函数概念是不容易的。因此,不要在过于细枝末节的非本质问题上作过多的训练,有了定义域和对应关系,值域自然就定了。此外,“课标”建议先讲函数再讲映射,也是为了帮助学生把注意力集中在函数的本质理解。

(2)希望通过方程根与函数零点的内在联系,加强对函数概念、函数思想及函数这一主线在高中数学中的地位作用的认识和理解。并通过用二分法求方程近似根将函数思想以及方程的根与函数零点之间的联系具体化。

(3)二分法是求方程近似根的常用方法,更为一般、简单,能很好地体现函数思想,“大纲”只是用“三个二”解决根的分布问题。

(4)现代信息技术不能替代艰苦的学习和人脑精密的思考,信息技术只是作为达到目的的一种手段,一种快速计算的工具。

3、教材分析

(1)地位作用

函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中,其重要性体现在以下几个方面:

1、函数是高中数学七大主干知识之一,又是沟通代数﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础;

2、函数的学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力;

3、这一节所学习的函数概念既是对初中所学函数概念的一次升华和再认识、对集合语言的一次重要应用;又是以后继续学习函数的性质、数列等等知识的必备理论基础,在函数学习中是承上启下的关键章节。

(2)内容与课时划分

本课题是高中数学人教A版必修1中1、2节,计划教学2个课时,第一课时内容包括函数的概念、函数的三要素、简单函数的定义域及值域的求法;第二课时内容为:区间表示、较复杂函数的定义域及值域的求法、分段函数、函数图象等。本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。

4、学情分析

(1)学生在初中已经在初中学习过函数的概念。

(2)本班级学生个体差异较明显。

5、教学目标

【依据意图】:教学目标的设计,要简洁明了,具有较强的可操作性,容易检测目标的达成度,同时也要体现出新课标下对素质教育的要求。基于以上分析作为依据,课时目标分解如下:

【课时分解目标】

1、能够列举生活中具有函数关系的实例;

2、能用集合与对应的语言描述函数的定义,能对具体函数指出定义域、对应法则、值域;

3、会求一些简单函数(带根号,分式)的定义域和值域;

4、能够从函数的三要素的角度去判定两个函数是否是同一个函数。

二、教学重难点

重点:让学生体会函数是描述变量之间的相互依赖关系的重要数学模型,正确理解形成函数的概念。

难点:引导学生从具体实例抽象出函数概念。

[意图依据]:本课时是概念课,重在概念的理解和形成,但教师应把重点放在让学生形成概念的过程中,联系旧知、突破难点、生长新知。为此通过教学目标和难重点的展示,让学生明确本节课的任务及精髓,带着目标去学习,才能达到事半功倍的效果。

三、教法

问题式教学法(实例情境、启发引导、合作交流、归纳抽象)

由于本课题是从集合与对应的角度揭示函数的本质,无论难度还是跨度都有质的飞跃。根据学生的心理特征和认知规律,我通过以问题为主线,以学生为主体,以教师为主导的教学理念。采用一系列的设问、引导、启发、发现,让学生归纳、概括出函数概念的本质,并灵活应用多媒体、黑板呈现、展示、交流。

[意图依据]:函数的`概念的教学要注重以下几个方面:

(1)把集合作为一种语言;

(2)对函数本质的理解不能一步到位,要注重螺旋上升;

(3)重视信息技术的使用。为此,教师要在课堂上搭建一个平台,通过展示实例、学生举例、典例分析、小结归纳等环节穿插若干问题,引起思考,达成教学目标。

四、学法

自主探究、合作交流、展示互评

我们知道越是基础性的概念,其统摄性就越强,学生从中领悟到的数学就越本质;但事物总有两面性,这些概念的理解和掌握往往难度大、时间长,需要更多的经验积累.因此本节课在学法上我重视学生在列举大量实际背景的前提下对所给出实例观察,类比,归纳,分析,探究,合作,提炼,感悟函数概念的“本来面目”,以此培养学生发现问题、研究问题和分析解决问题的能力;同时在预习环节有学生的自主学习、在互动环节有学生的合作交流、在课后拓展环节有学生的探究学习。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径以及思考问题的方法,使学生真正成为教学的主体。也只有这样做,才能使学生“学”有所“思”,“思”有所“获”,“获”有所“用”。也恰好能够体现我以“学什么、怎么学、学了有何用”来设计本课题的整体思路。

[意图依据]:本课时是以问题为主线的教学过程,着重让学生经过对大量实例的剖析、了解、归纳而形成概念。在这个过程中,教师的作用是引导,经过一系列问题的提出、解决让学生在思考、交流的基础上层层深入的理解函数概念。

五、教学过程设计

本节内容的教学过程我设计为以下逐层推进六个步骤:

1、课前预习、生成问题

2、创境设问、引入课题

3、观察分析、探索新知

4、思考辨析、深刻理解

5、提炼总结、分享收获

6、布置作业、拓展延伸

函数概念课件(篇6)


函数是数学中一个重要的概念,也是数学和计算机科学中常见的概念之一。它在求解问题、描述规律和实现功能等方面都起着关键的作用。本文将从函数的定义、特点、分类和应用等方面详细介绍函数的概念。


一、函数的定义


在数学中,函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素上。换句话说,函数是一个规则,它将每一个输入值映射到一个唯一的输出值上。函数通常用f(x)或者y表示,其中x是输入值,y是输出值。


函数的定义包括以下几个要素:


1.定义域:函数的定义域是指所有可能的输入值的集合。函数只能对定义域内的值进行运算和映射。


2.值域:函数的值域是指所有可能的输出值的集合。函数的输出值只能取值于值域内。


3.映射规则:函数的映射规则是指定义在定义域上的数学关系。它描述了输入值和输出值之间的对应关系。


二、函数的特点


函数有以下几个特点:


1.唯一性:对于一个确定的输入值,函数的输出值是唯一确定的。换句话说,一个输入值不能对应多个输出值。


2.多样性:函数的定义域和值域可以是任意的集合,可以是有限集,也可以是无限集。


3.有序性:函数是有序的,即输入值和输出值之间是有顺序的。输入值的顺序决定了输出值的顺序。


4.确定性:函数的映射规则是确定的,即对于相同的输入值,得到的输出值是相同的。


三、函数的分类


函数可以根据不同的特点进行分类,常见的分类有以下几种:


1.按照定义域和值域的类型分类:


- 实函数:定义域和值域都是实数集合的函数。


- 自然函数:定义域和值域都是非负整数集合的函数。


- 分段函数:定义域可以划分成多个区间,并在每个区间上定义不同的映射规则的函数。


2.按照映射规则的特点分类:


- 一次函数:函数的映射规则是一次多项式。


- 幂函数:函数的映射规则是幂指数函数。


- 指数函数:函数的映射规则是指数函数。


- 对数函数:函数的映射规则是对数函数。


3.按照函数的性质分类:


- 奇函数:函数满足f(-x)=-f(x)的函数。


- 偶函数:函数满足f(-x)=f(x)的函数。


- 周期函数:函数在一定区间上满足f(x+T)=f(x)的函数。


四、函数的应用


函数在数学和计算机科学中具有广泛的应用:


1.函数在求解问题中有着重要的作用。例如,用函数可以描述一辆汽车的速度和时间之间的关系,并用这个函数来计算汽车行驶的距离。


2.函数在描述规律和模型中起着关键的作用。例如,用函数可以描述物体的运动规律、人口增长规律等。


3.函数在算法和程序设计中有着重要的应用。例如,函数可以将一段复杂的逻辑封装成一个函数,以便在需要的时候调用,提高程序的可读性和可维护性。


4.函数在数据分析和统计中有广泛的应用。例如,用函数可以描述一组数据的分布规律,通过函数来进行数据分析和预测。


小编认为,函数是数学中一个重要的概念,它具有唯一性、多样性、有序性和确定性的特点。函数可以根据不同的特点进行分类,并在数学、计算机科学和其他领域中有着广泛的应用。了解函数的概念对于理解数学和计算机科学的课程内容,以及在实际问题中的求解具有重要的意义。

函数概念课件(篇7)

第一大块:教材分析

一、本课时在教材中的地位及作用

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。本章节9个课时,函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节课《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据

二、教学目标

理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

三、重难点分析确定

根据上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点

第二大块:说教法、学法

一、教学基本思路及过程

本节课《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课(借助小黑板)从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用,也为进一步学习函数这一章的其它内容提供了方法和依据。

二、学情分析

一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度,加上学生数学基础较差,理解能力,运算能力等参差不齐等。

三、教法、学法

1、本节课采用的方法有:

直观教学法、启发教学法、课堂讨论法。

2、采用这些方法的理论依据:

我一方面精心设计问题情景,引导学生主动探索,另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程,充分体现“教师为主导,学生为主体”的教学原则。

函数概念课件(篇8)

教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.

教学目的:

(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示某些函数的定义域;

教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;

教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

教学过程:

一、引入课题

1.复习初中所学函数的概念,强调函数的模型化思想;

2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

备用实例:

我国xxxx年4月份非典疫情统计:

日期222324252627282930

新增确诊病例数1061058910311312698152101

3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

二、新课教学

(一)函数的有关概念

1.函数的概念:

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

记作:y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

注意:

○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

2.构成函数的三要素:

定义域、对应关系和值域

3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;

(2)无穷区间;

(3)区间的数轴表示.

4.一次函数、二次函数、反比例函数的定义域和值域讨论

(由学生完成,师生共同分析讲评)

(二)典型例题

1.求函数定义域

课本P20例1

解:(略)

说明:

○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;

○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;

○3函数的定义域、值域要写成集合或区间的形式.

巩固练习:课本P22第1题

2.判断两个函数是否为同一函数

课本P21例2

解:(略)

说明:

○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

巩固练习:

○1课本P22第2题

○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?

(1)f(x)=(x-1)0;g(x)=1

(2)f(x)=x;g(x)=

(3)f(x)=x2;f(x)=(x+1)2

(4)f(x)=|x|;g(x)=

(三)课堂练习

求下列函数的定义域

(1)

(2)

(3)

(4)

(5)

(6)

三、归纳小结,强化思想

从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。

四、作业布置

课本P28习题1.2(A组)第1—7题(B组)第1题

函数概念课件(篇9)

一、教学目标

【知识与技能】

理解函数的概念,能对具体函数指出定义域、对应法则、值域。

【过程与方法】

通过对函数的学习,进一步体会集合与对应的数学思想方法。

【情感、态度与价值观】

在探索中感受到成功的喜悦,提高学习数学的兴趣。

二、教学重难点

【重点】函数的概念。

【难点】从具体实例中抽象出函数概念。

三、教学过程

(一)导入新课

带领学生复习初中阶段函数的概念,并举例说明,从而引出高中阶段对函数的学习。

(二)讲解新知

利用多媒体展示上一节的实例,例如:(1)加油站储油罐的储油量和高度的关系;(2)高速公路总里程与年份的关系。引导学生分析归纳以上两个实例,变量分别是谁、变量的范围是什么、变量之间存在的关系是什么、这些例子有什么共同特点。

函数概念课件(篇10)

教学目标:

1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;

2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;

3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.

教学重点:

两集合间用对应来描述函数的概念;求基本函数的定义域和值域.

教学过程:

一、问题情境

1.情境.

正方形的边长为a,则正方形的周长为 ,面积为 .

2.问题.

在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?

二、学生活动

1.复述初中所学函数的概念;

2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;

3.举出生活中的实例,进一步说明函数的对应本质.

三、数学建构

1.用集合的语言分别阐述23页的问题(1)、(2)、(3);

问题1 某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:

(1)这一变化过程中,有哪几个变量?

(2)这几个变量的范围分别是多少?

问题2 略.

问题3 略(详见23页).

2.函数:一般地,设A、B是两个非空的数集,如果按某种对应法则f,对于集合A中的每一个元素x,在集合B中都有惟一的元素和它对应,这样的对应叫做从A到B的一个函数,通常记为=f(x),x∈A.其中,所有输入值x组成的集合A叫做函数=f(x)的定义域.

(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;

(2)函数的本质是一种对应;

(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格

(4)对应是建立在A、B两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).

3.函数=f(x)的定义域:

(1)每一个函数都有它的定义域,定义域是函数的生命线;

(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没

有指明定义域,那么就认为定义域为一切实数.

四、数学运用

例1.判断下列对应是否为集合A 到 B的函数:

(1)A={1,2,3,4,5},B={2,4,6,8,10},f:x→2x;

(2)A={1,2,3,4,5},B={0,2,4,6,8},f:x→2x;

(3)A={1,2,3,4,5},B=N,f:x→2x.

练习:判断下列对应是否为函数:

(1)x→2x,x≠0,x∈R;

(2)x→,这里2=x,x∈N,∈R。

例2 求下列函数的定义域:

(1)f(x)=x—1;(2)g(x)=x+1+1x。

例3 下列各组函数中,是否表示同一函数?为什么?

A.=x与=(x)2; B.=x2与=3x3;

C.=2x-1(x∈R)与=2t-1(t∈R); D.=x+2x-2与=x2-4

练习:课本26页练习1~4,6.

五、回顾小结

1.生活中两个相关变量的刻画→函数→对应(A→B)

2.函数的对应本质;

3.函数的对应法则和定义域.

六、作业:

课堂作业:课本31页习题2。1(1)第1,2两题.

函数概念课件(篇11)

教学目标:

1、进一步理解的概念,能从简单的实际事例中,抽象出关系,列出解析式;

2、使学生分清常量与变量,并能确定自变量的取值范围.

3、会求值,并体会自变量与值间的对应关系.

4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的的自变量的取值范围的求法.

5、通过的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.

教学重点:了解的意义,会求自变量的取值范围及求值.

教学难点:概念的抽象性.

教学过程:

(一)引入新课:

上一节课我们讲了的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的.

生活中有很多实例反映了关系,你能举出一个,并指出式中的自变量与吗?

1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.

2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.

解:1、y=30n

y是,n是自变量

2、 ,n是,a是自变量.

(二)讲授新课

刚才所举例子中的,都是利用数学式子即解析式表示的.这种用数学式子表示时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.

例1、求下列中自变量x的取值范围.

(1) (2)

(3) (4)

(5) (6)

分析:在(1)、(2)中,x取任意实数, 与 都有意义.

(3)小题的 是一个分式,分式成立的条件是分母不为0.这道题的分母是 ,因此要求 .

同理(4)小题的 也是分式,分式成立的条件是分母不为0,这道题的分母是 ,因此要求 且 .

第(5)小题, 是二次根式,二次根式成立的条件是被开方数大于、等于零. 的被开方数是 .

同理,第(6)小题 也是二次根式, 是被开方数,

.

解:(1)全体实数

(2)全体实数

(3)

(4) 且

(5)

(6)

小结:从上面的例题中可以看出的解析式是整数时,自变量可取全体实数;的解析式是分式时,自变量的取值应使分母不为零;的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.

注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要 即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使成立的自变量的取值范围.二次根式的问题也与次类似.

但象第(4)小题,有些同学会犯这样的错误,将答案写成 或 .在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里 与 是并且的关系.即2与-1这两个值x都不能取.

Yjs21.Com更多幼师资料扩展阅读

函数概念教学反思通用


幼儿教师教育网相关栏目推荐:“函数概念教学反思”。

教师作为学生学习的向导,教师为了更好地教学,一般都会为自己准备一份教案。教案在教学工作建立在学习理论、教学理论和系统科学理论的基础上,小编为您提供了函数概念教学反思,希望对你有所帮助,动动手指请收藏一下!

函数概念教学反思(篇1)

在课前,我加强了预习指导,训练学生的自学能力。在课堂中,我设计同桌合作探究,找出蝙蝠探路靠的是什么,并完成表格。在阅读了蝙蝠探路方法和雷达探路方法后,我又让学生用卡片在黑板上摆一摆整个过程,激发了学生阅读文章的兴趣,同时让他们在众人面前勇于展现自我。通过活动,学生在玩中学,不但牢固地掌握了知识,了解了蝙蝠和雷达探路方法,而且使学生得到了主动和谐全面的发展。

但是,在教学过程中,有些方面没有达到预期的效果,还值得改进。如在学习科学家三次实验的经过,填写表格这一学习环节没有处理好。学生在复述这部分内容时,没有很好地运用到课文中的语言,只是用自己的话来组织语言,没有达到复述课文的真正目的。复述完后,如能带领学生再回到课文中读一读,回味课文语言,感悟课文语言,体会作者写作思路的缜密,我相信效果会更好。读的训练还显得较为薄弱。

曾有人说,语文课是一门遗憾的艺术。的确,一堂课下来,既有令我欣慰的地方,也让我认识到自己的不足,使我明确了自己努力的方向。今后,我将再接再厉,不断地探究语文教育教学的艺术和方法,更上一层楼。

函数概念教学反思(篇2)

堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。

1、某些记忆性的知识没记住。

2、学生稍遇到点难题就失去做下去的信心。题目较长时就不愿意仔细读,从而失去读下去的勇气

3、学生的识图能力、读题能力与分析问题、解决问题的能力较弱。

4、解题过程写得不全面,丢三落四的现象严重。

针对上述问题,需要采取的措施与方法是:

1、根据实际情况,对于中考升学有希望的学生利用课余时间做好他们的思想工作。并对他们进行面对面的单独辅导,增强他们的自信心,以此来提高他们的数学成绩。

2、结合自己的学习经验对他们进行学法指导和解题技巧的指导。

3、根据不同的学生情况,搜集典型题让他们单独做,并给予及时的辅导与矫正。

4、与其它任课教师联手一起想对策,指导学生读题的方法与分析问题,解决问题的方法。

5、无论是做练习还是考试之前,都告诉学生要认真仔细的读题,从图形中获取信息。

函数概念教学反思(篇3)

本单元主要内容为感受自然。本课的特殊之处在于作者以他独特的观察视角,采用联想和想象,赋予山中万物以人的情感。文章字字玑珠,句句含情,读来朗朗上口,情真意切,给人美的享受。作者带着满怀的好心情,走进山林,探访山中的众朋友古桥、树林、山泉与朋友们互诉心声,营造了一个如诗如画的童话世界,使读者顿生身临其境之感,表达了对大自然的热爱之情。

我在教学本课的时候,依据学生的认知规律,注重让学生欣赏文章画面美,感受作者美好情怀,通过入情入境的朗读品味文章清新优美的语言,感受作者对山中朋友那份深厚的感情,并体会作者表达情感的方法作为教学重点。六年级学生虽然已经接触了一些散文,但对散文的特点还不能深入理解。不过学生已经具备了一定的朗读能力,可以通过朗读感受文章语言的魅力,入情入境,理解作者表达的感情。同时小学生想象力丰富,善于模仿,通过阅读体验可以和作者产生一定的情感共鸣。

针对本课构思奇特、想象丰富,文字优美的特点,我通过感情诵读法:教学生读散文,注重对学生进行朗读训练,引导学生入境悟情、审美学文,通过朗读,把学生带入课文意境,体会作者热爱大自然的感情,从而使学生受到美的熏陶。通过音乐渲染、图像再现、语言描述等形式,让学生观察思索,入境悟情。数据本文想象奇特浪漫的特点,让学生在诵读基础上展开想象,体会文章特色。最后进行仿写训练法:运用第二人称及拟人、想象等手法介绍一两个你自然界的朋友,说清楚以他为朋友的原因,培养写作能力。在感受的基础上进行练习,是对课文的深入理解,同时也是对知识方法的一种灵活的运用,在这个过程中使知识得到丰富,能力得到提高。

在课文分析时,用第三段做例子,重点讲解。其他的段落,学生自己读,先说说这一段落该用什么语气语调来朗读,再让他根据自己的理解与体会朗读出来。然后说自己的理解和感受,在此过程中,争取让每一个学生发言,让每一个学生都能有表达自己的机会。

最后强调,文章字里行间透露出作者与山中朋友之间的亲切,表达作者对大自然的热爱之情。

作者构思新奇,想象丰富,充满童心童趣。以山中访友为题,让人感到更加亲切,使景与我融为一体。读者时时会被作者的童心打动,时时被流淌在字里行间的激情感染,我们与大自然是这样的贴近,甚至会融为一体,又怎么能不热爱大自然,热爱生活呢?来引起共鸣

进行本课,在仿写时处理的比较粗糙。朗读的时候学生对感情的把握也不是很好。说明学生的个性化体验不够,在今后的教学中要有足够的重视。

函数概念教学反思(篇4)

对于必修1函数概念的教学活动中,我有以下反思:

函数是高中数学的重要研究问题,贯穿整个高中数学的学习。然而同学们对初中的函数概念的理解根深蒂固。要使他们接受从集合角度所定义的函数概念很难。本身这个概念很抽象,叙述起来很冗长,同学们读了一遍又一遍始终不解其意,我便采用启发式教学,就像学习语文一样,让大家总结函数的本质为:“函数是一种对应关系”再启发得到:“函数是两个非空数集之间的对应关系”,又得到“函数是两个非空数集之间满足一对一或多对一的对应关系”,再加上细节性的定语。大多数同学顿时觉得茅塞顿开,明白清楚。我又加之几个实例判断是否为函数并分解其理由,同学们更加清楚明了。

通过这个概念的学习,我从中得到启示:要使学生数学思维生动活泼对抽象概念的学习不能照本宣科,必须对知识重组,揭示概念的本质,使学生乐于学习它,并运用它。

这是我这节课后的一点小反思,也算是以后授课的一点小启示。

函数概念教学反思(篇5)

对于教师来说,'反思教学'就是教师自觉地把自己的课堂教学实践,作为认识对象而进行全面而深入的冷静思考和总结,它是一种用来提高自身的业务,改进教学实践的学习方式,不断对自己的教育实践深入反思,积极探索与解决教育实践中的一系列问题。进一步充实自己,优化教学,并使自己逐渐成长为一名称职的人类灵魂工程师。以下是我在上了函数的概念之后的一点反思:

这堂课堂气氛较为活跃。学生不仅能在课堂上勇于发言,而且还敢于质疑并且能做到言之有理,还能积极参与小组讨论交流,共同分享团队协作的成果,基本完成教学目标。

这堂课是研究函数的概念。这节课主要采用了探索、发现、归纳、反馈的教学流程,达成了对函数的概念的教学。

函数性质的研究是高中阶段数学学习的一个重要组成部分,因此函数概念的学习是研究函数性质时应予以考查的一个重要方面,并且要在后续学习中体现这个性质的应用。它在计算函数值,讨论函数单调性,绘制函数图象均有用处,对学生来说这是一个新的概念。引进新概念的过程也是培养学生探索问题、发现规律、作出归纳的过程。因此在教学时没有生硬地提出问题,而是采用生活中的事例引入,继而引出数值在直角坐标系中的对应关系导出新概念,不仅顺乎自然而且为以后研究函数奇偶性的几何意义(图形对称的两条定理)埋下伏笔。

本堂课的一个亮点是反馈过程中给出几个例题后所引起学生的思考、发言、争执、讨论以至正确答案的达成一致的过程,其中教师起了很及时和恰当的提示。学生的勇于质疑使课堂上呈现一派生气勃勃的景象,学习积极性和主动性得到了充分调动,使学生对看似简单的函数的概念也产生了不容轻视感,同时也发展了能力。一般来说学生在学习一些简单的.知识点时会觉得乏味,在组织教学时充分考虑了这些浅显、平淡的知识还有一些值得思索和注意的地方。真正体现出“浅显中有新意,平淡中有隽永”。

我上课的最大风格是注重将新概念讲清讲透,能在师生互动的过程中培养学生的探索能力和高度概括能力,并使学生举一反三。难能可贵有同学能概括出的结论,因此可以以它作为下节课研究函数奇偶性的引入语。

总体来说,这堂课较好地使学生在学习中完成了“引起关注————激发热情————参与体验”的过程,是一堂比较成功的课。

遗憾之处是发言的学生由于受时间的约束,发言的人数和长度不够理想。

(1)函数的概念,看起来比较简单,学生学习时也往往感觉的乏味。因此,在组织教学时必须考虑到如何使学生感到这些浅显、平淡的知识还有一些值得思索与注意的地方。

(2)根据学生的接受能力可将内容安排两节课的教学。

函数概念教学反思(篇6)

函数是高中数学中一个非常重要的内容之一,它贯穿整个高中阶段的数学学习,乃到一生的数学学习过程。其重要性主要体现在:

1、函数本身源于在现实生活,例如自然科学乃至于社会科学中,具有广泛的应用。

2、函数本身是数学的重要内容,是沟通代数、几何、三角等内容的桥梁。亦是今后进一步学习高等数学的基础和方法。

3、函数部分内容蕴涵大量的重要数学方法,如函数的思索,方程的思想,分类讨论的思想,数形结合的思想,化归的思想,换元法,侍定系数法、配方法等。这些思想方法是进一步学习数学和解决数学问题的基础,是我们教学过程中应注意重点讲解学生重点掌握的部分。

然而函数这部份知识在教学中又是一大难点这主要是因为概念的抽象性,学生理解起来相当不容易,接受起来就更难这又是由于函数这部份知识的主要思想特点体现于一个“变”字。即研究的主要是“变量”与“变量”之间的关系,要求用变量的眼光,运动变化的关点去看侍和接触相关问题,这与初中学习知识的以静态观点为中习的思维特点有较大差异,所以函数成了高一新生进入高中首先到的一条拦路虎,有些学生高中毕业了,对函数这个概念也没有理解透澈。

实际上,在学习函数这部份知识中,函数概念是最重要的,也就是最难的地方,突破了它后面的学习就容易了。现行的数学教材,其主要内容表现的都是数学知识的技术形式。函数的概念亦是如此,不管是传统定义也好,还是近代定义也好,表现出来的都是抽象数学形式,在数学的教学中,学习形式化的表达是一项基本要求,但是不能只限于形式表达,要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在形式化的海洋里。对数学知识的教学要返璞归真,努力揭示数学概念、法则,结论发展过程和本质。对越是抽象的数学概念,越是如此。所以函数概念的教学更忌照本宣科,要注意对知识进行重组。努力去提示函数概念的本质,使学生真正理解它,觉得它有用,而乐于学习它。

新概念课件六篇


请阅读由小编为你编辑的“新概念课件”,感谢您的耐心同时也请记得收藏本文。老师都需要为每堂课准备教案课件,每位老师都需要认真准备自己的教案课件。教案是课堂教学中必不可少的一环。

新概念课件 篇1

向量是高中阶段学习的一个新的矢量,向量概念是《平面向量》的最基本内容,它的学习直接影响到我们对向量的进一步研究和学习,如向量间关系、向量的加法、减法以及数乘等运算,还有向量的坐标运算等,因此为后面的学习奠定了基础.

结合本节课的特点及学生的实际情况我制定了如下的教学目标及教学重难点:

1)识记平面向量的定义,会用有向线段和字母表示向量,能辨别数量与向量;

2)识记向量模的定义,会用字母和线段表示向量的模.

3)知道零向量、单位向量的概念.

学生通过对向量的学习,能体会出向量来自于客观现实 ,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想.

通过构建和谐的课堂教学氛围,激发学生的学习兴趣,使学生勇于提出问题,同时培养学生团队合作的精神及积极向上的学习态度.

教学重点:向量的定义,向量的几何表示和符号表示,以及零向量和单位向量

(1)能力分析:对于我校的学生,基础知识较薄弱,虽然他们的智力发展已到了形成运演阶段,但并不具备较强的抽象思维能力、概括能力及数形结合的思想.

(2)认知分析:之前,学生有了物理中的矢量概念,这为学习向量作了最好的铺垫。

(3)情感分析:部分学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.

教法:启发教学法,引探教学法,问题驱动法,并借助多媒体来辅助教学

学法:在学法上,采用的是探究,发现,归纳,练习。从问题出发,引导学生分析问题,让学生经历观察分析、概括、归纳、类比等发现和探索过程.

课前:

为了打造高效课堂,以生为本我选择生本式的教学方式,以穿针引线的方式设计了前置性作业。其中包括一些向量的基本概念,并提出:

1、你学过的其他学科中有没有可以称为向量的.?

2、向量的特点是什么?有几种描述向量的表示方法?

3、零向量的特点是什么?

【设计意图】目的是通过课前的预习明确自己需要在本节课中解决的问题,带着问题听课,我会在上课前就学生的完成情况明确主要的教学侧重点,真正打造高效课堂。

数学的学习应该是与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中发现数学,探究数学,认识并掌握数学,由生活的实例引入,在对比于物理学中的速度、位移等学生已有的知识给出本章研究的问题平面向量

【设计意图】形成对概念的初步认识,为进一步抽象概括做准备。

结合物理学中对矢量的定义,给出向量的描述性概念。对于一个新学的量定义概念后,通常要用符号表示它。怎样把我们所举例子中的向量表示出来呢?

采取让学生先尝试向量的表示方法,自觉接受用带有箭头的线段(有向线段)来表示向量。明确为什么可以用有向线段表示向量,引导学生总结出向量的表示方法,强调印刷体与手写体的区别。结合板书的有向线段给出向量的`模。

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知

本阶段的教学,我采用的是教材上的两个例题,旨在巩固学生对平面向量的观念,提高学生的动手实践能力,掌握求模的基本方法,提升识图能力.

为了调动学生的积极性,培养学生团队合作的精神,本环节我采用小组竞争的方式开展教学,小组讨论并选派代表回答,各组之间取长补短,将课堂教学推向高潮,再次加强学生对向量概念的理解。

为了了解学生本节课的学习效果,并且将所学做个很好的总结。设置问题:通过本节课的学习你有哪些收获?(可以从各种角度入手)

【设计意图】通过总结使学生明确本节的学习内容,强化重点,为今后的学习打下坚定的基础

出选做题的目的是注意分层教学和因材施教,为学有余力的学生提供思考的空间.

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动眼观察,动脑思考,层层递进,亲身经历了知识的形成和发展过程,以问题为驱动,使学生对知识的理解逐步深入。而最后的实际应用又将激发学生的学习兴趣,带领学生进入对本节课更深一步的思考和研究之中,从而达到知识在课堂以外的延伸。

新概念课件 篇2

了解线性空间(不考证明),维数,基

9页:线性变换,定理1.3

13页:定理1.10,线性空间的内积,正交

要求:线性子空间(3条)非零,加法,数乘

35页,2491011

本章出两道题

第二章:

约旦标准型

相似变换矩阵例2.8(51页)出3阶的例2.6(46页) 出3阶的

三角分解例2.9(55页)(待定系数法)(方阵)

行满秩/列满秩 (最大秩分解)

奇异值分解

本章出两道题

第三章:

例3.1(75页) 定理3.2要会证明例3.3必须知道(证明不需要知道)定义3.3 例3.4证明要知道定理3.5掌握定理3.7要掌握

习题24

本章出(一道计算,一道证明)或者(一道大题(一半计算,一半证明))

第四章:

矩阵级数的收敛性判定要会,一般会让你证明它的收敛

比较法, 数字级数

对数量微分不考,考对向量微分(向量函数对向量求导)

本章最多两道,最少 一道,也能是出两道题选一道

第六章:

用广义逆矩阵法求例6.4(154页)

能求最小范数(158页) 如果无解就是LNLS解

定理6.1了解定理6.2 求广义逆的方法(不证明)

定理6.3(会证明)定理6.4(会证明)(去年考了) 定理6.9(会证明)推论要记

住定理6.10(会证明)

出一道证明一道计算

新概念课件 篇3

大家好!我是焦作一中的郜珂。今天,有幸借此平台与大家交流,希望各位专家和老师指导我的说课。我说课的题目是《复数的有关概念》,我将从教材分析、学情分析、教学目标、教学过程、自我反思五个部分作具体的阐述。

首先是教材分析,《复数的有关概念》是北师大版新课程标准实验教科书选修系列2的模块2中第五章第一节的内容,这节课的主要内容是数系的扩充与复数的引入、以及复数的有关概念。数系扩充的过程体现了数学的发现和创造的过程,同时也体现了数学发生发展的客观需求和背景。

复数的引入是中学阶段数系的又一次扩充。对于高中生来说,学习一些复数的基础知识是十分必要的,这可以促使学生对数的概念有一个初步的较为完整的认识,也给他们运用数学知识解决问题增添了新的工具,同是还为进一步学习高等数学打下一定的基础。

在实际生活中,复数在电力学、热力学、流体力学、固体力学、系统分析、信息分析等方面都得到了广泛的运用,是现代人才必备的基础知识之一。

与本节教材相关的学生情况有如下几个特征:(1)我们的学生在从小学到高中的学习中已经掌握了整数、分数、正数、负数、有理数、无理数、实数这些概念,也掌握了相应的运算法则和运算律;(2)同时又从政治和历史课中了解到一些与数系扩充的有关的重要历史事件;(3)但是学生们对数的分类的掌握,主要依靠的是简单记忆,当然对数系的扩充过程以及与人类发展史的必然联系不甚了解。

鉴于以上对教材和学情的分析,确定本节课的教学目标如下:

1、知识目标:了解数系扩充的过程,理解复数的基本概念,掌握复数相等的充要条件

2、能力目标:通过对新概念的学习提高学生的认知能力,在复数相等充要条件的研究过程中提高学生类比思考的能力;

3、情感目标:提高学生学习数学的兴趣;拓展数学视野,使学生逐步认识到数学的科学价值、应用价值和文化价值。

为了达成以上教学目标,我将本节课设计成以下五个环节:

首先是设置情境,演示数系扩充的过程;然后引入虚数,讲解复数的基本概念;接下来通过类比学习,掌握复数相等的充要条件;完成了以上新概念的学习环节之后,利用课堂小结巩固本节课主要内容。最后进行课外引申,激发学生课外学习兴趣。

第一环节中,首先让学生回忆从小学到高中认识数的过程,然后结合人类发展史,通过幻灯片展示,用通俗易懂的语言向学生演示数系发展的过程。展示过程如下:

从远古围猎时期人类常用的“结绳”和“堆石”记数方法中,逐步产生了自然数的概念;在分配劳动成果的过程中,产生了“正分数”的概念;随着人类商品交换时代的来临,为了表示相反意义的量,又引入了“负数”的概念;至此人们认为所有的数都可以用两个互质整数的比值来表示;然而,随着人类种植活动的兴盛,在丈量土地、计算长度、计算产量过程中产生了经验几何学,其中在勾股弦定理使用中发现:在求两直角边长度都是“1”的直角三角形斜边的时候,其斜

边长度不能用任何有理数来表示,于是引入了无理数,把数系扩充为实数。

在此,提出问题:数系发展的动力和原因是什么?由学生体会并回答。

这个过程中通过兴趣学习,让学生了解数系扩充的过程,让学生亲自体会到“数的产生和发展,是人类生产和生活的需要”。之后,我还会指出数系的每一次扩充也是数学自身发展和完善的需要,并以解方程为例进行说明。为了使方程理论更加完整数系一步步扩充到了实数。

通过第一环节的学习,学生已经了解了由自然数到实数的数系扩充过程。但是人们发现在实数范围内仍然无法完全解决代数方程根的问题,例如在解方程x?1?0时候,用任何实数都无法表达其方程的根,这就必须引入新的“数” 。2

这时,要鼓励学生积极思考和尝试创造,并肯定学生的思维结果。由此自然地引入“虚数单位i”,规定i2??1;接着要求学生尝试求解方程x2??4和x2?2x?5?0的根,让学生逐步发现复数的代数表示形式Z?a?bi。指出这些原来在实数范围内无解的方程,现在可以借助虚数单位表示出根来,这些根都是虚数,与之对应,之前我们认识的数都是实数,实数和虚数统称为复数。接下来,提出问题“形如Z?a?bi的数是否一定是虚数?”

在学生思考和讨论之后,总结结论并讲解实部虚部的概念,通过对实部虚部取值情况的分析,帮助学生掌握复数集的分类:当虚部b=0时复数Z?a?bi表示的是实数,当虚部b≠0时复数Z?a?bi表示的是虚数,特别的当b≠0且a=0时复数Z?a?bi可写成Z?bi,这样的数是纯虚数。至此完成了“引导学生从实数系到复数系扩充”的教学任务。结合学生认识数的过程,引导学生发现“每个人认识数字的历程都和人类发展史中数系扩充的过程是一致的”,让学生体会到数学体系、数学思维的发展会促进人类全面素质的提高,从而激发学生学习数学的兴趣和热情。

为了巩固学生对复数概念的理解,与学生一起分析例一,边启发边讲解,注重实部虚部概念的表述,强调复数a?bi的实部是a,虚部是b,不是bi。之后要求学生思考课后练习第一题,以此加强对复数概念和复数集分类的掌握。最后通过提问的方式确认学生已经达到本环节教学目标的要求。为了提高学生思维能力并加强学生对复数概念的理解,引导学生完成例一变式:

例1变式:当m为何实数时,复数z?m2?m?2?(m2?1)i是

在第四问中,通过复数Z等于0的题目设置引导学生向复数相等充要条件的教学目标过度。

第三环节:进入到第三个教学环节,引导学生类比两个二项式相等的条件,归纳出复数相等的充要条件,即实部与实部相等并且虚部与虚部相等。之后,详细讲解并板书例二,如幻灯片所示,起到教师的典范的作用。

例2:设x,y?R,并且(x?2)?2xi??3y?(y?1)i,求x,y的值.

在观察学生反映,确认学生已经基本理解复数相等的充要条件之后,要求学生独立完成课后练习第二题。经过巡视,挑出学生代表展示其解析过程,表扬书写比较工整的学生,以达到教育全班学生要规范严谨的教学目的。

为了引起学生重视并给学生提供思维能力升华的空间,鼓励学生积极思考例二

例2变式:已知实数x与纯虚数y满足2x?1?2i?y,求x和y.

这个题目要由学生在组内讨论完成,为了保证教学效果,教师积极参与到小组讨论中去,通过交流与观察,由完成较好的小组推举出代表为大家进行讲解,教师及时给予点评。

在完成了新知学习的环节之后,进入到课堂小结。引导学生通读一遍课本的同时回顾本节课的主要内容,由学生自己总结出本节课的主要知识和方法。并在多媒体上演示这些内容。以此达到提高学生归纳总结能力的教学目标。

布置作业时,分两部分:

1、书面作业:课后习题A组第1、2题,书面作业设置的目的,就是通过这些题目的训练,达到促使学生课下复习思考,加深对复数相关概念的理解和应用。

2、知识拓展作业:小组成员交流合作,写一篇与数系扩充和发展有关的小论文;以此促使学生对数学史进行研究,延伸了数学课堂,并达到提高学生语言组织能力、逻辑思考能力的教学目的。

最后一个环节,进行课外引申,激发学生课外学习数学的兴趣。通过提出“数系发展到复数之后还能不能继续扩充?”这样的问题,引发学生思考,并鼓励学生了去解章末阅读材料中“四元数”的.内容,再推荐一本书目《虚数的故事》给兴趣浓厚的学生提供课外拓展数学视野的平台。

在最后,我对本节课的设计进行一下自我反思。

在设计之初,考虑到复数基本概念比较容易掌握,但如果要求学生简单硬性记忆,并不能达到新课程标准中三维目标的要求。所以本节课设计理念就是:把数系扩充过程的详细生动讲解作为一个亮点,以此吸引学生的注意力,提高学生学习兴趣,激发学生思考和创造的精神,并且期望能达到进一步提高学生数学素养的最高目标。

在课堂设计中,采用了教师示范、自学讨论、学生互评等多元化的教学方式,在教学过程中时刻注重学生的参与,每个环节都采用有效的方法来确认教学目标的达成,保证课堂的时效性,圆满完成本节课的教学任务。

我的说课到此结束,希望各位专家和老师给予指导。谢谢!

新概念课件 篇4

一、学习目标与任务

1、学习目标描述

知识目标

(A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。

(B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。

能力目标

(A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。

(B)通过知识的再现培养学生的创新能力和创新意识。

(C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。

德育目标

让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。

2、学习内容与学习任务说明

本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。

学习重点:圆锥曲线的第一定义和统一定义。

学习难点:圆锥曲线第一定义和统一定义的应用。

明确本课的重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。

抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。

充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。

二、学习者特征分析

(说明学生的学习特点、学习习惯、学习交往特点等)

l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。

高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在

l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。

高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。

三、学习环境选择与学习资源设计

1.学习环境选择(打√)

(1)Web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)Internet(√)

(6)其它

2、学习资源类型(打√)

(1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库

(5)案例库(6)题库(7)网络课程(8)其它

3、学习资源内容简要说明

(说明名称、网址、主要内容等)

新概念课件 篇5

一、学习目标:

1、掌握用旋转定义角的概念,理解并掌握正角负角象限角终边相同的角的含义

2、掌握所有与角终边相同的角(包括角)的表示方法

3、体会运动变化观点,深刻理解推广后的角的概念;

二、教学重点、难点

重点:理解并掌握正角负角零角的定义,掌握终边相同的角的表示方法.

难点:终边相同的角的表示.

三、教学方法:

讲授法、讨论法、媒体课件演示

四、内容分析

1、引导学生通过切身感受来认识角的概念推广的必要性。

2、为引入正角与负角的概念做好准备。

新概念产生

1.角的概念的推广

⑴旋转形成角

一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角.旋转开始时的射线OA叫做角的始边,旋转终止的射线OB叫做角的终边,射线的端点O叫做角的顶点.

突出旋转注意:顶点始边终边

⑵.正角与负角0角

我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如OA为始边的角=210,=-150,=660,

特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角.记法:角或可以简记成

⑶意义

用旋转定义角之后,角的范围大大地扩大了

1角有正负之分

2角可以任意大

实例:体操动作:旋转2周(360(2=720()3周(360(3=1080()

3还有零角

角的概念推广以后,它包括任意大小的正角、负角和零角.要注意,正角和负角是表示具有相反意义的旋转量,它的正负规定纯系习惯,就好象与正数、负数的规定一样,零角无正负,就好象数零无正负一样.2.象限角

为了研究方便,我们往往在平面直角坐标系中来讨论角

角的顶点合于坐标原点,角的始边合于轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)

例如:30(、390(、(330(是第Ⅰ象限角,300(、(60(是第Ⅳ象限角,585(、1180(是第Ⅲ象限角,(2000(是第Ⅱ象限角等

提出问题,学生讨论回答:

(1)在坐标系中表示角时,对角的顶点与角的始边有什么要求?

(2)你对角的终边落在坐标轴上,则此角不属于任何一个象限这句话是怎么理解的?

(3)分别举出几个第一、二、三、四象限角的例子。学习新概念与问题讨论相结合,进一步加深学生对于新概念的理解与掌握。新

概念形成

.终边相同的角

⑴观察:390(,(330(角,它们的终边都与30(角的终边相同

⑵探究:终边相同的角都可以表示成一个0(到360(的角与个周角的和:

⑶结论:所有与(终边相同的角连同(在内可以构成一个集合:

即:任何一个与角(终边相同的角,都可以表示成角(与整数个周角的和。

终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360的整数倍引导学生观察分析:

(1)终边相同的角有何特点?(相差整数个周角)。

(2)试表示出与30(终边相同的角。

(3)用集合表示终边相同的角请注意以下问题:

终边相同的角不一定相等,但是相等的一定终边相同,终边相同的角有无数多个,它们相差360(的整数倍。

从观察分析入手,通过具体例子,归纳总结出终边相同的角的表示方法,并初步认识用集合表示终边相同的角需注意的几个问题。

讲解范例

例1在0到360范围内,找出与下列各角终边相同的角,并判断它是哪个象限的角

解:⑴∵-120=-360+240,

240的角与-140的角终边相同,它是第三象限角.

⑵∵640=360+280,

280的角与640的角终边相同,它是第四象限角.

⑶∵-95012=-3360+12948,

12948的角与-95012的角终边相同,它是第三象限角.

例2写出与下列各角终边相同的角的集合S,并把S中在间的角写出来:

解:

(1)

S-360~720间的角是

-1360+60=-280;

0360+60=60;

1360+60=420.

(2)

S中在-360~720间的角是

0360-21=-21;

1360-21=339;

2360-21=699.

(3)

S中在-360~720间的角是

-2360+36314=-35646;

-1360+36314=314;

0360+36314=36314.

1、选例1的第一小题板书来示范解题的步骤,其他例题请几个学生板演,,其他学生在下面自己完成,针对板演同学所出现的步骤上的问题及时给予更正,教师要适时引导学生做好总结归纳。

2、例2可以组织学生讨论,然后让学生回答,互相更正,对出现的错误进行纠正讲解,并要求学生熟练掌握这些常见角的集合的表示方法。

1、例1主要让学生学会如何在0到360范围内,找出与某个角终边相同的角,并判断它是哪个象限的角。

2、例4主要想解决:所有与(终边相同的角连同(在内可以构成一个集合:

即:任何一个与角(终边相同的角,都可以表示成角(与整数个周角的和。在这里:

终边相同的角不一定相等,但是相等的一定终边相同,终边相同的角有无数多个,它们相差360(的整数倍。

课堂练习1.锐角是第几象限的角?第一象限的角是否都是锐角?小于90的角是锐角吗?0~90的角是锐角吗?

(答:锐角是第一象限角;第一象限角不一定是锐角;小于90的角可能是零角或负角,故它不一定是锐角;0~90的角可能是零角,故它也不一定是锐角.)

总结有关角的集合表示.锐角:{|090},

0~90的角:{|090};

小于90角:{|90}.

2.已知角的顶点与坐标系原点重合,始边落在x轴的正半轴上,作出下列各角,并指出它们是哪个象限的角?

(1)420,(2)-75,(3)855,(4)-510.

(答:(1)第一象限角,(2)第四象限角,(3)第二象限角,(4)第三象限角)

课堂练习的目的是对本节课的内容进行综合回顾,教师可以放手让学生自行解决,然后教师加以点拨。

归纳小结

从知识、方法两个方面对本节课的内容进行归纳总结

本节课我们学习了正角、负角和零角的概念,象限角的概念,要注意如果角的终边在坐标轴上,就认为这个角不属于任何象限.本节课重点是学习终边相同的角的表示法.

新概念课件 篇6

摘要:在日常教学中,结合对学生容易发生差错的一些问题的分析,探讨提高物理概念教学效率的策略和方法,以提高课堂教学效率和学生的解决物理问题的能力,从而激发学生学习物理的兴趣,建立起学生学习物理的信心。

物理概念是物理知识的重要组成部分,是学好物理定律、公式和理论的基础。在物理教学中正确建立物理概念是学生学习过程中一个质的飞跃,是物理教学的任务,也是提高物理教学质量的关键。物理概念来源于物理实践、物理事实,它是由实践得来的感性认识而上升成的理论认识,再回到实践中去,用来指导实践,并予以检验和深化。若学生只知道物理事实,而不能上升到物理概念,就不能说学到了物理知识;若学生对物理概念不理解或理解片面,就谈不上对物理概念的认识掌握;若学生对物理概念理解不透、混淆不清,就难以进行判断、推理等抽象活动,更不能正确地应用定理、公式来解决实际问题。

从认识论的角度来看,物理学家探索物理的方法与物理教学的方法基本上是一致的。不过前者是物理学家寻觅直接经验,后者是学生在教材、教师的安排、引导下有目的地学习间接知识。所以物理教学不可能像物理学家创立概念、发现定律那样亲身经历、事事实验。这就是说,一些比较抽象的物理概念的形成,就可能因无法通过实验,而只能采用其它方法。

1、类比方法:如用水流类比电流,用水压类比电压,用电场类比磁场等。

3、演绎推理:如根据磁场对电流的作用力。公式推导出洛仑兹力公式等等。

4、比喻方法:如用地势降落的陡度比喻电势降落的陡度,使“电势降落的陡度”这一概念一目了然。

5、理想化思维:在物理学中,实际研究对象和它所处的环境一般比较复杂,决定的因素和受约束的条件很多,如果不分主次轻重地考虑一切因素和条件,那么必然会使问题复杂化而无法研究。为了方便研究,暂时抛开次要的或非本质的因素,割断事物的某些联系,保留实际对象的某些主要性质和主要条件,加以概括,这种形成概念的方法,就称为理想化思维。物理学中所研究的对象一般都是理想化的物理模型。研究物理学如果不采用适当的物理模型,那么就很难理解物理现象的本质,一个物理模型胜过无数个事实。

学生掌握了物理概念后,在用它解决问题过程中,对概念的理解将会更深刻,内容也会更丰富,且易于巩固。

物理本身就是一门实践性很强的自然学科,物理概念都是从实践中总结出来的,所以只有把物理概念应用于实践,应用于解决实际问题,才能体现出物理概念的`价值与作用,才能提高学生学习物理的兴趣,使物理知识不在抽象、难懂。

根据人的记忆规律,如果把所学的概念纳入一个网络,就不容易遗忘,而且在解决问题时也更容易快速检索出所需的概念。在概念网络中激活任意一个网点,都将引出相关的联想。

概念图是表示概念和概念之间相互关系的空间网络结构图。概念图包括概念、分支和层次、概念间的连接线和连接语、例子等几部分。概念图的制作可以用纸和笔,还可用专门的绘图软件。

虽然概念图的制作没有严格的程序规范,但要制作一个较完整的概念图,一般有以下几个步骤: 选取一个熟悉的知识领域,罗列出尽可能多的概念; 确定关键概念和概念等级; 初步拟定概念图的纵向分层和横向分支; 建立概念之间的连接,并在连线上用连接词标明两者之间的关系。

通过制作概念图可以促使学生积极动手和思考,使他们能够从整体上掌握基本知识结构和各个知识间的关系;通过制作概念图,可促进新旧概念的整合,形成概念网络;随着知识的积累,网络的编织将更加完整。

另外,概念图的形成是学生经历一次头脑风暴的过程。这既是原有思维的呈现,更是创造性思维的激发过程。当用概念图把知识展示出来时,知识结构会变得更加清晰,这时很容易产生新想法。概念图中的交叉连接需要横向思维,是发现和形成概念间新的关系、产生新知识的重要一环。

实践证明,制作概念图是学生乐于接受的一种学习方式,因为它提供了一种有效的思维工具,为学生主动建构概念开启了一扇门。

物理概念按不同的划分标准,可分矢量和标量,状态量和过程量,特性量和属性量等。掌握了概念的种类后,学生对概念就会有更深的理解。概念的种类是概念教学中不可或缺的一步,如果讲得不清、不透彻就会影响学生解决相关物理问题的能力。如讲授加速度概念时,首先让学生知道这是一个人们为了研究运动规律的需要,通过对运动现象的观察、分析、抽象概括出来的概念。再引导学生将加速度和速度两个概念用比较法进行分析。此外,提醒学生要明确加速度跟速度、速度增量的联系与区别:加速度的方向决定于物体所受合力的方向,跟速度增量的方向一致,但不一定跟速度的方向一致;负加速度不一定就是匀减速运动,反之亦然。

综上所述,物理概念教学是物理教学中最重要的环节,只有搞好物理概念教学,才能提高学生学习物理的兴趣,为进一步学习物理规律和定律打下良好的基础。

高一函数课件十三篇


请看下面栏目小编为您整理的“高一函数课件”相关的完整数据,希望本文内容能为您提供宝贵的帮助。老师根据事先准备好的教案课件内容给学生上课,每天老师都需要写自己的教案课件。教案编写是教师进行教学投入的重要支持。

高一函数课件(篇1)

初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0—1800”范围内的,但实际当中也有7200和“—300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,( =6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。

(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。

初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。

其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。

初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。

初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0 (a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。

初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。

高一函数课件(篇2)

一、教学目标

?知识与技能】

理解函数的奇偶性及其几何意义

?过程与方法】

利用指数函数的图像和性质,及单调性来解决问题

?情感态度与价值观】

体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣

二、教学重难点

?重点】

函数的奇偶性及其几何意义

?难点】

判断函数的奇偶性的方法与格式

三、教学过程

(一)导入新课

取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:

1 以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;

问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?

答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;

(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等

(二)新课教学

1.函数的奇偶性定义

像上面实践操作1中的图象关于y轴对称的函数即是偶函数,操作2中的图象关于原点对称的函数即是奇函数

(1)偶函数(even function)

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数

(学生活动):仿照偶函数的定义给出奇函数的定义

(2)奇函数(odd function)

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数

注意:

1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)

2.具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;

奇函数的图象关于原点对称

3.典型例题

(1)判断函数的奇偶性

例1.(教材p36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性(本例由学生讨论,师生共同总结具体方法步骤)

解:(略)

总结:利用定义判断函数奇偶性的格式步骤:

1 首先确定函数的定义域,并判断其定义域是否关于原点对称;

2 确定f(-x)与f(x)的关系;

3 作出相应结论:

若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;

若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数

(三)巩固提高

1.教材p46习题1.3 b组每1题

解:(略)

说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数

2.利用函数的奇偶性补全函数的图象

(教材p41思考题)

规律:

偶函数的图象关于y轴对称;

奇函数的图象关于原点对称

说明:这也可以作为判断函数奇偶性的依据

(四)小结作业

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质

课本p46 习题1.3(a组) 第9、10题, b组第2题

四、板书设计

函数的奇偶性

一、偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数

二、奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数

三、规律:

偶函数的图象关于y轴对称;

奇函数的`图象关于原点对称

高一函数课件(篇3)

函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。

2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系;

3.函数方程思想的几种重要形式

(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。

(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;

(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;

(4)函数f(x)=(1+x)^n(n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;

(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;

(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。

高一函数课件(篇4)

说教学目标

熟练地掌握二次函数的最值及其求法。

说教学重点

二次函数的的最值及其求法。

说教学难点

二次函数的最值及其求法。

说教学过程

一、引入

二次函数的最值:

二、例题分析:

例1:求二次函数的最大值以及取得最大值时的值。

变题1:

变题2:求函数的最大值。

变题3:求函数的最大值。

例2:已知的最大值为3,最小值为2,求的取值范围。

例3:若,是二次方程的两个实数根,求的最小值。

三、随堂练习:

1、若函数在上有最小值,最大值2,若,则=________,=________。

2、已知,是关于的一元二次方程的两实数根,则的最小值是()

A、0 B、1 C、-1 D、2

3、求函数在区间上的最大值。

四、回顾小结

本节课了以下内容:

1、二次函数的的最值及其求法。

课后作业

班级:()班姓名__________

一、基础题:

1、函数

A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2

2、函数的最大值是4,且当=2时,=5,则=______,=_______。

二、提高题:

3、试求关于的函数在上的最大值,高三。

4、已知函数当时,取最大值为2,求实数的值。

5、已知是方程的两实根,求的最大值和最小值。

三、题:

已知函数,其中,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量的值。

高一函数课件(篇5)

高一数学指数函数教案:教学目标

1.使学生掌握指数函数的概念,图象和性质.

(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.

(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.

(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如

的图象.

2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.

高一数学指数函数教案:教学建议

高一数学指数函数教案:教材分析

(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.

(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数

时,函数值变化情况的区分.

(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

高一数学指数函数教案:教法建议

(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是

的样子,不能有一点差异,诸如

,

等都不是指数函数.

(2)对底数

的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

高一函数课件(篇6)

1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。

2、函数定义域的解题思路:

⑴ 若x处于分母位置,则分母x不能为0。

⑵ 偶次方根的被开方数不小于0。

⑶ 对数式的真数必须大于0。

⑷ 指数对数式的底,不得为1,且必须大于0。

⑸ 指数为0时,底数不得为0。

⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

⑺ 实际问题中的函数的定义域还要保证实际问题有意义。

⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。

⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。

⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。

⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。

⑴平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。

6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。

⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。

⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。

⑶ 不要求集合B中的每一个元素在集合A中都有原象。

⑴ 在定义域的不同部分上有不同的解析式表达式。

⑵ 各部分自变量和函数值的取值范围不同。

⑶ 分段函数的定义域是各段定义域的交集,值域是各段值域的并集。

8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。

高一函数课件(篇7)

一、说教材

(一)地位与重要性

函数的最值是《高中数学》一年级第一学期的内容,是函数基本性质的重要部分。在实际问题的解决过程中,建立了变量间的函数关系后,求最值培养了学生运用基础理论研究具体问题的能力,这也是学习数学的目的之一。函数最值的教学在培养学生数形结合、化归的数学思想同时也可以使学生养成严谨思维的学习习惯。函数的思想是一种重要的数学思想,它体现了运动变化和对立统一的观点,本节课对初高中知识的衔接起到了承上启下的作用。函数的最值问题与不等式、方程、参数范围的探求及解析几何等知识综合在一起往往能编拟综合性较强的新型题目,可以综合考查学生应用函数知识分析解决问题的能力,从而成为高考的高档解答题,是高考测试的热点之一。

(二)教学目标

知识与能力目标:掌握求二次函数最值的常用方法——配方法,培养学生数形结合、化归的数学思想和运用基础理论研究解决具体问题的能力。

情感目标:经历和体验数学活动的过程以及数学在现实生活中的作用,激发学生学习数学知识的积极性,树立学好数学的信心。

过程目标:通过课堂学习活动培养学生相互间的合作交流,且在相互交流的过程中养成学生表述、抽象、总结的思维习惯,进而获得成功的体验。

科研目标:在教师指导下学生经历和体验探究过程的方法。

(三)教学重难点

重点:配方法、数形结合求二次函数的最值。

难点:二次函数在闭区间上的最值。

二、说教法与学法

在初中学生已经学习过二次函数的知识,根据本节课的内容和学生的实际水平,本节课主要采用探究式教学法和讲练结合法进行教学。教学过程也是一个学生主动建构的过程,教师不能无视学生已有的经验,企图从外部将新知识强行装入学生的头脑,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”及发现新的知识经验。在本堂课学习中,学生发挥主体作用,主动地思考探究求解最值的最优策略,并归纳出自己的解题方法,将知识主动纳入已建构好的知识体系,真正做到“学会学习”。

三、说教学过程

(一)课题引入

环节

教学过程

设计说明

课题讲解

例:动物园要建造一面靠墙的2间面积相同的长方形熊猫居室,如果可供建造围墙的材料长是30米,那么宽为多少米时才能使所建造的熊猫居室面积最大?熊猫居室的最大面积是多少平方米?

学生通过此例感受到在实际问题中需要解决函数的最值问题,从而引发学习本节内容的兴趣。

教学手段:用PPT展示题目

教师引导学生讨论解答,并个别答疑、点拨,收集学生的解法,挑出若干答案在实物投影仪上进行展示,并进行点评。

学生的解法主要为函数最值法和利用基本不等式求最值,由学生评价两种方法,为闭区间上二次函数的最值教学打下伏笔

教学手段:实物投影仪

(二)新知教学

环节

教学过程

设计说明

课题讲解

一、函数最大值和最小值的概念

通过引例最值的求解,引导学生阐述函数最大值和最小值的概念。

学生口述师板书。

一般地,设函数在处的函数值是.如果对于定义域内任意,不等式都成立,那么叫做函数的最小值,记作;如果对于定义域内任意,不等式都成立,那么叫做函数的最大值记作。

二、例题讲练

例1、求二次函数的最大值或者最小值:

师生共同完成一例,高一学生要养成规范的书写格式和习惯,其余题目请学生板演。

学生根据已有的能力和经验,动手得出答案,教师点评。提醒注意当取何值时,函数取到最值。

培养学生阐述、分析、理解概念的能力,引入最大值概念的过程是遵循由已知去认识未知的认识规律进行设计的,现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。让学生从求实际问题的最大值入手,由熟悉的二次函数图象的顶点所具有的特点出发,得到求二次函数最大值(最小值)的方法。

突出学生的主体地位,发挥教师的主导作用,培养思维的严谨性以及转化能力,通过区间的变化让学生充分感受到二次函数的最值的求解要讨论对称轴与所给区间的关系。

教学方式:讲练结合

例2、在的条件下,求函数的最大值和最小值。

教师引导学生逐步深入思考:

1、定义域与函数最值是什么关系?

2、转化后要研究的函数是什么?

教学方式:学生自主探究

高一函数课件(篇8)

一、方程的根与函数的零点

1、函数零点的概念:对于函数y=f(x),使f(x)=0 的实数x叫做函数的零点。(实质上是函数y=f(x)与x轴交点的横坐标)

2、函数零点的意义:方程f(x)=0 有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点

3、零点定理:函数y=f(x)在区间[a,b]上的图象是连续不断的,并且有f(a)f(b)0,那么函数y=f(x)在区间(a,b)至少有一个零点c,使得f( c)=0,此时c也是方程 f(x)=0 的根。

4、函数零点的求法:求函数y=f(x)的零点:

(1) (代数法)求方程f(x)=0 的实数根;

(2) (几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.

5、二次函数的零点:二次函数f(x)=ax2+bx+c(a≠0).

1)△0,方程f(x)=0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.

2)△=0,方程f(x)=0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△0,方程f(x)=0无实根,二次函数的图象与x轴无交点,二次函数无零点.

二、二分法

1、概念:对于在区间[a,b]上连续不断且f(a)f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的'区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

2、用二分法求方程近似解的步骤:

⑴确定区间[a,b],验证f(a)f(b)0,给定精确度ε;

⑵求区间(a,b)的中点c;

⑶计算f(c),

①若f(c)=0,则c就是函数的零点;

②若f(a)f(c)0,则令b=c(此时零点x0∈(a,c))

③若f(c)f(b)0,则令a=c(此时零点x0∈(c,b))

(4)判断是否达到精确度ε:即若|a-b|ε,则得到零点近似值为a(或b);否则重复⑵~⑷

三、函数的应用:

(1)评价模型: 给定模型利用学过的知识解模型验证是否符合实际情况。

(2)几个增长函数模型:一次函数:y=ax+b(a0)

指数函数:y=ax(a1) 指数型函数: y=kax(k1)

幂函数: y=xn( nN*) 对数函数:y=logax(a1)

二次函数:y=ax2+bx+c(a0)

增长快慢:V(ax)V(xn)V(logax)

解不等式 (1) log2x x2 (2) log2x 2x

(3)分段函数的应用:注意端点不能重复取,求函数值先判断自变量所在的区间。

(4)二次函数模型: y=ax2+bx+c(a≠0) 先求函数的定义域,在求函数的对称轴,看它在不在定义域内,在的话代进求出最值,不在的话,将定义域内离对称轴最近的点代进求最值。

(5)数学建模:

高一函数课件(篇9)

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

AB长x(m)123456789

BC长(m)12

面积y(m2)48

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后意见。形成共识,x的值不可以任意取,有限定范围,其范围是0

高一函数课件(篇10)

同一只封建宗法制度的黑手,伸出了两条绳索,捆住了妇女的脖子,朝着相反的方向紧勒,要把劳动妇女置于死地而后快。祥林嫂当时就处在这种极端悲惨的境地中:

族权迫使她寡而再嫁,夫权又视此为奇耻大辱,使她忍辱含冤,永远生活在耻辱之中。祥林嫂以后的悲剧,都是由此而引起的。

那么,祥林嫂是如何对待新迫害的呢?

3.高潮:

①祥林嫂为什么又一次来到鲁四老爷家?

②有人认为,丧夫失子有偶然性,这种看法对不对?

丧夫失子似乎有偶然性,然而隐藏在偶然性背后的,是那起决定作用的必然性。祥林嫂的丈夫死于旧社会中蔓延着的传染病伤寒,阿毛死于祥林嫂的贫困、劳碌。(若不是忙着打柴摘茶养蚕,能让年仅两三岁的孩子去剥豆吗?)因此,实质上,是罪恶的政权夺走了祥林嫂的丈夫和儿子的生命,使她陷于嫁而再寡的境地。作者开始把批判的笔触由封建夫权、族权扩展到封建政权。

按照封建宗法观念,妇女出嫁从夫,夫死从子,一旦丧夫失子,则连在家庭中生存的权利都被剥夺了。因此,大伯来收屋使祥林嫂走投无路,只好再一次来到鲁家。她到鲁家后,又遭受了更大的打击。

③在鲁四老爷,人们对待祥林嫂这个嫁而再寡的不幸女人态度如何?

A.鲁四老爷的态度:

鲁四老爷站在顽固维护封建宗法制度的立场上,从精神上残酷地虐杀她。他暗暗地告诫四婶的那段话,就是置祥林嫂于死地而又不露一丝血痕的软刀子。(通过四婶先后喊出三句你放着罢,杀人不见血地葬送了祥林嫂的性命。)

B.人们的态度:

人们叫她的声调和先前很不同。

鲁迅用他那犀利的笔锋,从广阔的领域里揭示了封建社会黑暗的程度。

人们对祥林嫂的态度,使她感到痛苦与迷惑。她不时地向人们诉说着自己不幸的遭遇,她的精神却惨遭蹂躏。而柳妈的说鬼又给祥林嫂新的打击。

C.柳妈说鬼:

④祥林嫂是如何对待这如此沉重的打击的?其结果如何?

为了争得做人的权利,为了求得一线生存的希望,她在竭尽全力地反抗着:

她背着沉重的精神包袱,整日劳碌着,以便积够十二元鹰洋,用捐门槛的方法去摆脱人们在阳世、阴世间给她设下的罪名,她忍受着咬啮人心的嘲笑和侮辱,在无边的寂寞和悲哀中,默默干了一年,这是何等坚韧的反抗精神啊!

而反抗的结果,出乎柳妈、祥林嫂的预想,这血淋淋的事实深刻地说明了:祥林嫂是无法赎罪的,祥林嫂陷入了求生不得,欲死不能的境地。

4.结局:

当祥林嫂被折磨得像木偶人,丧失了当牛做马的条件后,鲁四老爷就一脚把她踢出门外,使她终于成了只有那眼珠间或一轮,还可以表示她是一个活物的僵尸。即使这样,她在临死前,还向我提出了三个问题:

A.一个人死了之后,究竟有没有魂灵的?

B.那么,也就有地狱了?

C.那么,死掉的一家的人,都能见面的?

这是对魂灵的有无表示疑惑。

她希望人死后有灵魂,因为她想看见自己的儿子;她害怕人死后有灵魂,因为她害怕在阴间被锯成两半。这种疑惑是她对自己命运的疑惑,但也正是这种疑惑,这种无法解脱的矛盾,使她在临死前受到了极大的精神折磨,最后,悲惨地死去。

从祥林嫂一生的悲惨遭遇中,可以清楚地看到,封建的宗法制度正是用政权、族权、神权、夫权这四条绳索把祥林嫂活活地勒死的。

祥林嫂一生的悲惨遭遇,正是旧中国千百万劳动妇女悲惨遭遇的真实写照。作者正是通过塑造祥林嫂这一典型人物,对吃人的封建制度和封建礼教进行深刻的揭露和有力地抨击的。

小结:

祥林嫂是生活在旧中国的一个被践踏、被愚弄、被迫害、被鄙视的勤劳、善良、质朴、顽强的劳动妇女的典型形象。

总之,祥林嫂的悲剧是一个社会悲剧,造成这一悲剧的根源是封建礼教对中国劳动妇女的摧残和封建思想对当时中国社会的根深蒂固的统治。

第三课时

本课时重点分析鲁四老爷、我和柳妈的形象。

一、检查作业:

二、分析鲁四老爷:

鲁四老爷是当时农村中地主阶级的代表人物,是资产阶级民主革命时期地主阶级知识分子的典型形象。他政治上迂腐、保守,顽固地维护旧有的封建制度,反对一切改革与革命。他思想上反动,尊崇理学和孔孟之道。自觉维护封建制度和封建礼教。他是造成祥林嫂悲剧的一个重要人物。

1.作者是通过什么手法来刻画这个人物的呢?

①间接描写:

通过鲁四老爷的书房陈设的描写,点明了鲁四老爷的身分(地主阶级、封建理学的卫道士),揭露了他的丑恶本质,从而揭示出他成为杀害祥林嫂的刽子手的深刻的阶级根源和思想根源。

②直接描写:

A.行动描写:

这表现在祥林嫂被抢走的两件事上:

当婆婆一边抢人一边来领工钱时,鲁四老爷把祥林嫂一文还没有的工钱全交给了婆婆。

与此相对照的是对被压迫的寡妇祥林嫂的冷酷无情。

祥林嫂曾那样辛勤地为鲁家劳动过,可当她遭到恶运时,鲁家却无动于衷,连祥林嫂走没走、怎么走的,都毫不过问,只是到了正午,四婶肚子饿了,这才想起了祥林嫂淘米时拿走米和淘箩,于是倾巢出动分头寻淘箩;连平时摆派头、端架子的鲁四老爷都踱出门外,直到河边,等看见米和淘箩平平正正的放在岸上,旁边还有一株菜时,这才放心。这场虚惊,入木三分地揭露了:在封建统治者的眼里,一个劳动妇女的命运都不如一个淘箩、一点米、一株菜,鲁四老爷冷酷残忍的嘴脸跃然纸上。

B.语言描写:

在祥林嫂的问题上,鲁四老爷一共开过六次口,说了百十来个字,却就把他反动、顽固、虚伪自私、阴险狠毒的性格特征,把他杀害祥林嫂的罪行,揭露得淋漓尽致。

a.祥林嫂被抢前:

b.祥林嫂被抢时:

c.当他为寻淘箩,踱到河边时:

d.紧接着,午饭之后,卫婆子又来时:

e.对四婶的暗暗告诫:

f.祥林嫂死后:

作为这六次开口背景的是鲁四老爷虚伪寒暄后的大骂其新党,它恰恰深刻地揭示了那六次开口的根源。

三、分析我这一形象:

小说中的我是一个具有进步思想的小资产阶级知识分子的形象。我有反封建的思想倾向,憎恶鲁四老爷,同情祥林嫂。对祥林嫂提出的魂灵的有无的问题,之所以作了含糊的回答,有其善良的一面;同时也反映了我的软弱和无能。

在小说的结构上,我又起着线索的作用。祥林嫂一生的悲惨遭遇都是通过我的所见所闻来展现的。我是事件的见证人。

四、分析柳妈:

问:有人认为柳妈是帮助鲁四老爷杀害祥林嫂的凶手。你是怎样来看待这一问题呢?

明确:柳妈和祥林嫂一样都是旧社会的受害者。虽然她脸上已经打皱,眼睛已经干枯,可是在年节时还要给地主去帮工,可见,她也是一个受压迫的劳动妇女。但是,由于她受封建迷信思想和封建礼教的毒害很深,相信天堂、地狱之类邪说和饿死事小,失节事大的理学信条,所以她对祥林嫂改嫁时头上留下的伤疤,采取奚落的态度。至于她讲阴司故事给祥林嫂听,也完全出于善意,主观愿望还是想为祥林嫂寻求赎罪的办法,救她跳出苦海,并非要置祥林嫂于死地,只是结果适得其反。

她的主观愿望和客观效果的矛盾说明柳妈是以剥削阶级统治人民的思想──封建礼教和封建迷信思想为指导,来寻求解救祥林嫂的药方的,这不但不会产生疗效的效果,反而给自己的姐妹造成了难以支持的精神重压,把祥林嫂推向更恐怖的深渊之中。

高一函数课件(篇11)

教学目的:

1.训练按一定目的从课文中筛选信息的能力。

2.理解辩证立论,重点突出,广征博引,逐层深人的写法。

3.认识治学中占有材料与钻研理论的关系;树立实践第一的辩证唯物主义观点。

教学设想:

1.解读,关键要抓住“虚”与“实”的关系,理清课文的脉络,重点认识围绕基本观点立论辩证,广征博引、层层深人的论述特点,理清文章观点与材料之间的关系,把握课文的重点。

2.安排二课时。

教学过程及步骤:

一、开场白:

1980年10月22日,中国语言学会成立。吕叔湘先了题为《把我国语言科学推向前进》的讲话。全文分“中和外的关系”、“虚和实的关系”、“动和静的关系”、“通和专的关系”四个部分,分别论述了语言研究工作中需要处理好的四对关系。是其中的第二部分。题目是选作教材时编者加的。文章虽然“主要谈汉语研究”,但正如作者所言“在不同程度上也适用于其他方面”,对于一般治学和研究问题,对于中职学生的学习,包括.写作时处理好选材与立意的关系,都具有重要的指导意义。

二、作者简介:

吕叔湘(1904—1998),江苏丹阳人。当代著名语言学家、语文教育家,先后担任中国社会科学院语言研究所研究员、所长,兼任《中国语文》杂志主编,全国文字改革研究会主席,中国语言学会会长,语文出版社社长,并担任全国政协第二、三届委员,全国人大第三、四、五、六届代表,五届常委,法制委员会委员。他于1926年毕业于国立东南大学,曾任过中学教员。1936年留学英国,1938年回国。先后任云南大学文史系副教授、华西协和大学中国文化研究所研究员、金陵大学文化研究所研究员兼中央大学中文系教授、开明书店编辑。建国后任清华大学中文系教授,1952年到中国社会科学院语言研究所工作。他几十年来一直从事语文教学和研究,重点研究汉语语法,对我国语言学的发展作出了重要贡献。主要著作有《中国文法要略》、《语法修辞讲话》、《现代汉语八百词》等。他治学严谨,著述材料丰富,引证充分,阐述详尽,见解精辟。他还写有许多普及性语文读物,通俗实用,生动有趣。

三、分析课文:

全文共11段,可分为三个部分。

第一部分(第1~2段):系全文的总纲,提出论题并表明了观点:理论从事例中来,事例从观察中来、从实验中来。文章首句提出论题,紧接着以两个设问表明了观点。在接下来的阐述中,作者以语言学研究为例说明了理论来自于事例,事例来自于观察和实验的道理。文章的第2段运用古人做学问、国外各种学派林立和“禅宗和尚”的例子阐述对前人的理论也要靠观察来验证的道理。在论述中,作者既承认“前人的理论是我们的财富”,又指出“前人的理论无论多么重要”,都“要用自己的观察来验证”;既肯定了讲“家法”的好处,又指出其缺点,全面辩证,客观公允,令人信服。这一段是对第1段的进一步强调和补充。

第二部分(第3~6段):具体阐述理论和事实的辩证关系并指出了具体的处理方法。第3段从事实对理论的作用角度举出“反切”、“等韵”和“文字学”等理论的形成作为例证,指出事实能够决定理论。第4段从比较理论和事实轻重的角度,运用达尔文物种起源理论的形成和明朝两位理学家的故事作为论据,指出没有事实作基础,理论就靠不住,更加突出了事实对理论的决定性作用。第5段是从理论对事实的作用角度,肯定了理论能引导人去发现事实的作用。运用了门捷列夫元素周期表填写等例子。第6段具体提出处理二者关系的方法,特别强调“不可走极端”。这一部分的论述强调了事实对理论的决定性作用,其目的在于纠正现实中存在的重理论轻事实的认识。可贵的是作者“矫枉”而不“过正”,没有偏执一端,没有抹杀理论在治学中的作用,而是在轻重有别、详略有致、突出重点的同时,兼顾到了事物的各个方面,从而显得全面周到,辩证科学。作者对问题认识的深刻性和完整性由此可见一斑。

第三部分(第7~11段):着重论述观察和实验方面的有关问题。文章联系实际,在分析重理论轻事例的原因、指出其危害的同时,阐述了观察和实验必须具备的精神和态度,强调要亲自去观察、实验,收集事例。第7段对重理论轻事例的错误倾向提出批评,引用了饶裕泰教授的话作为论据,切合实际,富于针对性。第8段运用“有限与无眼”的故事和叶斯丕森的例子阐述观察、实验“不容易”的一个原因,指出观察、实验不能懒惰,必须具备换而不舍的精神。第9段阐述了观察、实验“不容易”的另一个原因,指出观察、实验不能有成见,必须有客观的态度。第10段收束上文,进一步指出不愿观察实验的害处。第11段指出观察、实验必须自己去做,彻底堵住了不愿观察、实验者的退路。这一部分是第二部分论述的具体化和深化。

四、.总结全文:

文章紧紧围绕治学过程中“虚与实”也就是理论和事例的关系问题,运用大量典型、生动的事实和理论材料,进行了全面透彻的论述。明确提出理论从事例中来,事例则从观察和实验中来的观点。文章针对重理论轻事例的现实,在辩证立论、全面论述的基础上,强调突出了观察、实验对理论形成的作用这一重点。全文第一部分提出两者关系的问题,表明观点;第二部分紧紧围绕观点,对两者关系展开论述;第三部分在论述两者关系的基础上,进一步阐述观察和实验的有关问题,从整体到局部,逐步剖析,层层深人,不断具体、深化,具有严密的逻辑性和较强的说服力。

高一函数课件(篇12)

一、教学目标:

知识与技能:理解指数函数的概念,能够判断指数函数。

过程与方法:通过观察,分析、归纳、总结、自主建构指数函数的概念。领会从特殊到一般的数学思想方法,从而培养学生发现、分析、解决问题的能力。

情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教学重点、难点:

教学重点:指数函数的概念,判断指数函数。教学难点:对底数的分类。

三、学情分析:

学生已经学习了函数的知识,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主探究完成本节课的学习。高一学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。

四、教学内容分析:

本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第二章第一节第二课()《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为三节课(探究指数函数的概念,图象及其性质,指数函数及其性质的应用),这是第一节课“探究指数函数的概念”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,主要是让学生学会如何去发现研究心的函数,为后面学习对数函数、幂函数做出铺垫。

五、教学过程:

(一)创设情景

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?

问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的函数关系式?

(二)导入新课

引导学生观察,两个函数中,有什么共同特征?

(三)新课讲授指数函数的定义

(四)巩固与练习例题

(五)课堂小结

(六)布置作业

高一函数课件(篇13)

一、教学类型

新知课

二、教学目标

1、理解指数函数的定义,初步掌握指数函数的定义域,值域及其奇偶性。

2、通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

三、教学重点和难点

重点:理解指数函数的定义,把握图象和性质。

难点:认识底数对函数值影响的认识。

四、教学用具

投影仪

五、教学方法

启发讨论研究式

六、教学过程

1)引入新课

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————指数函数。指数函数(板书)

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系。

1、定义:形如的函数称为指数函数。(板书)

教师在给出定义之后再对定义作几点说明。

2、几点说明(板书)

(1)关于对的规定:

(2)关于指数函数的定义域(板书)

(3)关于是否是指数函数的判断(板书)刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数。学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)可以写成,也是指数图象。最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

3、归纳性质

七、思考问题,设置悬念

八、小结

高一函数课件(锦集十一篇)


作为一名教职工,时常要开展教案准备工作,教案是教学活动的依据,有着重要的地位。写教案需要注意哪些格式呢?以下是小编为大家整理的高一数学教案函数,欢迎大家分享。

高一函数课件 篇1

教学目标:

知识与技能:让学生理解函数的定义,掌握函数的表示方法(解析式、表格、图像),能识别并判断函数关系。

过程与方法:通过实例,引导学生观察、分析、归纳,培养学生从实际问题中抽象出函数关系的能力。

情感、态度与价值观:培养学生的数学逻辑思维能力和抽象思维能力,让学生感受数学在解决实际问题中的应用价值。

教学重点:

函数的定义及其表示方法。

教学难点:

从实际问题中抽象出函数关系。

教学过程:

一、导入新课

通过日常生活中的实例(如购物消费与付款金额的关系,汽车行驶距离与时间的关系等),引导学生思考这些关系的特点,引出函数的概念。

二、新课讲解

函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。

函数的表示方法:

解析式法:如y=x^2,y=2x+1等。

列表法:通过列出x和y的对应值来表示函数关系。

图像法:通过绘制函数的图像来表示函数关系。

函数关系的判断:通过实例,引导学生判断哪些关系可以构成函数,哪些不能,并说明原因。

三、例题讲解

通过解析式法表示函数关系。

通过列表法表示函数关系。

通过图像法表示函数关系。

四、课堂练习

布置一些练习题,让学生独立完成,以巩固所学知识。

五、课堂小结

总结本节课的学习内容,强调函数的`概念及其表示方法的重要性,并提醒学生在实际问题中注意应用函数的思想和方法。

六、作业布置

布置相关练习题,要求学生课后完成,以加深对函数概念的理解和应用。

教学反思:

课后反思本节课的教学效果,思考如何更好地引导学生从实际问题中抽象出函数关系,以及如何提高学生的数学逻辑思维能力和抽象思维能力。同时,也要注意关注学生的学习情况,及时给予指导和帮助,以促进学生的全面发展。

高一函数课件 篇2

[教学重、难点]

认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。

[教学准备]

学生、老师剪下附页2中的图2。

[教学过程]

一、画一画,说一说

1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。

2、教师巡查练习情况。

3、学生展示练习,说一说为什么是锐角、直角、钝角?

二、分一分

1、小组活动;把附页2中的图2中的三角形进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分?

2、汇报:分类的标准和方法。可以按角来分,可以按边来分。

二、按角分类:

1、观察第一类三角形有什么共同的'特点,从而归纳出三个角都是锐角的'三角形是锐角三角形。

2、观察第二类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形

3、观察第三类三角形有什么共同的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。

三、按边分类:

1、观察这类三角形的边有什么共同的特点,引导学生发现每个三角形中都有两条边相等,这样的三角形叫等腰三角形,并介绍各部分的名称。

2、引导学生发现有的三角形三条边都相等,这样的三角形是等边三角形。讨论等边三角形是等腰三角形吗?

四、填一填:

24、25页让学生辨认各种三角形。

五、练一练:

第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能决定是一个锐角三角形,必须三个角都是锐角才是锐角三角形。

第2题:在点子图上画三角形第3题:剪一剪。

六、完成26页实践活动。

高一函数课件 篇3

教材分析:

“指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的.作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用,也为今后研究其他函数提供了方法和模式,为后续的学习奠定基础.指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究.

学情分析:

通过初中阶段的学习和高中对函数、指数的运算等知识的系统学习,学生对函数已经有了一定的认识,学生对用“描点法”描绘出函数图象的方法已基本掌握,已初步了解数形结合的思想.另外,学生对由特殊到一般再到特殊的数学活动过程已有一定的体会.

教学目标:

知识与技能:理解指数函数的概念和意义,能正确作出其图象,掌握指数函数的性质并能自觉、灵活地应用其性质(单调性、中介值)比较大小.

过程与方法:

(1) 体会从特殊到一般再到特殊的研究问题的方法,培养学生观察、归纳、猜想、概括的能力,让学生了解数学来源于生活又在生活中有广泛的应用;理解并掌握探求函数性质的一般方法;

(2) 从数和形两方面理解指数函数的性质,体会数形结合、分类讨论的数学思想方法,提高思维的灵活性,培养学生直观、严谨的思维品质.

情感、态度与价值观:

(1)体验从特殊到一般再到特殊的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题,激发学生自主探究的精神,在探究过程中体验合作学习的乐趣;

(2)让学生在数形结合中感悟数学的统一美、和谐美,进一步培养学生的学习兴趣.

教学重点:指数函数的图象和性质

教学难点:指数函数概念的引入及指数函数性质的应用

教法研究:

本节课准备由实际问题引入指数函数的概念,这样可以让学生知道指数函数的概念来源于客观实际,便于学生接受并有利于培养学生用数学的意识.

利用函数图象来研究函数性质是函数中的一个非常重要的思想,本节课将是利用特殊的指数函数图象归纳总结指数函数的性质,这样便于学生研究其变化规律,理解其性质并掌握一般地探求函数性质的方法 同时运用现代信息技术学习、探索和解决问题,帮助学生理解新知识

本节课使用的教学方法有:直观教学法、启发引导法、发现法

教学过程:

一、问题情境 :

问题1:某种细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,以此类推,一个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式是什么?

问题2:一种放射性物质不断变化为其它物质,每经过一年剩余质量约是原来的 ,设该物质的初始质量为1,经过 年后的剩余质量为 ,你能写出 之间的函数关系式吗?

分析可知,函数的关系式分别是 与

问题3:在问题1和2中,两个函数的自变量都是正整数,但在实际问题中自变量不一定都是正整数,比如在问题2中,我们除了关心1年、2年、3年后该物质的剩余量外,还想知道3个月、一年半后该物质的剩余量,怎么办?

这就需要对函数的定义域进行扩充,结合指数概念的的扩充,我们也可以将函数的定义域扩充至全体实数,这样就得到了一个新的函数——指数函数.

二、数学建构 :

1]定义:

一般地,函数 叫做指数函数,其中 .

问题4:为什么规定 ?

问题5:你能举出指数函数的'例子吗?

阅读材料(“放射性碳法”测定古物的年代):

在动植物体内均含有微量的放射性 ,动植物死亡后,停止了新陈代谢, 不在产生,且原有的 会自动衰变.经过5740年( 的半衰期),它的残余量为原来的一半.经过科学测定,若 的原始含量为1,则经过x年后的残留量为 = .

这种方法经常用来推算古物的年代.

练习1:判断下列函数是否为指数函数.

(1) (2)

(3) (4)

说明:指数函数的解析式y= 中, 的系数是1.

有些函数貌似指数函数,实际上却不是,如y= +k (a>0且a 1,k Z);

有些函数看起来不像指数函数,实际上却是,如y= (a>0,且a 1),因为它可以化为y= ,其中 >0,且 1

2]通过图象探究指数函数的性质及其简单应用:利用几何画板及其他多媒体软件和学生一起完成

问题6:我们研究函数的性质,通常都研究哪些性质?一般如何去研究?

函数的定义域,值域,单调性,奇偶性等;

利用函数图象研究函数的性质

问题7:作函数图象的一般步骤是什么?

列表,描点,作图

探究活动1:用列表描点法作出 , 的图像(借助几何画板演示),观察、比较这两个函数的图像,我们可以得到这两个函数哪些共同的性质?请同学们仔细观察.

引导学生分析图象并总结此时指数函数的性质(底数大于1):

(1)定义域?R

(2)值域?函数的值域为

(3)过哪个定点?恒过 点,即

(4)单调性? 时, 为 上的增函数

(5)何时函数值大于1?小于1? 当 时, ;当 时,

问题8::是否所有的指数函数都是这样的性质?你能找出与刚才的函数性质不一样的指数函数吗?

(引导学生自我分析和反思,培养学生的反思能力和解决问题的能力).

根据学生的发现,再总结当底数小于1时指数函数的相关性质并作比较.

问题9:到现在,你能自制一份表格,比较 及 两种不同情况下 的图象和性质吗?

(学生完成表格的设计,教师适当引导)

高一函数课件 篇4

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1。获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2。提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3。提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5。提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6。具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1。亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2。问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3。科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4。时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1。选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

2。通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3。在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

1、基本情况:12班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。

14班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。

2、两个班均属普高班,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的.要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

高一函数课件 篇5

教材分析:

集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课

教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;

(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体

问题,感受集合语言的意义和作用;

教学重点:集合的基本概念与表示方法;

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:

一、引入课题

军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

二、新课教学

(一)集合的有关概念

1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这

些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简

称集。

3.关于集合的元素的特征

(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样

4.元素与集合的关系;

(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a?A(或a A)

5.常用数集及其记法

非负整数集(或自然数集),记作N

正整数集,记作N_或N+;

整数集,记作Z

有理数集,记作Q

实数集,记作R

(二)集合的表示方法

我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

思考2,引入描述法

说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

强调:描述法表示集合应注意集合的代表元素

{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

三、归纳小结

本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。课题:§1.2集合间的基本关系

教材分析:类比实数的大小关系引入集合的包含与相等关系

了解空集的含义

课型:新授课

教学目的:(1)了解集合之间的包含、相等关系的含义;

(2)理解子集、真子集的概念;

(3)能利用Venn图表达集合间的关系;

(4)了解与空集的含义。

教学重点:子集与空集的概念;用Venn图表达集合间的关系。教学难点:弄清元素与子集、属于与包含之间的区别;

教学过程:

四、引入课题

1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N;(2;(3)-1.5 R

2、类比实数的大小关系,如5;7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣

布课题)

五、新课教学

A={1,2,3},B={1,2,3,4}

集合A是集合B的部分元素构成的.集合,我们说集合B包含集合A;

如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。

记作:A?B(或B?A)

读作:A包含于(is contained in)B,或B包含(contains)A (一)集合与集合之间的“包含”关系;

当集合A不包含于集合B时,记作B

用Venn图表示两个集合间的“包含”关系A?B(或B?A)

(二)集合与集合之间的“相等”关系;

A?B且B?A,则A=B中的元素是一样的,因此A=B

?A?B即A=B?? B?A?

结论:

任何一个集合是它本身的子集

(三)真子集的概念

若集合A?B,存在元素x∈B且x?A,则称集合A是集合B的真子集(proper subset)。

记作:A B(或B A)

读作:A真包含于B(或B真包含A)

(四)空集的概念

(实例引入空集概念)

不含有任何元素的集合称为空集(empty set),记作:?规定:空集是任何集合的子集,是任何非空集合的真子集。

(五)结论:1A?A ○2A?B,且B?C,则A?C ○

(六)例题

(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。

(2)化简集合A={x|x-3>2},B={x|x≥5},并表示A、B的关系;

(七)归纳小结,强化思想

两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;

1已知集合A={x|a取值范围。

2设集合A={○四边形},B={平行四边形},C={矩形},

D={正方形},试用Venn图表示它们之间的关系。

课题:§1.3集合的基本运算

教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课型:新授课

教学重点:集合的交集与并集、补集的概念;

教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;

教学过程:

六、引入课题

我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?

思考(P9思考题),引入并集概念。

七、新课教学

1.并集

一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)

记作:A∪B

Venn图表示:读作:“A并B”即:A∪B={x|x∈A,或x∈B}

高一函数课件 篇6

目标:

1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数 ;

2.让学生了解函数的零点与方程根的联系 ;

3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用 ;

4。培养学生动手操作的'能力 。

二、教学重点、难点

重点:零点的概念及存在性的判定;

难点:零点的确定。

三、复习引入

例1:判断方程 x2-x-6=0 解的存在。

分析:考察函数f(x)= x2-x-6, 其

图像为抛物线容易看出,f(0)=-60,

f(4)0,f(-4)0

由于函数f(x)的图像是连续曲线,因此,

点B (0,-6)与点C(4,6)之间的那部分曲线

必然穿过x轴,即在区间(0,4)内至少有点

X1 使f(X1)=0;同样,在区间(-4,0) 内也至

少有点X2,使得f( X2)=0,而方程至多有两

个解,所以在(-4,0),(0,4)内各有一解

定义:对于函数y=f(x),我们把使f(x)=0的实数 x叫函数y=f(x)的零点

抽象概括

y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。

若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。

f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点

所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点

注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;

2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;

3、我们所研究的大部分函数,其图像都是连续的曲线;

4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/ x,有f(-1)xf(1)0但没有零点。

四、知识应用

例2:已知f(x)=3x-x2 ,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?

解:f(x)=3x-x2的图像是连续曲线, 因为

f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

所以f(-1) f(0) 0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解

练习:求函数f(x)=lnx+2x-6 有没有零点?

例3 判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。

解:考虑函数f(x)=(x-2)(x-5)-1,有

f(5)=(5-2)(5-5)-1=-1

f(2)=(2-2)(2-5)-1=-1

又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在( -,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。

练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。

五、课后作业

p133第2,3题

高一函数课件 篇7

一、本课数学内容的本质、地位、作用分析

普通高中课标教材必修1共安排了三章内容,第一章是《集合与函数的概念》,第二章是《基本初等函数(Ⅰ)》,第三章是《函数的应用》。第三章编排了两块内容,第一部分是函数与方程,第二部分是函数模型及其应用。本节课方程的根与函数的零点,正是在这种建立和运用函数模型的大背景下展开的。本节课的主要教学内容是函数零点的定义和函数零点存在的判定依据,这两者显然是为下节“用二分法求方程近似解”这一“函数的应用”服务的,同时也为后续学习的算法埋下伏笔。由此可见,它起着承上启下的作用,与整章、整册综合成一个整体,学好本节意义重大。

函数在数学中占据着不可替代的核心地位,根本原因之一在于函数与其他知识具有广泛的联系,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机地联系在一起。方程本身就是函数的一部分,用函数的观点来研究方程,就是将局部放入整体中研究,进而对整体和局部都有一个更深层次的理解,并学会用联系的观点解决问题,为后面函数与不等式和数列等其他知识的联系奠定基础。

二、教学目标分析

本节内容包含三大知识点:

1、函数零点的定义;

2、方程的根与函数零点的等价关系;

3、零点存在性定理。

结合本节课引入三大知识点的方法,设定本节课的知识与技能目标如下:

1.结合方程根的几何意义,理解函数零点的定义;

2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.

本节课是学生在学习了函数的性质,具备了初步的数形结合知识的基础上,通过对特殊函数图象的分析进行展开的,是培养学生“化归与转化思想”,“数形结合思想”,“函数与方程思想”的优质载体。

结合本节课教学主线的设计,设定本节课的过程与方法目标如下:

1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;

2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;

3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;

4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力。

由于本节课将以教师引导,学生探究为主体形式,故设定本节课的'情感、态度与价值观目标如下:

1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯。

3.使学生感受学习、探索发现的乐趣与成功感。

三、教学问题诊断

学生具备的认知基础:

1.基本初等函数的图象和性质;

2.一元二次方程的根和相应函数图象与x轴的联系;

3.将数与形相结合转化的意识。

学生欠缺的实际能力:

1.主动应用数形结合思想解决问题的意识还不强;

2.将未知问题已知化,将复杂问题简单化的化归意识淡薄;

3.从直观到抽象的概括总结能力还不够;

4.概念的内涵与外延的探究意识有待提高。

对本节课的教学,教材是利用一组一元二次方程和二次函数的关系来引入函数零点的。这样处理,主要是想让学生在原有二次函数的认知基础上,使其知识得到自然的发生发展。理解了像二次函数这样简单的函数零点,再来理解其他复杂的函数零点就会容易一些。但学生对如何解一元二次方程以及二次函数的图象早就熟练了,这样的引入过程使学生感到平淡,激发不起他们的兴趣,他们对零点的理解也只会浮于表面,也无法使其体会引入函数零点的必要性,理解不了方程根存在的本质原因是零点的存在。

教材是通过由直观到抽象的过程,才得到判断函数y=f(x)在(a,b)内有零点的一种条件的,如果不能有效地对该过程进行引导,容易出现学生被动接受,盲目记忆的结果,而丧失了对学生应用数学思想方法的意识进行培养的机会。

教材中零点存在性定理只表述了存在零点的条件,但对存在零点的个数并未多做说明,这就要求教师对该定理的内涵和外延要有清晰的把握,引导学生探究出只存在一个零点的条件,否则学生对定理的内容很容易心存疑虑。

四、本节课的教法特点以及预期效果分析

本节课教法的几大特点总结如下:

1.以问题为主线贯穿始终;

2.精心设置引导性的语言放手让学生探究;

3.注重在引导学生探究问题解法的过程中渗透数学思想;

4.在探究过程中引入新知识点,在引入新知识点后适时归纳总结,进行探究阶段性成果的应用。

由于所设置的主线问题具有很高的探究价值,所以预期学生热情会很高,积极性调动起来,那整节课才能活起来;

由于为了更好地组织学生探究所设置的引导性语言,重在去挖掘学生内心真实的想法和他们最真实体会到的困难,所以通过学生活动会更多地暴露他们在基础知识掌握方面的缺憾,免不了要随时纠正对过往知识的错误理解;

因为在探究过程中不断渗透数学思想,学生对亲身经历的解题方法就会有更深的体会,主动应用数学思想的意识在上升,对于主线问题也应该可以迎刃而解;

因为在探究过程中引入新知识点,学生对新知识产生的必要性会有更深刻的体会和认识,同时在新知识产生后,又适时地加以应用,学生对新知识的应用能力不断提高。

高一函数课件 篇8

教学目标

1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法。

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。

(2)能从数和形两个角度认识单调性和奇偶性。

(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。

2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想。

3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。

教学建议

一、知识结构

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的'图像。

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识。教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明。

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点。

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来。

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。

函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。

高一函数课件 篇9

教学目标:

知识与技能:理解函数的概念,掌握函数的表示方法,能识别函数关系,理解函数的定义域、值域等基本概念。

过程与方法:通过实例分析,培养学生分析问题、解决问题的能力,提高学生的抽象思维能力和逻辑推理能力。

情感、态度与价值观:培养学生对数学的兴趣和热爱,提高学生的自信心和团结协作精神。

教学重点:

函数的定义及其表示方法,函数的定义域和值域。

教学难点:

函数概念的理解,特别是从实际问题中抽象出函数关系。

教学过程:

一、导入新课

通过日常生活中的实例(如气温随时间的变化、购物金额随商品数量的变化等),引导学生感受变量之间的关系,为引入函数概念做铺垫。

二、新课讲解

函数的概念

通过实例,引导学生理解函数是一个特殊的对应关系,它描述了两个变量之间的'依存关系。给出函数的定义,并解释定义中的各个要素(定义域、值域、对应法则)。

函数的表示方法

介绍函数的三种表示方法:解析法、列表法和图象法。通过具体例子,让学生理解并掌握每种表示方法的特点和应用场景。

函数的定义域和值域

结合实例,讲解函数的定义域和值域的概念。引导学生通过解析式或图象确定函数的定义域和值域。

三、巩固练习

给出一些实际问题的情境,让学生尝试抽象出函数关系,并确定函数的定义域和值域。

给出一些函数的解析式或图象,让学生判断其是否为函数,并说明理由。

四、课堂小结

总结本节课的主要内容,强调函数概念的重要性,并布置课后作业。

五、课后作业

完成课本上的相关习题,巩固本节课所学内容。

收集一些生活中的例子,尝试用函数来描述其中的变量关系。

教学反思:

本节课通过实例引入函数概念,使抽象的概念具体化,有助于学生的理解。在巩固练习环节,通过实际问题的解决,培养了学生的应用能力和解决问题的能力。但部分学生在理解函数概念时仍存在困难,需要在后续教学中加强引导和练习。同时,也要注意培养学生的抽象思维能力和逻辑推理能力,为后续的数学学习打下基础。

高一函数课件 篇10

教学目标:

掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培养学生的创新意识.

教学重点:

二倍角公式的推导及简单应用.

教学难点:

理解倍角公式,用单角的三角函数表示二倍角的三角函数.

教学过程:

Ⅰ.课题导入

前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.

先回忆和角公式

sin(α+β)=sinαcosβ+cosαsinβ

当α=β时,sin(α+β)=sin2α=2sinαcosα

即:sin2α=2sinαcosα(S2α)

cos(α+β)=cosαcosβ-sinαsinβ

当α=β时cos(α+β)=cos2α=cos2α-sin2α

即:cos2α=cos2α-sin2α(C2α)

tan(α+β)=tanα+tanβ1-tanαtanβ

当α=β时,tan2α=2tanα1-tan2α

Ⅱ.讲授新课

同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α

同学们是否也考虑到了呢?

另外运用这些公式要注意如下几点:

(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)时才成立,否则不成立(因为当α=π2 +kπ,k∈Z时,tanα的值不存在;当α=π4 +kπ2 ,k∈Z时tan2α的值不存在).

当α=π2 +kπ(k∈Z)时,虽然tanα的`值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:

即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0

(2)在一般情况下,sin2α≠2sinα

例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情况下,才有可能成立[当且仅当α=kπ(k∈Z)时,sin2α=2sinα=0成立].

同样在一般情况下cos2α≠2cosαtan2α≠2tanα

(3)倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于诸如将4α作为2α的2倍,将α作为 α2 的2倍,将 α2 作为 α4 的2倍,将3α作为 3α2 的2倍等等.

高一函数课件 篇11

一、说课内容:

苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题

二、教材分析:

1、教材的地位和作用

这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:

(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.

(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.

3、教学重点:对二次函数概念的理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法设计:

1、从创设情境入手,通过知识再现,孕伏教学过程

2、从学生活动出发,通过以旧引新,顺势教学过程

3、利用探索、研究手段,通过思维深入,领悟教学过程

四、教学过程:

(一)复习提问

1.什么叫函数?我们之前学过了那些函数?

(一次函数,正比例函数,反比例函数)

2.它们的形式是怎样的?

(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)

3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.

(二)引入新课

函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

例1、(1)圆的半径是r(cm)时,面积s (cm)与半径之间的关系是什么?

解:s=πr(r>0)

例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?

解: y=x(20/2-x)=x(10-x)=-x+10x (0

例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

解: y=100(1+x)

=100(x+2x+1)

= 100x+200x+100(0

教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?

【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

(三)讲解新课

以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

巩固对二次函数概念的理解:

1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

3、为什么二次函数定义中要求a≠0 ?

(若a=0,ax2+bx+c就不是关于x的二次多项式了)

4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

5、b和c是否可以为零?

由例1可知,b和c均可为零.

若b=0,则y=ax2+c;

若c=0,则y=ax2+bx;

若b=c=0,则y=ax2.

注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.

【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

(1)y=3(x-1)+1 (2)

(3)s=3-2t (4)y=(x+3)- x

(5) s=10πr (6) y=2+2x

(8)y=x4+2x2+1(可指出y是关于x2的二次函数)

【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

(四)巩固练习

1.已知一个直角三角形的两条直角边长的和是10cm。

(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关

于x的函数关系式。

【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。

(1)分别写出S与x,V与x之间的函数关系式子;

(2)这两个函数中,那个是x的二次函数?

【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

(1)分别写出C关于r;V关于r的函数关系式;

(2)两个函数中,都是二次函数吗?

【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.

【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。

(五)拓展延伸

1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式.

【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

2.确定下列函数中k的值

(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的.值一定是______

(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

(六) 小结思考:

本节课你有哪些收获?还有什么不清楚的地方?

【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

(七) 作业布置:

必做题:

1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

选做题:

1.已知函数 是二次函数,求m的值。

2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

五、教学设计思考

以实现教学目标为前提

以现代教育理论为依据

以现代信息技术为手段

贯穿一个原则——以学生为主体的原则

突出一个特色——充分鼓励表扬的特色

渗透一个意识——应用数学的意识

新概念2课件5篇


教案课件在老师少不了一项工作事项,写好教案课件是每位老师必须具备的基本功。 教学过程中学生的表现同样重要,什么样的教学课件才是好的?这是幼儿教师教育网小编为你整理的“新概念2课件”类内容希望对你有所帮助,希望这些建议能够帮助你提高个人表现!

新概念2课件(篇1)

新概念英语课件是一种新型的学习工具,它为学习者提供了更加生动、具体且详细的学习材料。每篇课件都有超过1000字的内容,让学习者能够更深入地理解英语知识。


课件一般包括课文、语法解析、词汇讲解以及练习题。课文部分是课件的核心内容,其中的文章生动有趣,语言简洁明了。这样能够引起学习者的兴趣,提高他们的学习动力。语法解析部分详细讲解了课文中所涉及到的语法知识,通过对语法的深入解析,让学习者更好地掌握英语的语法规则。词汇讲解部分则对课文中的生词和难词进行解释和讲解,帮助学习者扩大词汇量,提高词汇应用能力。


除了以上内容外,课件还提供了丰富的练习题目。练习题目既包括对课文的理解和运用,也有对语法和词汇的巩固练习。这些练习题目可以帮助学习者检验自己的学习效果,发现自己的不足之处,并及时进行纠正。同时,通过反复练习,学习者可以加深对知识点的理解和运用,提高语言能力。


新概念英语课件的特点在于它的互动性和多媒体性。学习者可以通过点击屏幕或者键盘来进行操作,参与到课堂中来。同时,课件中融入了多媒体元素,例如音频和视频,使得学习过程更加丰富多样。学习者可以通过听力练习来提高听力技能,通过观看视频来了解英语国家的文化和风俗习惯。这样的学习方式既增强了学习者的学习兴趣,也提高了学习效果。


新概念英语课件的课程设置也非常科学合理。课程内容按照语言难度逐渐增加,从简单到复杂,融入了大量的实例和案例,帮助学习者更好地理解和应用所学知识。同时,课程也充分考虑了学习者的需求和兴趣,注重培养学习者的学习能力和语言运用能力。


新概念英语课件是一种高效、灵活、多样化的学习工具。它以其生动详细的内容、丰富多样的练习题目和互动性的学习方式,为学习者提供了一个良好的学习平台。在新概念英语课件的辅助下,学习者能够更深入地理解英语知识,提高自己的语言能力。

新概念2课件(篇2)

第二教时教材:

1、复习

2、《课课练》及《教学与测试》中的有关内容目的: 复习集合的概念;巩固已经学过的内容,并加深对集合的理解。

过程:

一、 复习:(结合提问)

1.集合的概念 含集合三要素

2.集合的表示、符号、常用数集、列举法、描述法

3.集合的分类:有限集、无限集、空集、单元集、二元集

4.关于“属于”的概念

二、 例一 用适当的方法表示下列集合:

1.平方后仍等于原数的数集解:{x|x2=x}={0,1}

2.比2大3的数的集合解:{x|x=2+3}={5}

3.不等式x2-x-6

4.过原点的直线的集合解:{(x,y)|y=kx}

5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,3)}

6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}

三、 处理苏大《教学与测试》第一课 含思考题、备用题

四、 处理《课课练》

五、 作业 《教学与测试》 第一课 练习题

新概念2课件(篇3)

摘要:通过创设实例情境,引发学生学习兴趣;通过反例教学,加深学生对概念的理解;运用启发式教学,通过类比和化归,建立导数与微分之间的关系;通过精讲多练,巩固学生所学知识。

关键词:微分;概念;教学

微分概念是教学的重点,更是难点。

以前在教学中,这一块知识的传授一直是令人头疼的地方,感觉已经尽了很大的努力,学生还是不能理解,即使表面会了,可以到应用还是不行,而且所学知识很快又忘了。

这说明他们最开始还是没掌握好,没理解透,概念没有真正建立起来。

笔者重新对微分概念进行了教学设计后,取得了较好的效果。

1新课引入

一般的课堂导入是这样的:在理论研究和实际应用中,常常会遇到这样的问题:当自变量x有微小变化时,求函数y=f(x)的微小改变量Δy=f(x+Δx)-f(x)。

这个问题初看起来似乎只要做减法运算就可以了。

然而,对于较复杂的函数f(x),差值f(x+Δx)-f(x)却是一个更复杂的表达式,不易求出其值。

一个想法是:设法将Δy表示成Δx的线性函数,即线性化,从而把复杂问题化为简单问题。

可是这种导入,学生往往不感兴趣,难以进入状态。

既然微分是实现增量线性化的一种数学模型,即微分函数的实质:局部像条直线。

那么怎么让学生直观地感受到这一点呢?

我先是提问学生:地球是什么形状的?学生都感到好笑:地球当然是圆的。

这时我又提出个问题:那么古时候的人们为什么以为地球是个大平面?学生七嘴八舌地说:那时科学不发达,在他们眼睛看到的范围内,地球看起来就是个大平面。

这时候我觉得时机到了,就跟学生说,其实曲线的增量很小(或相对很小时),例如在人眼所能看到的范围内,这个距离增量相对于地球而言是非常小的,此时曲线可以近似的看作切线,这就是微分的几何本质,所以古时候的人们单凭自己的肉眼就犯了错误。

通过实例来引入课题,为概念学习创设情境,拉近数学与现实的距离,加强学生的感性认识,提高学生的学习兴趣。

2新课讲授

2.1微分的定义

(1)概念引入。

在这部分教学中,适当地寻找或者构造一些反例,能更好地理解概念本身的内涵和外延。

可以举一个微分不存在的例子加深学生对定义的理解。

2.2函数可微的条件

微分定义较为抽象,为了深刻理解其含义,我提出几个问题让学生思考并回答:(1)什么样的函数是可微的?(2)什么是函数的微分?(3)A和什么有关呢?

让学生观察引例,学生很快就发现了“秘密”:A=f′(x0)。

这时,要适时地将导数与微分概念联系起来对比和分析:(1)若函数可微,那么函数是否可导?(2)若函数可导,那么函数是否可微?通过这两个问题的解答结果,从而得到函数可微的充分必要条件以及函数的微分公式。

进而得到微分公式:dy=f′(x)dx,上式变形为dydx=f′(x)。

即函数的导数等于函数的微分与自变量的微分的商,因此,导数又称为“微商”。

在这部分教学中,把导数作为“微商”重新理解了一下复合函数求导的链式法则和反函数求导法则。

为了加深学生印象,我讲了一个笑话:说有一个学生抄袭别人的作业,但后来却自以为聪明地把dydx中的d约掉了。

2.3微分的几何意义

以前的这块教学中,我只是简单地介绍dy所在位置和大小,而没有从图形和数值上突出局部线性化含义。

现在借助多媒体进行图形演示,用flash把图像放大,通过不断的移动x的位置,让学生观察曲线和切线关系。

学生通过自己的观察得出:x离x0的距离越小,曲线越可近似地看作一条直线,同时也解决了我们在引入新课时所提出的问题。

2.4基本初等函数的微分公式与微分运算法则

牢牢抓住微分和导数关系dy=f′(x)dx,进行对比教学即可。

2.5微分形式不变性

无论u是自变量还是复合函数的中间变量,函数y=f(u)的微分形式总是可以按微分定义的形式来写,即有dy=f′(u)du这一性质称为微分形式的不变性。

利用这一特性,可以简化微分的有关运算。

但微分形式不变性是教学的难点,教师可以总结一句话让学生牢记:“函数对哪个变量求导就乘以哪个变量的微分”。

2.6利用微分进行近似计算

利用微分作近似计算,有利于培养学生灵活运用微积分知识的基础内容,也使部分达不到较高教学要求的、数学基础较弱的学生,对基础性内容有所了解,不至于什么都学不到。

3例题选讲

3.1微分的定义内容选讲了两道例题

例1. 求函数y=x2当x由1改变到1.01的微分。

例2. 求函数y=x3在x=2处的微分。

3.2基本初等函数的微分公式与微分运算法则的应用内容选讲了两道例题

例3. 求函数y=x3e2x的微分。

例4. 求函数y=sinxx的微分。

3.3微分形式的不变性内容选讲了二道例题

例5. 在d=cosωtdt;的括号中填入适当的函数,使等式成立。

3.4微分近似计算和线性化内容选讲了三道例题

例6. 求f(x)=1+x在x=0与x=3处的线性化。

注:通过这道题使学生进一步明确不同点的近似直线不同。

例7. 半径10厘米的金属圆片加热后,半径伸长了005厘米,问面积近似增大了多少?

例8. 计算e-0.03的近似值。

有些例题由学生独立完成后,再由教师做点评。

例题设置由易到难,具有层次性,便于学生解题能力的提升。

通过例题可以检测学生对知识的掌握情况,找到差距,更进一步巩固和深化新知,让学生知道数学重在应用,培养学生运用所学知识解决问题的能力,有利于学生养成良好的思考习惯。

4归纳总结、分层作业

引导学生回顾本节课学到概念、方法、定理和公式,锻炼学生的归纳概括能力,有利于学生理清思路,从整体上把握内容,抓住要点。

布置的作业分巩固题、思考题和提高题三种类型,以适用不同层次学生的`需要,从而分类推进,促进学生的共同发展,同时也要考虑到为学习下节课的内容做好铺垫。

参考文献

[1]吴赣昌.微积分[M].北京:中国人民大学出版社,.

[2]李令斗,高等数学中微分概念的说课[J].教育教学论坛,,(07).

偏微分方程课堂实践教学应用【2】

摘要:加强理论与实践的融合,特别是在偏微分方程数值解课程教学中,通过引入实践教学,突出高等数学的应用性,使之能够与具体的学科生产实际相联系,既有助于提升学生对偏微分方程的理解,还能够从科研、工程应用前沿中来增强学习兴趣,提升高等数学在实践生活中的应用能力。

关键词:偏微分方程;实践性教学;应用探讨

数学知识是丰富的、数学思想是多彩的,数学中蕴含着丰富的数学思想方法,数学思想方法是联系知识与能力的纽带,是数学解题的指导思想。

而对于数学概念的实践性教学,将数学知识与现实世界建立关联,是推进大学生数学应用实践的有效途径。

数学作为自然科学,其理论的产生是基于数学自身理论系统的发展。

如数学建模思想的应用实践,将数学理论知识与具体的行业科学建立紧密联系,突出数学建模在学科专业性和应用广泛性中的作用,以解决现实问题。

偏微分方程是高等数学中的重要内容,在课程教学中具有较强的实际应用前景。

现代自然科学领域中的很多工程实践问题,其解决方法都由数学建模来进行描述,而偏微分方程的求解方法则具有广泛的应用。

本文则是通过对偏微分方程的一些阐述来讲解偏微分方程在课堂实践中的教学应用.

一、高等数学实践性教学的现状

强调理论与实践的渗透一直是高等数学课堂实践性教学的主要方向,由于教学环境的局限,对于课程实践性内容的梳理多存在制约,尤其是理论讲解过多,而实践教学相对不足,导致学生对高等数学的论证感到繁琐而枯燥。

偏微分方程数值解由于涉及较多的公式推导,学生学习积极性不够,而对于理工类学科专业,偏微分方程在实践应用中具有普遍性。

因此,要从实践性教学环节入手,积极探索该课程与生产实践的关联度,加强对偏微分方程与实际应用的衔接,特别是实验教学环节的明确,要从学科前沿发展上,融入实际案例和问题,增强学生的学习兴趣,引导学生从数学推导中提升计算能力,增强科学思维能力,解决实际问题能力。

二、实践性教学的必要性研究

从国家对高等教育改革工作的发展纲要来看,坚持教育与现代社会生产的联系,特别是从人才培养模式上,着力从教学方法上来深化改革,强调知行合一,因地制宜的调整和优化课程实践教学环节,突出学科理论学习与实践课程的融合,增强学生的实践技能。

理工类专业群在高等数学教学目标上,要结合自身专业设置实际,从数学基础知识与学科专业方向上,既要关注数学基础知识的讲授,还要从学生数学思维、计算思维、计算方法等方面,强调数学知识与工程应用的联系,特别是实践性教学环节,要注重对各种数值方法的求解,训练学生能够从具体方法求解中来培养动手能力。

偏微分方程具有较强的理论性,对于理论知识的讲授,特别是稳定性分析、收敛性分析、误差估值分析等,涉及较多的公式推导,学生学习积极性差,通过对实践性教学环节的设置,使之具有形象性、直观性和动态性,提升学生解决数学实际问题的能力。

三、偏微分方程与实践性教学的应用探讨

1.注重偏微分方程与实际应用的衔接

从课程内容来看,偏微分方程在与生产实践联系上具有广泛性,但对于具体的数值求解方法来说,因介绍较少,而学生对知识背景认知不够。

如对于线性常系数偏微分方程,在探讨其稳定性方面,由于,利用差商法来替换微商法,其中心格式的稳定性仍然不够。

但可以将之改写为中心差分格式,由此来得到Lax-Friedrichs稳定性数值方程;从中可知,利用,可以实现偏微分方程的数值求解稳定性,同时对于双曲型方程也具有较高的计算准确性,便于将偏微分方程数学理论与生产实践相联系。

同样道理,在共轭方程求解中,对于,在实际生产中应用较广,作为二阶共轭方程,将表示为温度函数,表示为热传导系数,可以对热传导方程进行改写。

从上述推导变换中,尽管数学公式本身没有变化,但与物理问题相融合后,其意义更加广泛。

我们知道,从热传导过程来看,对于传导系数来说本身具有连续性,利用函数来表示更加准确,从热传导守恒性来看,以离散值求解方法来计算结果,与实际问题存在不符,但通过进行离散处理,可以获得。

从中可知,学生在认识偏微分方程的求解疑难时,借助于对实际生产的背景介绍,从中来理解数学理论知识在实践中的应用,增强学生的学习热情,也提升了学生运用数学方法解决实际问题的能力。

2.强调实验教学的课时比重

在高等数学学习中,由于计算机的应用,可以利用偏微分方程来构建数学模型,增强偏微分方程在生产实践中的应用。

从数学理论来看,偏微分方程本身实践性强,而在实验课程教学中的课时比例相对不足,特别是学生上机学习较少,影响学生对偏微分方程数值求解方法的掌握。

以信息技术专业为例,在偏微分方程数值计算训练上,可以从Fortran95数值教学平台上来开放应用程序,结合不同的边界条件和初值,让学生从具体算法上来进行上机调试,分析存在的问题,并从实验报告分析中来强调知识的实践性。

借助于数学软件教学,其目标在于:一是提升数学理论知识的可视性,特别是对于偏微分方程自身公式的推导来说,因繁琐而影响学生的学习热情,而直观的数值计算软件的应用,提升计算结果的直观性。

新概念2课件(篇4)

大家好!我是焦作一中的郜珂。今天,有幸借此平台与大家交流,希望各位专家和老师指导我的说课。我说课的题目是《复数的有关概念》,我将从教材分析、学情分析、教学目标、教学过程、自我反思五个部分作具体的阐述。

首先是教材分析,《复数的有关概念》是北师大版新课程标准实验教科书选修系列2的模块2中第五章第一节的内容,这节课的主要内容是数系的扩充与复数的引入、以及复数的有关概念。数系扩充的过程体现了数学的发现和创造的过程,同时也体现了数学发生发展的客观需求和背景。

复数的引入是中学阶段数系的又一次扩充。对于高中生来说,学习一些复数的基础知识是十分必要的,这可以促使学生对数的概念有一个初步的较为完整的认识,也给他们运用数学知识解决问题增添了新的工具,同是还为进一步学习高等数学打下一定的基础。

在实际生活中,复数在电力学、热力学、流体力学、固体力学、系统分析、信息分析等方面都得到了广泛的运用,是现代人才必备的基础知识之一。

与本节教材相关的学生情况有如下几个特征:(1)我们的学生在从小学到高中的学习中已经掌握了整数、分数、正数、负数、有理数、无理数、实数这些概念,也掌握了相应的运算法则和运算律;(2)同时又从政治和历史课中了解到一些与数系扩充的有关的重要历史事件;(3)但是学生们对数的分类的掌握,主要依靠的是简单记忆,当然对数系的扩充过程以及与人类发展史的必然联系不甚了解。

鉴于以上对教材和学情的分析,确定本节课的教学目标如下:

1、知识目标:了解数系扩充的过程,理解复数的基本概念,掌握复数相等的充要条件

2、能力目标:通过对新概念的学习提高学生的认知能力,在复数相等充要条件的研究过程中提高学生类比思考的能力;

3、情感目标:提高学生学习数学的兴趣;拓展数学视野,使学生逐步认识到数学的科学价值、应用价值和文化价值。

为了达成以上教学目标,我将本节课设计成以下五个环节:

首先是设置情境,演示数系扩充的过程;然后引入虚数,讲解复数的基本概念;接下来通过类比学习,掌握复数相等的充要条件;完成了以上新概念的学习环节之后,利用课堂小结巩固本节课主要内容。最后进行课外引申,激发学生课外学习兴趣。

第一环节中,首先让学生回忆从小学到高中认识数的过程,然后结合人类发展史,通过幻灯片展示,用通俗易懂的语言向学生演示数系发展的过程。展示过程如下:

从远古围猎时期人类常用的“结绳”和“堆石”记数方法中,逐步产生了自然数的概念;在分配劳动成果的过程中,产生了“正分数”的概念;随着人类商品交换时代的来临,为了表示相反意义的量,又引入了“负数”的概念;至此人们认为所有的数都可以用两个互质整数的比值来表示;然而,随着人类种植活动的兴盛,在丈量土地、计算长度、计算产量过程中产生了经验几何学,其中在勾股弦定理使用中发现:在求两直角边长度都是“1”的直角三角形斜边的时候,其斜

边长度不能用任何有理数来表示,于是引入了无理数,把数系扩充为实数。

在此,提出问题:数系发展的动力和原因是什么?由学生体会并回答。

这个过程中通过兴趣学习,让学生了解数系扩充的过程,让学生亲自体会到“数的产生和发展,是人类生产和生活的需要”。之后,我还会指出数系的每一次扩充也是数学自身发展和完善的需要,并以解方程为例进行说明。为了使方程理论更加完整数系一步步扩充到了实数。

通过第一环节的学习,学生已经了解了由自然数到实数的数系扩充过程。但是人们发现在实数范围内仍然无法完全解决代数方程根的问题,例如在解方程x?1?0时候,用任何实数都无法表达其方程的根,这就必须引入新的“数” 。2

这时,要鼓励学生积极思考和尝试创造,并肯定学生的思维结果。由此自然地引入“虚数单位i”,规定i2??1;接着要求学生尝试求解方程x2??4和x2?2x?5?0的根,让学生逐步发现复数的代数表示形式Z?a?bi。指出这些原来在实数范围内无解的方程,现在可以借助虚数单位表示出根来,这些根都是虚数,与之对应,之前我们认识的数都是实数,实数和虚数统称为复数。接下来,提出问题“形如Z?a?bi的数是否一定是虚数?”

在学生思考和讨论之后,总结结论并讲解实部虚部的概念,通过对实部虚部取值情况的分析,帮助学生掌握复数集的分类:当虚部b=0时复数Z?a?bi表示的是实数,当虚部b≠0时复数Z?a?bi表示的是虚数,特别的当b≠0且a=0时复数Z?a?bi可写成Z?bi,这样的数是纯虚数。至此完成了“引导学生从实数系到复数系扩充”的教学任务。结合学生认识数的过程,引导学生发现“每个人认识数字的历程都和人类发展史中数系扩充的过程是一致的”,让学生体会到数学体系、数学思维的发展会促进人类全面素质的提高,从而激发学生学习数学的兴趣和热情。

为了巩固学生对复数概念的理解,与学生一起分析例一,边启发边讲解,注重实部虚部概念的表述,强调复数a?bi的实部是a,虚部是b,不是bi。之后要求学生思考课后练习第一题,以此加强对复数概念和复数集分类的掌握。最后通过提问的方式确认学生已经达到本环节教学目标的要求。为了提高学生思维能力并加强学生对复数概念的理解,引导学生完成例一变式:

例1变式:当m为何实数时,复数z?m2?m?2?(m2?1)i是

在第四问中,通过复数Z等于0的题目设置引导学生向复数相等充要条件的教学目标过度。

第三环节:进入到第三个教学环节,引导学生类比两个二项式相等的条件,归纳出复数相等的充要条件,即实部与实部相等并且虚部与虚部相等。之后,详细讲解并板书例二,如幻灯片所示,起到教师的典范的作用。

例2:设x,y?R,并且(x?2)?2xi??3y?(y?1)i,求x,y的值.

在观察学生反映,确认学生已经基本理解复数相等的充要条件之后,要求学生独立完成课后练习第二题。经过巡视,挑出学生代表展示其解析过程,表扬书写比较工整的学生,以达到教育全班学生要规范严谨的教学目的。

为了引起学生重视并给学生提供思维能力升华的空间,鼓励学生积极思考例二

例2变式:已知实数x与纯虚数y满足2x?1?2i?y,求x和y.

这个题目要由学生在组内讨论完成,为了保证教学效果,教师积极参与到小组讨论中去,通过交流与观察,由完成较好的小组推举出代表为大家进行讲解,教师及时给予点评。

在完成了新知学习的环节之后,进入到课堂小结。引导学生通读一遍课本的同时回顾本节课的主要内容,由学生自己总结出本节课的主要知识和方法。并在多媒体上演示这些内容。以此达到提高学生归纳总结能力的教学目标。

布置作业时,分两部分:

1、书面作业:课后习题A组第1、2题,书面作业设置的目的,就是通过这些题目的训练,达到促使学生课下复习思考,加深对复数相关概念的理解和应用。

2、知识拓展作业:小组成员交流合作,写一篇与数系扩充和发展有关的小论文;以此促使学生对数学史进行研究,延伸了数学课堂,并达到提高学生语言组织能力、逻辑思考能力的教学目的。

最后一个环节,进行课外引申,激发学生课外学习数学的兴趣。通过提出“数系发展到复数之后还能不能继续扩充?”这样的问题,引发学生思考,并鼓励学生了去解章末阅读材料中“四元数”的.内容,再推荐一本书目《虚数的故事》给兴趣浓厚的学生提供课外拓展数学视野的平台。

在最后,我对本节课的设计进行一下自我反思。

在设计之初,考虑到复数基本概念比较容易掌握,但如果要求学生简单硬性记忆,并不能达到新课程标准中三维目标的要求。所以本节课设计理念就是:把数系扩充过程的详细生动讲解作为一个亮点,以此吸引学生的注意力,提高学生学习兴趣,激发学生思考和创造的精神,并且期望能达到进一步提高学生数学素养的最高目标。

在课堂设计中,采用了教师示范、自学讨论、学生互评等多元化的教学方式,在教学过程中时刻注重学生的参与,每个环节都采用有效的方法来确认教学目标的达成,保证课堂的时效性,圆满完成本节课的教学任务。

我的说课到此结束,希望各位专家和老师给予指导。谢谢!

新概念2课件(篇5)

1、算法概念:

在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.

2. 算法的特点:

(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.

(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.

(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.

(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.

1、程序框图基本概念:

(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

起止框 表示一个算法的起始和结束,是任何流程图不可少的。

输入、输出框 表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。

处理框 赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。

判断框 判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时明“否”或“N”。

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:

1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

5、在图形符号内描述的语言要非常简练清楚。

1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。

2、条件结构:

条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。

3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:

(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。

(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。

注意:1循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许“死循环”。2在循环结构中都有一个计数变量和累加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次。

(2)输入语句的作用是实现算法的输入信息功能;(3)“提示内容”提示用户输入什么样的信息,变量是指程序在运行时其值是可以变化的量;(4)输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式;(5)提示内容与变量之间用分号“;”隔开,若输入多个变量,变量与变量之间用逗号“,”隔开。

(2)输出语句的作用是实现算法的输出结果功能;(3)“提示内容”提示用户输入什么样的信息,表达式是指程序要输出的数据;(4)输出语句可以输出常量、变量或表达式的值以及字符。

(2)赋值语句的作用是将表达式所代表的值赋给变量;

(3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的。赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;

(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以多次赋值。

注意:①赋值号左边只能是变量名字,而不能是表达式。如:2=X是错误的。②赋值号左右不能对换。如“A=B”“B=A”的含义运行结果是不同的。③不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)④赋值号“=”与数学中的等号意义不同。

1、条件语句的一般格式有两种:(1)IF—THEN—ELSE语句;(2)IF—THEN语句。2、IF—THEN—ELSE语句

循环结构是由循环语句来实现的。对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(UNTIL型)两种语句结构。即WHILE语句和UNTIL语句。

当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句。因此,当型循环有时也称为“前测试型”循环。

直到型循环又称为“后测试型”循环,从UNTIL型循环结构分析,计算机执行该语句时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL语句后执行其他语句,是先执行循环体后进行条件判断的循环语句。

1、辗转相除法。也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下:

(1):用较大的数m除以较小的数n得到一个商 和一个余数 ;(2):若 =0,则n为m,n的最大公约数;若 ≠0,则用除数n除以余数 得到一个商 和一个余数 ;(3):若 =0,则 为m,n的最大公约数;若 ≠0,则用除数 除以余数 得到一个商 和一个余数 ;…… 依次计算直至 =0,此时所得到的 即为所求的最大公约数。

我国早期也有求最大公约数问题的算法,就是更相减损术。在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之。

翻译为:(1):任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。(2):以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

3、辗转相除法与更相减损术的区别:

(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到

1、秦九韶算法概念:

f(x)=anxn+an-1xn-1+….+a1x+a0求值问题

f(x)=anxn+an-1xn-1+….+a1x+a0=( anxn-1+an-1xn-2+….+a1)x+a0 =(( anxn-2+an-1xn-3+….+a2)x+a1)x+a0

=......=(...( anx+an-1)x+an-2)x+...+a1)x+a0

求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=anx+an-1

v2=v1x+an-2 v3=v2x+an-3 ...... vn=vn-1x+a0这样,把n次多项式的求值问题转化成求n个一次多项式的值的问题。

基本思想:插入排序的思想就是读一个,排一个。将第1个数放入数组的第1个元素中,以后读入的数与已存入数组的数进行比较,确定它在从大到小的排列中应处的位置.将该位置以及以后的元素向后推移一个位置,将读入的新数填入空出的位置中.(由于算法简单,可以举例说明)

基本思想:依次比较相邻的两个数,把大的放前面,小的放后面.即首先比较第1个数和第2个数,大数放前,小数放后.然后比较第2个数和第3个数......直到比较最后两个数.第一趟结束,最小的一定沉到最后.重复上过程,仍从第1个数开始,到最后第2个数...... 由于在排序过程中总是大数往前,小数往后,相当气泡上升,所以叫冒泡排序.

1、概念:进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行记数。对于任何一个数,我们可以用不同的进位制来表示。比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的。

把学过的数学知识再进行学习,以达到深入理解、融会贯通、精炼概括、牢固掌握的目的。复习应与听课紧密衔接、边阅读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷与疑问。

(1)复习笔记和卷纸。

对学习的内容务求弄懂,切实理解掌握。不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生的,是如何展开或得到证明的,其实质是什么,应用它如何拓展加宽等。要勤于复习(知识点、典型题等),经常看,反复看---这就是心理学上讲的艾宾浩斯遗忘曲线所揭示的道理。建议学生采用放电影的方法。

完成作业后,把书和笔记合上,回忆课堂上的内容,如定律、公式及例题解答思路、方法等,尽量完整的在大脑中重现。再打开课本及笔记进行对照,重点复习遗漏的知识点。这既巩固了当天上课内容,也可查漏补缺。

准备一个错题本,记载做过的错题再次演练。对于自己曾经做错的题目,回想一下为什么会错、错在什么地方。自己曾经犯错误的地方,往往是自己最薄弱的地方,仅有当时的订正是不够的,还要进行适当的强化训练。

要经常与同学研究,或问老师,不要积攒过多问题。更不要把不会做的题完全寄托在课堂上等待老师去讲。

自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。

相关推荐

  • 函数概念教学反思通用 幼儿教师教育网相关栏目推荐:“函数概念教学反思”。教师作为学生学习的向导,教师为了更好地教学,一般都会为自己准备一份教案。教案在教学工作建立在学习理论、教学理论和系统科学理论的基础上,小编为您提供了函数概念教学反思,希望对你有所帮助,动动手指请收藏一下!...
    2023-04-05 阅读全文
  • 新概念课件六篇 请阅读由小编为你编辑的“新概念课件”,感谢您的耐心同时也请记得收藏本文。老师都需要为每堂课准备教案课件,每位老师都需要认真准备自己的教案课件。教案是课堂教学中必不可少的一环。...
    2024-06-18 阅读全文
  • 高一函数课件十三篇 请看下面栏目小编为您整理的“高一函数课件”相关的完整数据,希望本文内容能为您提供宝贵的帮助。老师根据事先准备好的教案课件内容给学生上课,每天老师都需要写自己的教案课件。教案编写是教师进行教学投入的重要支持。...
    2024-06-04 阅读全文
  • 高一函数课件(锦集十一篇) 作为一名教职工,时常要开展教案准备工作,教案是教学活动的依据,有着重要的地位。写教案需要注意哪些格式呢?以下是小编为大家整理的高一数学教案函数,欢迎大家分享。高一函数课件 篇1教学目标:知识与技能:让学生理解函数的定义,掌握函数的表示方法(解析式、表格、图像),能识别并判断函数关系。...
    2024-12-04 阅读全文
  • 新概念2课件5篇 教案课件在老师少不了一项工作事项,写好教案课件是每位老师必须具备的基本功。 教学过程中学生的表现同样重要,什么样的教学课件才是好的?这是幼儿教师教育网小编为你整理的“新概念2课件”类内容希望对你有所帮助,希望这些建议能够帮助你提高个人表现!...
    2024-04-09 阅读全文

幼儿教师教育网相关栏目推荐:“函数概念教学反思”。教师作为学生学习的向导,教师为了更好地教学,一般都会为自己准备一份教案。教案在教学工作建立在学习理论、教学理论和系统科学理论的基础上,小编为您提供了函数概念教学反思,希望对你有所帮助,动动手指请收藏一下!...

2023-04-05 阅读全文

请阅读由小编为你编辑的“新概念课件”,感谢您的耐心同时也请记得收藏本文。老师都需要为每堂课准备教案课件,每位老师都需要认真准备自己的教案课件。教案是课堂教学中必不可少的一环。...

2024-06-18 阅读全文

请看下面栏目小编为您整理的“高一函数课件”相关的完整数据,希望本文内容能为您提供宝贵的帮助。老师根据事先准备好的教案课件内容给学生上课,每天老师都需要写自己的教案课件。教案编写是教师进行教学投入的重要支持。...

2024-06-04 阅读全文

作为一名教职工,时常要开展教案准备工作,教案是教学活动的依据,有着重要的地位。写教案需要注意哪些格式呢?以下是小编为大家整理的高一数学教案函数,欢迎大家分享。高一函数课件 篇1教学目标:知识与技能:让学生理解函数的定义,掌握函数的表示方法(解析式、表格、图像),能识别并判断函数关系。...

2024-12-04 阅读全文

教案课件在老师少不了一项工作事项,写好教案课件是每位老师必须具备的基本功。 教学过程中学生的表现同样重要,什么样的教学课件才是好的?这是幼儿教师教育网小编为你整理的“新概念2课件”类内容希望对你有所帮助,希望这些建议能够帮助你提高个人表现!...

2024-04-09 阅读全文