比例尺课件
发布时间:2023-09-10 比例尺课件比例尺课件(推荐14篇)。
教案课件也是老师工作中的一部分,就需要我们老师要认认真真对待。教案是协调教学过程的重要手段,什么样的教案课件才是好课件呢?值得一读的“比例尺课件”文章小编强烈推荐给大家,希望我的故事能够让您更加感受到人性的美好!
比例尺课件 篇1
比例尺是第三单元《比例》中的一部分,该单元属于数与代数中的一部分,是比和比例中的重点内容。本单元体现比例在生产和生活中的广泛应用,其中第三小节安排了“比例的应用”,其中就包括用比例尺解决实际问题。通过这些内容的学习,使学生体会比例在生产生活中的应用,提高学生应用所学知识解决实际问题的能力。
本单元还渗透了函数思想。本单元中正比例和反比例的意义是渗透函数思想的重要内容。
本部分知识是学生在六年级上册又学习比和比的基本性质,六年级下册学习比例、正反比例、比例的基本性质基础上更深入的学习,为第三学段函数的学习打下基础。小学阶段的学习体现了由简到繁、由浅到深的学习理念。
3、新课标对本课的要求:学习比例尺,能读懂地图或示意图上的比例尺,并能利用比例尺解决实际问题。比如:两地间的实际距离,按照比例放大或缩小图片等。
4、本课主要学习两个内容:
(1)通过主题图教学比例尺的认识。首先给出比例尺的概念,再结合两幅地图介绍数值比例尺和线段比例尺。教学时,可由绘制地图需要把实际距离按一定的比例缩小,引出比例尺,并结合地图使学生认识数值比例尺和线段比例尺,理解比例尺的含义。然后,教材通过一张机器零件放大的图纸,让学生认识把实际距离放大的比例尺如何表示。让学生找出教材呈现的图纸的比例尺,说一说它表示的意义,体会比例尺前项比后项大时,表示放大。
(2)例1是把线段比例尺改写成数值比例尺。
教学时,引导学生学习把线段比例尺改写成数值比例尺的方法,使学生明确比例尺是一个比,不带单位名称。
根据教学内容,我设计了以下教学目标:
(2)认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺
学生已有的知识基础:学生在人教版小学数学六年级上学期学习了比和比的基本性质,六年级下册第三单元学习了比例、正反比例、比例的基本性质,这些都为比例尺的学习提供了基础。在小学品德与社会中学生也接触了比例尺的知识,通过这些知识的学习学生对比例尺已不再陌生,并能较容易的掌握本课内容。
学生已有的生活经验:学生在日常生活和学习中都接触过地图,对地图上的比例尺也已经有了一定的生活经验,对比例尺的学习提供了资料,带来了方便。
根据新课标和高年级数学的教学特点,基于以下原则:
1、以学生自学为主的原则。
2、注重学生合作参与,重视“三主”,即教师的主导作用,学生的主体地位和学生学习的主人翁思想。
3、精讲多练,快乐学习的`原则。
从学生已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,提出了“合作体验,自主感悟,快乐达标”教学模式。这种教学模式旨在培养学生的合作参与和自学意识。
2、合作体验,突破重点;
3、自主感悟,化解难点;
4、小组互助,巩固知识;
根据本节课的内容及“合作体验,自主感悟,快乐达标”教学模式的特点,设计了以下几个教学环节。
出示地图,让学生观察地图,找到图中的比例尺,然后设疑:想不想利用地图计算出两地间的距离呢?在学生兴趣被激起后,引入课题,告诉孩子们学习了这部分内容,你就能知道哦。为了能激起学生更大的兴趣,此时可教师简要介绍比例尺的作用。
设计本环节主要目的有两个:1、告知学生比例尺在日常生活中应用广泛。2、充分调动学生学习的激情和积极性。(本环节预设3分钟。)
本着学生自学为主的原则设计了本环节。因比例尺的意义是本课的重点内容,所以要充分利用课本的主题图这一教学资源,设计科学合理的问题,让学生有充分自学的空间,在学生自学遇到困难时教师再去点拨,教师只点拨本课的重点内容,教师要敢于放手让学生自学,要相信学生的能力。主要设计了以下四个方面的教学内容:
教师展示自学目标,让学生能清楚地知道自学的主要任务和要求。使学生带着目标,有目的、有准备地进行自学,学生真正成为学习的主人,也使教学变得更加明确具体,可操作、可检测。同时也能激发起全体学生的参与达标意识,学生的主体地位充分地显示出来了。
设计的自学题目有:(1)什么是比例尺?(2)如何表示比例尺?(3)比例尺作用?
各小组依据自学目标进行合作自学,自学后,进行汇报。根据小组汇报的情况,教师投影:
比例尺的意义和比例尺的表示方法。
同时利用课后做一做进行实战练习。
让学生认真观察48页主题图,通过小组合作自学以下问题:比例尺分哪几类?图中的比例尺表示的具体含义是什么?图中的两个比例尺是将实物放大还是缩小了呢?学生充分观察思考后,进行汇报,教师重点点拨线段比例尺的具体含义。(预设3分钟)
教师提出问题:我们刚才看到的比例尺都是将实物缩小的比例尺,那么有没有将实物放大的比例尺呢?鼓励学生大胆发言。教师适时出示49页主题图,并告诉同学们,在实际生产中,有些零件比较小,我们需要把它扩大后再画在图纸上。之后进一步设疑:图中的2:1表示什么呢?让学生观察主题图,理解这类比例尺的含义。教师重点点拨:为了计算的方便,通常把比例尺写成前项或后项是1的比。体会比例尺前项比后项大时,表示放大。(预设5分钟)
本环节主要利用课本例题1,让学生明确线段比例尺如何改成数值比例尺。这部分内容是本节课的难点,难就难在比例前后项的单位不同。因此应加强学生的整体感知能力,设计了尝试性练习,针对学生在尝试性练习中出现的问题进行讲解,更有针对性,更符合学生学习的规律。设计了三各方面的学习内容:
1、出示例题1,尝试性练习。
2、汇报板演,及时纠错。
3、巩固练习,点拨提升。设计一道与例题类似的题目让学生进行再次练习,同学间互相交换答案。通过教师适时点拨,将所学知识再次巩固提升。(该环节预设5分钟)
针对本节课的教学内容,设计了:判断题、找比例尺、比例尺互化、求比例尺四类题目。
1、判断题:主要设计学生容易混淆的问题,比如:比例尺只能放大物品,比例尺的前后项不能同时是1,等。这类题目主要考察学生对基础知识的理解。
2、找比例尺:通过练习,加深对比例尺的认识,更深入的理解比例尺的意义。
3、比例尺互化:这道题的安排是对教学重难点的巩固,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定势。
4、求比例尺:主要考察学生对比例尺意义的掌握情况,同时强化比例尺的实际应用。
这些题目的设计,一方面考虑本课所学知识,了解学生对知识的掌握情况。另一方面注重培养学生解决实际问题的能力,使数学知识和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。(本环节预设10分钟)
结合板书,引导学生说出本课所学的内容,设计了“我学会了什么?”这一题目,让学生思考讨论、归纳整理。这里要让学生有足够的思考和讨论时间。学生积极讨论,积极发言,是该环节成功的关键。
教师及时总结:以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决,望同学们能学会运用,善于观察,善于思考。(预设5分钟)
结合本节课的教学内容,主要布置比例尺的意义、线段比例尺的具体含义,线段比例尺改成数值比例尺等方面的题目,让学生练习,进一步巩固知识。(预设2分钟)
比例尺课件 篇2
一、教材分析
《比例尺》这节课是在学生学习了比和比例的基础上进行学习的,它是比和比例知识的延伸和应用,比例尺不是一把真正意义上的尺子,却是一个日常生活中极其重要的工具。在现实生活中有着广泛的应用,因此,对比例尺的学习具有很现实的意义。
二、学情分析
本课内容是《义务教育课程标准实验教科书.数学》六年级第十二册第
48、49页。是在学生学习了比和比例有关知识的基础上学习的,学生对于常见的平面图和地图并不陌生,但对“比例尺”这个概念可能会有些生疏和抽象,课堂上将紧密借助学生已有的知识和经验引导学生,主动建构知识,让学生充分动手操作,动脑思考,经历“比例尺”知识的形成过程。
三、目标与要点分析教学目标:
(1)在具体情境中理解比例尺的意义,并能根据比例尺的意义求一幅图的比例尺。
(2)能够根据比例尺知识求实际距离。
(3)培养学生综合运用知识的能力;培养学生动手测量和画图的能力。
过程与方法:通过学生的自主探究、合作交流,培养学生的探究意识、合作意识、创新意识。
情感、态度与价值观:使学生感受数学与生活的联系,体验学习数学的价值,增强学好数学的情感。
本节课的重点是理解比例尺的意义。难点是把线段比例尺改写成数值比例尺。
为了抓住重点,突破难点,本节课将提供较大的探索空间和众多的动手操作时机,让学生充分动手动脑,主动建构知识,而不是硬生生地把知识强塞给学生。
四、教学策略设计
比例尺是人们约定俗成地表示图上距离与实际距离的关系。以往我们执教传统教材,是直接给出图上距离和实际距离,然后让学生求图上距离与实际距离的比,要求化成单位相同再写比,这样的比就是比例尺。表面上看学生似乎已经知道了比例尺,但是比例尺为什么应运而生?学生只是被动接受知识。如何让学生经历比例尺的产生过程,教材创设了设计足球场平面图的情境,让学生在设计过程中体验到比例尺产生的必要性——绘制平面图时需要把实际距离缩小一定的倍数,既体现了新理念,又让学生有了更多自我体验和感悟的时间与空间。
有了以上的思考,就有了我第一次设计尝试,遗憾的是学生面对一个长8米,宽6米的教室,没有意识到在纸上长要画多长,宽要画多长,按多少“比”在来画。从学生完成的作品来看,有3人用1∶1000来画的,有13人画出长的比是1∶500,宽的比是1∶300,两个比不同,导致学生画出的形状与原来足球场的形状不同。大部分学生画出了任意长和任意宽,组成一个长方形,标上实际距离。这种情况是不是学生缺乏一种体验,一种按倍数缩小并缩小相同倍数的体验,因此学生不能自动生成。以上的教学实践引起了我的反思,重新尝试第二次设计,收到了较好的效果。
教师准备:一幅李成俊同学的照片
五、教学过程设计
(一)、生活原型再现:
师:(出示李成俊同学的照片)你们认识他吗?他是谁?生:李成俊
师:怎么可能呢?照片上的人这么小,怎么会是他呢?生:是缩小了??
师:如果李成俊的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?生:不像他了,像丑八怪??师:那怎样才能像他呢?生:都要缩小。
师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?生:不像,要缩小相同的倍数。??
(二)、创设情境,以疑激思
同学们,昨天我们测量了教室的长是8米宽是6米,现在老师提议大家以小组为单位,当一回绘画师,画出教室的平面图。再动手之前,先思考这两个问题:
1、要把教室的平面图画在纸上,你有这么的的纸吗?你怎么办?
2、随便在纸上画一个长方形,这一定是教室的平面图吗?
(三)、独立探究,合作交流。
(1)通过学生讨论,引出学习要求:A、你是怎样确定图上的长和宽的长度;
B、图上的长和实际的长的比是多少,并化简;
C、写上图上的宽和实际的宽的比,并化简;
根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。(2)学生小组学习(3)学生汇报设计思路
生1:我是把实际的长和宽都缩小1000倍,图上的长就是8厘米,宽就是6厘米,这样的长方形图就是足球场的平面图。
(根据学生的汇报板书)图上距离:实际距离
8厘米:8米=8:800=1:1006厘米:60米=6:6000=1:1004厘米:8米=4:800=1:2003厘米:6米=3:600=1:200揭示比例尺的意义:图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺
师:1:200的比例尺,说说你是怎样理解的?
生:表示图上距离是实际距离的1/200;
表示实际距离是图上距离的200倍;图上距离和实际距离的比是1:200;图上1厘米表示实际距离2米;
(四)、数值比例尺和线段比例尺的认识
1、示中国地图。
师:比例尺1:10000000表示什么实际意义?
生:图上距离1厘米是实际距离的1000000000厘米。
2、示北京市的地图。
师:观察这幅地图的比例尺有什么不同?表示什么实际意义?生:这是一幅线段比例尺,表示图上1厘米表示实际50千米。
3、学生读教科书。
师:书中这两种比例尺分别叫什么?它们有什么不同?
生1:前面的一种叫数值比例尺,后一种叫线段比例尺。数值比例尺没有单位.生2:实际距离都比图上距离大。
师:是不是所有的比例尺都是实际距离比图上距离大呢?请同学们看书第49页后,回答并说为什么?
生:不是。因为有的机器零件很小,需要把实际长度按一定的比扩大后,再画在图纸上,这就出现了图上距离比实际距离大的比例尺。师:图中的2:1表示什么?
生:图中的2:1表示图上距离是实际距离的2倍。
师:请同学们观察这些比,你有什么发现?生:这些比的前项和后项都是1.小结:为了计算,通常把比例尺写成前项或后项师1的比。
4、教学例1.师:我们能不能把它(手指上面的线段比例尺)改成数值比例尺呢?指名学生板书:图上距离:实际距离1厘米:50千米
=1厘米:5000000厘米
=1:5000000师:做这类题,因该注意什么?
生:统一单位,比例尺不带单位名称,一定是图上距离除以实际距离。
(五)加深理解,拓展应用
1、判断题:
①小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。
②某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。
③一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离
2、解决生活中的问题:
一栋楼房东西方向长40m,在图纸上的长度是50cm.这幅图纸的比例尺是多少?
3、拓展应用:
我们学校操场的长是200米,宽是100米.同学们,你们能自己确定比例尺,把操场的平面图画下来吗?
板书设计比例尺图上距离:实际距离=比例尺
图上距离=比例尺
实际距离
8厘米:8米=8:800=1:1006厘米:6米=6:600=1:1004厘米:8米=4:400=1:2003厘米:6米=3:600=1:200
教学实施
本节课在两个方面进行了创新设计:
一是情境导入,由于第一次设计时,让学生一进课堂就设计一个教室的平面图,学生们不知道平面图要按照一定的倍数缩小,而且要缩小相同的倍数,缺少这种经验和体验,出现了任意画的情况。因此,二度设计时我选择了生活原型——从照片引入,学生对这种生活常识应该说不陌生,为画平面图做好了很好的铺垫。
二是结合教室实际的长和宽和图上的长和宽,使学生初步确定什么是图上距离和实际距离,在动手画图时,对如何确定图上的长和宽就是要将实际的长和宽缩小一定的倍数,也就是确定图上距离和相对应的实际距离的比,并引出比例尺的意义,再结合两幅地图的比例尺介绍线段比例尺和数值比例尺,又通过一个机器零件的放大的图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺改写成数值比例尺。
六、教学反思
上完课,我有一种意犹未尽的感觉,经历了实践与理论的深思与探索,对新课标有了更深入的理解。
1、在学生已有的经验上学习数学
新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示学生的照片,学生对照片上的人是按倍数缩小了这种生活常识有了深刻的体验,再让学生来画教室的平面图,可以说是水到渠成的。
2、让学生经历了知识的形成过程
只有体验过,理解才会深刻。让学生在画教室平面图的交流互动中,体验探究比例尺的产生过程,理解比例尺产生的必要性。同时在探究过程中,学生对比例尺的意义理解是多方位的,个性化的。有了学生个性化的体验,才有了后面解决问题的个性化的表达。
3、让学生密切联系了生活实际
数学来源与生活,又应用于生活实际。本节课从让学生设计教室平面图,到让学生把线段比例尺改成数值比例尺,“生活中处处有数学“的理念贯穿了整个教学的始终,使学生真切地感受到学习数学的价值。
比例尺课件 篇3
1、知识与技能:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度和价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。
教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。
我每天上班骑电动车从家到学校要15分钟,可是一只小蚂蚁只用了5秒钟,你知道是怎么回事吗? 大家真聪明,那小蚂蚁爬的路程和我行的路程有什么区别呢?(引出图上距离和实际距离)这就是我们这节课要学习的知识。
1、师:如果要给我们教室画一个平面图,它应该是什么形状的?
(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)
师:大家画的图是长8米,宽6米吗?(不是)谁来说说是怎么画的'?(展示生的作品)
(学生的答案可能有:长方形长8厘米,宽6厘米。或者是长4厘米,宽3厘米。)
师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?
观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)
师:是啊,这两个平面图,别人一看会知道我们教室的大概形状, 但我们的教室不可能是长8厘米、宽6厘米,也不可能是长4厘米、宽3厘米,你能想个办法,让别人也知道我们教室有多大吗?(生动脑想、动手写)
引导学生汇报:
(1)直接写上“教室面积大约50平方米。”
(2)在图上标出“长8米、宽6米。”
(3) 标上“1厘米=1米”。
(4)1厘米怎么能等于1米呢?我认为可以写“1厘米相当于1米。”
( 激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)
师:看来同学们很爱动脑筋,遇到问题会想办法。其实这个问题里面就藏着我们今天所要学习的新知识。(板书课题:比例尺)
让生自学课本中的什么是比例尺?
集体交流什么是比例尺,比例尺其实是一个比,注意谁是前项谁是后项。师根据生的回答板书:图上距离:实际距离=比例尺或分数形式。
(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)
让生说出自已画的两幅图的比例尺各是多少,是如何计算的。师根据生的回答板书相应比例尺。
2、让学生议一议可以怎样理解比例尺所代表的意义。
实际距离是图上距离的多少倍?把图上距离扩大多少倍就是实际距离?
图上距离是实际距离的多少分之一?把实际距离缩小多少倍就是图上距离?
图上距离相当于多少份?实际距离相当于多少份?
1、把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米。
判断下列几句话中,哪些比是比例尺,哪些不是.
通过比较判断说理使学生更加明确比例尺概念的外延,加深对比例尺意义的理解。
2、在一幅比例尺是1:6000000的中国地图,深圳到上海的图上距离是20.3厘米,深圳到上海的实际距离是多少千米呢?在学生计算之前先引导学生从倍数的角度回忆比的意义。提醒学生计算结果的单位名称,然后总结方法。
3、深圳到上海的 距离是1218千米,在一幅比例尺是1:9000000的中国地图上,深圳到上海的图上距离会是多少呢?提醒注意单位统一。
在这个基本运用的过程中,鼓励学生用多种方法解。
4、生先独立完成课本第30页1至5题,然后集体订正。
1、笑笑家买了一个长5米的家具,请同学们算一下在客厅中能放得下吗?
2、拿出自己准备好的中国地图,测算你的家乡到北京的实际距离。
师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?通过本节课的学习你知道什么叫比例尺了吗?如何求一幅图的比例尺?图上距离?实际距离呢?
3、师出示准备的地图上不同比例尺,介绍比例尺的不同形式,并说出它们的意义。然后让学生拿出课前准备的地图,找一找地图上的比例尺并说一说自己找到的比例尺的意义,为后面图上距离和实际距离做铺垫。
比例尺课件 篇4
【教学内容】
北师大版数学六年级下册30页——比例尺
【教材分析】
教材从学生比较熟悉的房屋平面图入手,引导学生认识比例尺,初步感受比例尺在生活中的应用。出示平面图后,借助图形放缩的经验和其他学习经验,了解比例尺的含义。
【学情分析】
本节课内容是学生在学习了化简比的基础上学习的,因此不会感到陌生。但学生对比例尺的意义可能不好理解,这部分知识相对来说比较抽象,在具体计算上可能存在一定困难。
【教学目标】
1、结合具体情境,认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。
2、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
3、能积极参与数学学习活动,进一步体会数学与日常生活的密切联系。
【教学重点】
结合具体情境理解比例尺的意义。
【教学难点】
应用比例尺的知识解决实际问题。
【教学准备】
多媒体课件,直尺,中国地图
【教学流程】
一、谈话导入,激起兴趣
1、如果要绘制我们教室的平面图,需要多大的纸?
如果要绘制中国地图呢?
(学生自由回答。得出结论。)
2、聪明的人想出了一个办法,把物体实际的长度按一定比例缩小再画在图纸上,这就是我们这节课要研究的内容。
【设计意图:先抓住学生急于认知的心理,从生活中熟悉的事物出发,真切感受到在绘制平面图的时候,不可能按照实际的长度来操作,需要有一个科学的方法,从而引入本节课内容。】
二、创设情境,探究新知
活动一:(课件出示)
六.一儿童节快要到了,学校要举办一个大型的篝火晚会,想让同学们设计一个舞台。在平面图上如果用10厘米表示地面上10米的距离,那么图上距离与实际距离的比是多少呢?
【设计意图:用学生喜欢的活动引起浓厚的兴趣,用亲身经验走近数学,探索其中的奥秘。】
(1)读懂题目中的信息。
(学生汇报已知条件和所求问题。)
(2)根据题目的要求,引导学生得出10厘米:10米,并用学生已有的学习经验化简比。
【设计意图:利用已有的学习经验,学生自然会想到要化简这个比,必须要统一计量单位,这也是比例尺这个知识点重点强调的地方。】
(3)随学生汇报,板书提炼:图上距离:实际距离
10厘米:10米
10:1000
1:100
(4)揭示比例尺的含义。使学生理解图上距离与实际距离的比就是比例尺。
【设计意图:不把比例尺作为一个知识点让学生背诵,而是在情景中鼓励学生进行充分的思考与交流后得出结论。】
(5)讲授比例尺的另一种表示形式,即分数的形式。板书。
活动二:(课件出示)(投影仪展示)
师生共同搜集的生活中不同的比例尺,引导学生交流讨论,说说自己的发现。
(学生积极展开讨论与研究,各抒己见。)
教师归纳为三点。
① 比例尺是一个比,不带计量单位。
② 比例尺的前项和后项一定是同级单位。
③ 为了计算方便,比例尺通常都写做是前项为1的比。
【设计意图:多角度理解比例尺的含义,使学生对比例尺的意义、形式、求法有初步了解,为解决实际问题打好基础。】
活动三:(出示教材30页情境图)
(1) 理解比例尺1:100的意义,引导学生用自己的语言描述。
(2) 完成2、3题。
(学生独立思考后小组内交流自己的想法,然后全班交流方法。)
(3) 完成4、5题。
(引导学生理解题意,独立思考后进行交流。)
【设计意图:学生可以利用比的意义、比例尺的含义等知识和解决问题的经验来解决这些问题,放手学生有利于提高解决问题的能力。】
(4)引导学生进行总结归纳。已知图上距离、实际距离、比例尺中的两个量怎样求第三个量。
三、拓展引申,巩固新知
出示一中国地图。
1、找到自己的家乡。估一估家乡到北京的距离,求一求实际距离。
2、放暑假时,你打算从------到-------去旅游,两地间的实际距离大约是------千米。
引导学生交流各自的想法。
【设计意图:本体具有开放性和挑战性,对学生的估算和计算能力都是一种考验。】
四、运用所学,解决问题
1、学了本节课,你有获得了哪些知识?
2、怎样画我们教室的平面图呢?(长8米,宽6米)
引导学生交流自己的看法,自定比例尺,画出平面图。
【设计意图:回顾前面的问题,首尾呼应,为学生提供充分的自由发展空间,让他们倾听、协作、分享、交流。】
五、布置作业,课后延伸
1、搜集生活中后项为1的比例尺。
2、比例尺除了可以用1:100、1/100这样的形式表示,你知道还可以怎样来表示吗?
【设计意图:作为知识的拓展,将旧教材中的扩大比例尺和缩小比例尺、数值比例尺和线段比例尺的知识点给学生,拓宽学生视野和知识面。】
比例尺课件 篇5
1. 通过学习,初步了解比例尺的意义。
2. 认识数值比例尺和线段比例尺两种不同表现形式,学会求出平面图的比例尺。
3. 能运用所学的比例尺的知识解决生活中的问题,并在小组合作中培养合作意识和创新思维能力。
4.情感、态度、价值观:体会数学与日常生活的密切联系。 教学重、难点:
(1)理解比例尺的含义。
(2)能根据图上距离、实际距离、比例尺中的两个量求第三个量。 教具学具
同学们,昨天老师请大家自己动手测量了我们教室的长和宽。现在老师提议大家以小组为单位,当一名绘图师,利用你们手里的材料,画出我们教室的平面图。再动手之前,先考虑这两个问题:
1. 要把教室的平面图画在纸上,你有这么大的纸吗?那怎么办?
2. 随便在纸上画一个长方形,这一定是教室的平面图吗? 小组合作并完成汇报,在实物展示台上展示自己的作品。
教师总结:同学们都很聪明,你们都把实际的长和宽缩小了,画出了教室的平面图,其实就是用到了今天我们要学习的知识――比例尺,也就是把实际距离按一定的倍数缩小。
请学生在小组内算一算自己所画的教室平面图的长和宽各缩小了多少倍。
学生们计算并汇报,集体订正。
一个教室长8米,宽7米,如果我们要画这个 教室的平面图,就需要把实际距离同时缩小一定的倍数后,画在平面图上,缩小多少倍由你自己决定,你打算设 计:
1、用几厘米表示8米和7米。
2、你设计的方案是图上距离比实际距离缩小了 多少倍?
3、算一算、每幅图的图上距离与实际距离的比。
同学们刚才算出的各幅图的图上距离和实际距离的比就叫做这幅图的比例尺。我们把教室实际的长和宽叫做实际距离,把画在纸上的教室的长和宽叫做图上距离。
请学生重复说一遍什么叫做比例尺。
请每个人算一算自己所画的教室的平面图的比例尺是多少。
(2)观察地图,自由交流。
课件出示世界地图、中国地图和学校的平面图,再请同学拿出自己事先准备的地图,在小组内观察、交流并思考:不同地图的比例尺有什么不同的地方?
引导学生充分发表意见,教师辅助讲解:
1比较出比例尺的两种不同表现形式――数值比例尺和线段比例尺 2比例尺的大小不同,同样的佛山市在中国地图、广东地图和佛山地图上的大小都不一样,这就是采用了大小不同的比例尺。
(3)学习不同的比例尺。
课件出示教材第49页的机器零件图,引导学生观察后提问:请你观察这幅图的比例尺,和我们刚才所观察的比例尺有什么不同之处?
在生产中,有时由于机器的零件比较小,这是就需要把实际的距离扩大一定的倍数以后,再画在图纸上这幅图就是这样的,比例尺2:1,你知道是什么意思吗?
补充说明:为了计算方便,我们通常把比例尺改写成前项或后项是1的比。
(4)学习例1。
课件出示例1的题目,提问:线段比例尺怎么改写成数值比例尺?数值比例尺是怎么求的?图上距离和实际距离的.单位不同该怎么办?
请学生根据刚才的解答,说说求比例尺需要知道哪些条件,怎样求比例尺,谁是前项,谁是后项。
2.知识运用。
(1)即时训练。
学生独立完成教材第49页的“做一做”,教师巡视指导,帮助个别有困难的学生。
集体订正后引导学生通过交流讨论,明确根据图上距离与实际距离求比例尺的方法:首先依据比例尺的意义写出比的前项后项,写出比,图上距离与实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。
(2)拓展训练。
课件出示下列四个问题:
1每年十月,莫斯科红场将举行盛大的阅兵仪式,以庆祝“十月革命”的胜利,如果我们坐飞机前去观看,请你仔细观察手中的世界地图,算出首都北京到俄罗斯首都莫斯科的距离。
2天津是2008北京奥运会足球赛区城市之一,如果你是设计师,请你设计出足球场的平面图,并标出比例尺。(足球场的长是90~120米,宽是60~90米)
3眼镜上的螺丝钉长是3毫米,螺帽宽1毫米,假如你是技术员,请你画出它的平面图,你有什么困难?怎么办?
请学生在这四个问题中任选一个,给充足的时间独立思考,也可以在四人小组内选择其中一个问题合作研究,小组长做好分工。完成任务后,集体汇报,教师根据学生完成的情况进行小结,并给予适当的指导。
3.教学例2。
多媒news/55D6CBA43ED09BEC.html体课件出示教材第50页例2。
引导学生找出题中告诉的条件是:图中的长度大约是10厘米,比例尺是1:500000。问题是求出地铁1号线的实际长度。
师:知道图上距离和比例尺,能求出地铁1号线的实际距离吗?想一想,可以怎样解决?学生讨论后说自己解决的方案,一是用方程解,二是用“实际距离=图上距离÷比例尺”的关系式来解答。
师:看来同学们会用图上距离和比例尺求出实际距离;你能根据实际距离和比例尺求出图上距离吗?
师:不管是用图上距离和比例尺求实际距离,还是用实际距离和比例尺求图上距离,你们觉得重点要解决好哪些问题?学生讨论后回答,让学生理解不管是求图上距离还是实际距离,都要弄清题里的条件和问题,再根据“图上距离:实际距离=比例尺”的关系式列式,在用实际距离和比例尺求图上距离时,先要把实际距离和图上距离的单位统一,再列方程;再用图上距离和比例尺求实际距离时,求出的实际距离能化成米或千米作单位的数时要化成米或千米作单位的数。
师:综合同学们的意见,解决这类问题时要注意三点:一是弄清条件和问题;二是根据“图上距离:实际距离=比例尺”的关系式列式;三是要注意单位的化简。下面我们用所学的知识来解决一些生活中的问题。
学生独立完成教材第52页“做一做”第1题练习八第4,6题。其中“做一做”第1题是学生已经在上一节课把线段比例尺改写为数值比例尺的基础上继续完成剩余的问题。完成后要求学生说一说自己是怎样列式解决这些问题的,全班集体订正。
1、教材地52页“做一做”第2题,学生完成后集体订正。
3、我能行:
在一幅比例尺是1:3000000的地图上,AB两城之间的距离是8厘米。
⑴两城之间的实际距离是多少千米?
师:这节课学习了什么内容?怎样根据比例尺求图上距离或实际距离?在用比例尺解决问题时要注意哪些问题?
五、知识延伸: 图上距离 15cm 实际距离 1.8km 450km
回家找一找自己或爸爸妈妈今年的全身照片,算一算照片的比例尺。 作者:甄新
比例尺课件 篇6
一、教学目标:
1、让学生在实践活动中体验生活中需要比例尺。
2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。
3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
二、教学重点:
正确理解比例尺的含义。
三、教学难点:
运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
四、教学准备
多媒体
教学过程:
一、情境导入
师:同学们,老师家的房子要扒了,老师想买个面积大一点的房子,现在老师有两套房子的平面设计图,你能帮老师选择买那套房子吗?看谁能帮老师解决这个难题。(出示投影)
二、探究新知、
1、计算
师:下面就请你们来当一个小小的设计师,课前我们已测量出教室的长是8米,宽是6米,请你们把教室的平面图画在老师发给你的白纸上,并完成表格。
师:在画之前,先看清楚要求。(课件显示):
(1)确定图上的长和宽;
(2)个人独立画出平面图;
(3)在下表中填出图上的长、宽与实际的长、宽的比,并化简。
2、展示交流
你这样想?怎样画?请告诉大家。(学生展示交流)
谁有不同的想法、画法?(学生充分交流不同的意见)
(设计意图:在交流中学生思维互相碰撞,提高认识。另外,有利于教师了解学生的学习基础。)
3、评析感受感受比例尺的价值
他们画得像吗?
(指画得像的图片)问:其中的奥秘是什么呢?
请想一想,说一说。明确图上长、宽与实际长、宽的比是一定的,画出的平面图才逼真。
(设计意图:思考图形画得象不象?为什么?产生认知矛盾,引发深层次的思考。)
4、揭示概念
象这样,在绘制平面图时,需要确定图上距离和实际距离的比,这个比叫做这副图的比例尺。
投影出示比例尺的概念。
5、总结求比例尺时的注意事项
(1)求你所画那副图的比例尺
(2)求老师所买那套房子的实际面积
三、小结
本节课你有哪些收获,还有那些不明白的地方?
比例尺课件 篇7
教学目标:
使学生理解线段比例尺的含义,会根据线段比例尺求图上距离或实际距离。
教学重点:
使学生理解并掌握线段比例尺的含义。
教具准备:
准备一些线段比例尺的地图和数值比例尺的地图。
教学时间:1课时。
教学过程:
一、导入
师用投影仪出示一幅线段比例尺的地图和一幅数值比例尺的地图。让学生观察两幅地图的比例尺。师指出(指着数值比例尺)这种就是我们前面所学的用数值来标明的数值比例尺。此外,还有一种比例尺,如这种(师指线段比例尺),它叫做线段比例尺。(板书课题)线段比例尺又是怎样表示地图与实际中的比例关系的呢?这就是我们这节课要学习的内容。
二、新课
1、引导自学。让学生打开课本第8页,自学线段比例尺的知识内容。
2、汇报、交流自学成果。
指出回答你有何发现?或你有何疑问?
学生或许有以下答案或问题:
a.我发现线段比例尺是由一条线段分成两段,并标上数据形成的。
b.我发现线段比例尺必须标明数据单位。
c.我发现线段比例尺中每节线段的长度是1厘米。
d.画线段比例尺,只能画两节吗?
e.每节线段的长度必须是1厘米吗?
教师抓住学生提出的问题及其发现,相机适当引导学生不断探索、发现,逐渐理解并掌握线段比例尺的含义。
接着,请一位学生拿尺子上台测量投影仪上的比例尺,确定一节的长度为1厘米,并让其说出这个比例尺表示地图上1厘米的距离相当于实际上的多少?你能把它改写成数值比例尺吗?(师相机板书)。
3、再请一位学生上台测量地图上两个地方的距离(投影仪显示其测量过程,教师注意在这一过程中的引导),确定距离后,让学生记录在黑板上。
然后,让大家动笔计算这两地的实际距离。教师巡视,个别辅导。
学生完成后,引导集体订正。
三、课堂练习
1、练习二的第5题,让学生独立填表。学生完成后,教师抽出存在突出错误问题的学生练习在投影仪上显示,并引导集体订正。
2、第8题,让学生独立计算。教师巡视,注意个别辅导。后引导集体订正。
3、第9题,让学生独立完成,师巡视。订正时,注重强调注明比例尺的问题。
四、课堂总结
板书设计:
比例尺课件 篇8
《比例尺》这节课是在学生学习了比和比例的基础上进行教学的,它是比和比例知识的延伸和应用。比例尺不是一把真正意义上的尺子,而是一种日常生活中极其重要的工具,在现实生活中有着广泛的应用。因此,对比例尺的学习具有很现实的意义。学生对于常见的平面图和地图并不陌生,但对“比例尺”这个概念可能会有些生疏和抽象,课堂上紧密借助学生已有的知识和生活经验引导学生,经历动手操作、合作探究、实践应用等一系列的学习过程,自主去建构“比例尺”知识的形成过程。
目标预设:
1.在具体情境中理解比例尺的意义,并能根据比例尺的意义求一幅图的比例尺,培养学生综合运用知识的能力;培养学生动手测量和画图的能力。
2.通过学生的自主探究、合作交流,培养学生的探究意识、合作意识、创新意识。
3.使学生感受数学与生活的联系,体验学习数学的价值,感受家乡和祖国的变化,增强学生的爱国主义感情。
数学课程标准指出,“(学生学习的数学)内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动”,再调整后的教学内容,更适合学生探讨和实践操作。设计时,让学生自己去探讨比例尺表示的意义,实践操作中探究和应用比例尺,学生课堂活动的主体地位更突出,学生在自主交流探索中学会了怎样去发现问题、解决问题科学的学习方法。
数学课堂教学,引入必要的生活情境效果会更加凸显,生活中也蕴涵着大量的数学信息,本节课中,注重了“数学化”和“生活化”的结合,从学生观看“校舍平面图”开始,使学生意识到比例尺在日常生活中的重要性,在教学比例尺意义时,学生经历了实际测量、计算、讨论等愉快的探究过程,获得了成功的体验。同时引导学生用数学的眼光从生活中捕捉数学问题,主动的运用数学知识分析生活现象,自主地解决生活中的实际问题。
师:大家坐在宽敞明亮的教室里,有谁知道我们教室的地面是什么形状的吗?
师:对,你们知道这个长方形的长和宽分别是几米吗?
学生合作量出教室的长和宽。
学生质疑,交流。
师:我们可以把长和宽分别缩小一定的倍数,再画到本子上,大家来看,这就是教室地面的长和宽。(出示一张校舍平面图。)
说明:这是学校的平面图,它是按照我们所学的比例知识,按照一定比例缩小(强调)后画在图纸上的。图里所标出的长度叫图上距离,与图上对应的地面上的长度叫实际距离。
1.量一量、算一算。
(2)算一算:
平面图上教室的长是实际长的几分之几,平面图上的宽是实际宽的几分之几?并说说求这个问题时要注意什么?(统一单位)
提问:从求出的结果,你知道这张平面图的图上距离和实际距离的比是多少?(板书:图上距离和实际距离的比)
2.走进比例尺。
在日常生活中数学无处不在,经常要用到数学。像上面这样的问题,就是通过数学方法,把教室的大小按图上距离和实际距离的比画了出来。在绘制地图和其他平面图时,我们把图上距离与实际距离的比,叫做这幅图的比例尺。(板书:叫做比例尺)
提问:什么是一幅图的比例尺?引导学生想一想,比例尺是怎样得到的?(板书:图上距离 :实际距离=比例尺)
教室平面图的比例尺是多少,(板书:1 :1000)你现在知道比例尺是用什么形式表示的吗?
说明:为了计算简便,通常把比例尺写成前项为l的比。
3.认识线段比例尺。
提问:你知道上面比例尺表示的具体意义吗?(1厘米表示实际距离1000厘米,也就是10米)
介绍比例尺还可以用线段来表示(自学教材第43页的线段比例尺)并说明它的表示方法。
4. 我来试一试!
「1」判断。
①在一幅地图上量得6厘米的距离表示实际480米的距离,这幅地图的比例尺是1︰80。( )
②某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。( )
③一幅图的比例尺是10︰1,这幅图所表示的实际距离大于图上距离。( )
「2」选择。
A 1:00 , B 1:2000 , C 1:20000000 , D1:2000000
5.教学例6(再设计)。
课件引入:2022年,北京要申办冬奥会了,到时候,你可要到现场去为中国健儿加油啊!(出示中国地图)连云港到北京的图上距离24厘米,表示实际距离960千米,求这张地图的比例尺。
提问:怎样求这幅图的比例尺?解答这道题还需要注意什么问题?(统一单位)
学生求出比例尺后小结:统一题里的单位后,根据比例尺的意义,只要用图上距离比实际距离就可以求出比例尺。
6.小小设计师!
晶晶要搬到新房子住了,她想把自己的房间装扮的幽雅、舒适一些,于是在一张长20厘米,宽15厘米的纸上画了一张平面图便于摆放物品,她给我们提供了以下信息,同学们也来设计一张平面图给她提一些好的建议吧!(学生在选择比例尺时要注重适用性与合理性)
提问:今天我们共同学习了什么内容?你们有什么收获?还有什么问题吗?
四、课堂延伸:
3月15日,全国人大代表、中国载人飞船系统总设计师张柏楠透露,天宫二号空间实验室、神舟十一号飞船将于发射。据说“神州十一”卫星使用的CCD立体相机(用于拍摄气象云图)上一种精密零件只有4毫米长,可画在图纸上却是2厘米长,老师让你求这幅图的比例尺,看看有什么发现?
比例尺课件 篇9
教学目标
1.知识与技能:认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。2.过程与方法:结合具体情境,体会比例尺产生的必要性;运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。3.情感、态度、价值观:体会数学与日常生活的密切联系。
教学重、难点:
1.理解比例尺的含义。
2.能根据图上距离、实际距离、比例尺中的两个量求第三个量。教学准备幻灯片课件教法学法
教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。教学过程
一、创设情境(引入新课)
1、同学们,你们能说出自己学过的有关数字的成语。(如:丢三落
四、三心二意等。)
2、你能填出这个成语吗?展示成语以()当(),(以一当十)并提问,以一当十,以二当多少(20),以五当多少(50),以多少当120等等(12),你是怎样得出的。(后面一个数是前面一个数的10倍,前面一个数是后面一个数的十分之一)。如果用比来看这个成语,怎么求这个成语的前项与后项。(学生再次回答)。今天我们就来学习以一当十,以一当百,以一当千,以一当更多等。
3、首先老师想请同学位帮我画一个长10米,宽8米的的长方形地。(学生画图)请同学说一说自己画图的情况,(画长为5厘米,宽为4厘米的长方形,画长为10厘米,宽为8厘米的长方形)。
4、你认为他们谁画的比较像?(都比较像)。
5、为什么?你来说一说自己的作图过程。(
1、比实际缩小200倍。
2、比实际缩小100倍。)
6、如果用文字来描述比较麻烦,怎样用数学的的方式来表现呢?请大家自学课本30页的比例尺。
板书课题:比例尺探索新知
1、出示笑笑家的平面图。
学生认真观察图形,说一说:
(1)你得到哪些数学信息?(提问学生得到的数学信息)
(2你想提出什么问题?(1:100是什么意思?笑笑家的卧室有多大?笑笑家的客厅有多大?……)
2、我们先来解决比例尺1:100是什么意思?(1)学生猜想。
㈠由学生说出各自的猜想与理解。
㈡教师逐步引导学生统一认识。
1
(2教师说明。
在以上交流的基础上,教师可以明确告诉学生这幅比例尺的意思。(比例尺1:100,是指图上距离1厘米长的线段表示实际距离100厘米,图上距离比实际距离缩小100倍,实际距离比图上距离扩大100倍。)
3、比例尺的意义。
1、比例尺是表示图上距离与实际距离的比。板书:比例尺=图上距离:实际距离如:比例尺=图上距离:实际距离=1厘米:100厘米=1:100或(1/100)
同时说明:这种图上距离比实际距离缩小的,我们叫比例尺。一般情况下,缩小比例尺的前项为1。有的时候图上距离比实际距离大,我们叫扩大比例尺,扩大比例尺的后项为1。)
4、即时练习。
请你算一算刚才两位同学画的图的比例尺是多少?过程要求:
(1学生尝试求出比例尺。
(2教师巡视课堂,了解学生解答情况。(3反馈说明。
板书:图上距离5厘米
实际距离10米,5米等于1000厘米
比例尺=图上距离:实际距离=5:1000=1:200或(1/200)图上距离10厘米
实际距离10米,10米等于1000厘米
比例尺=图上距离:实际距离=10:1000=1:100或(1/100)课堂小结。说一说你有什么体会?(求比例尺时单位要统一)现在我们来解决第二个问题,笑笑家的卧室有多大?
(1)要算笑笑家的卧室有多大?即为卧室的实际的大小,我们要算出卧室实际长与宽,怎样算实际的长与宽呢?)(学生讨论得出,测量图上的长与宽,再根据比例尺计算。)(2)学生动手测量笑笑卧室的长和宽,并填空。
长4厘米,宽3厘米。
(3)算一算,笑笑卧室的实际的长和宽。
过程要求:
A:说一说你想怎样想的。(实际的长是图上长的100倍,实际的长用图上距离乘以100就可以了)
B:算一算。
C:板书计算过程。
实际的长:4×100=400厘米400厘米=4米
实际的宽:3×100=300厘米300厘米=3米(3)笑笑卧室的实际面积是多少?3×4=12(平方米)
(4)说一说计算实际距离要注意什么?(注意实际距离比图上距离扩大了还是缩小了,扩大或缩小的倍数)
三、巩固练习完成课本第4题。
1、第4题。
(1)认真审题,弄清题目意思。
2
(2)在图中找出正南方向。
(3)在平面图上找出窗户位置及长度。(长度即为图上距离,图上距离是在实际距离的基础上缩小了100倍。)
(4)同学之间互相交流、检验。(5)板书:实际距离:2米=200厘米
图上距离:200÷100=2厘米
求图上距离时要注意什么?(由于图上一般以厘米作单位,所以我们要先将单位统一成厘米再计算。)课堂总结:
通过本节课你学到了什么?
(比例尺的意义,比例尺是图上距离与实际距离的比,比例尺、图上距离、实际距离这三个量中,已知其中的任意两个量,能求出第三个量。注意求比例尺是要先把单位统一。求图上距离时要一般把单位统一成厘米。求实际距离时得出的单位一般是厘米,要把单位化成更大的单位等)
五、布置作业,课本30页第三题。
比例尺课件 篇10
教学目的:
1、认识比例尺,理解比例尺的意义,掌握求比例尺的方法;
2、培养学生的解决问题能力和自学能力;
3、体验数学知识与日常生活的密切联系,激发学习的兴趣,培养学生的探究意识。
教学重点:理解比例尺的意义,掌握求比例尺的方法。
教学难点:理解比例尺的含义。
教学过程:
一、创设情境,导入新课。
1、要想知道我们教室的长和宽各是多少米,怎么办?师生合作测量,记录数据。
2、按照实际的长和宽把教室的平面图画在我们的作业本上,能行吗?怎么办?组织学生交流。
3、教师指出:在绘制地图和其他平面图时,常常需要把实际距离按照一定的.比缩小或放大,再画在图纸上,这个比就叫做这幅图的比例尺(板书课题)
二、探究新知
1、教学比例尺的意义
(1)你能说说什么是比例尺吗?
(2)出示比例尺的意义。组织学生齐读,在这句话中,你认为关键词是什么?
(3)根据比例尺的意义,你认为应该怎样求比例尺?同桌互相说一说,并汇报,教师板书。(图上距离:实际距离=比例尺)
2、理解比例尺的含义。
(1)指导学生观察P48图1,认识数值比例尺。
①从图上你知道了什么数学信息?(教师板书:数值比例)
②你是怎样理解1:100000000的?
学生畅所欲言的交流
⑵指导学生观察P48图2,认识线段比例。
①从图上你又知道了什么信息?(教师板书)
②你能说说线段比例尺|------|表示什么意思吗?
⑶指导学生观察P49图3。
①这幅图的比例尺是多少?②这个2:1表示什么意思?③这个比例尺和图1的比例尺有什么不同?学生小组交流,然后指名汇报。
③教师小结:在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数,再画在图纸上,这时比例尺的前项就比后项大。
3、教学例题:在一幅地图上,用图上的3厘米表示实际距离60千米,这幅图的比例尺是多少?
①先让学生说一说什么是比例尺,怎样求比例尺?
②学生尝试解答,板演。
三、应用知识解决问题。
1、完成“做一做”。⑴学生独立练习,指名板演,集体订正。⑵你认为求比例尺时应该注意什么?同桌交流①单位要统一,②前项或后项要化到1为止,③比例尺不带单位名称。
2、小小评论家。
①一幅地图的比例尺是1:200厘米。()
②比例尺1:200表示图上1厘米的距离相当于实际距离200厘米。()
③比例尺1;200也表示实际距离是图上距离的200倍,图上距离是实际距离的1200。
④图上4厘米表示实际距离20千米,这幅地图的比例尺是1:5。()
3、完成练习八第1、2题。
四、小结。
通过今天这节课的学习,你有什么收获?
五、布置作业。
比例尺课件 篇11
教学目标:
1、让同学在实践活动中体验生活中需要比例尺。
2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。
3、运用比例尺的有关知识,学会解决生活中的一些实际问题。
4、同学在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养同学用数学眼光观察生活的习惯。 教学重点:正确理解比例尺的含义。
教学难点:运用比例尺的有关知识,学会解决生活中的一些实际问题。
一、激疑诱趣,引入新知:
很多同学都喜欢脑筋急转弯,现在老师给同学们一道脑筋急转弯的题目,让同学们猜猜:坐车从和平县县城到广州市,一共要用4小时,但有只蚂蚁从和平县县城爬到广州市却只用了5秒钟。你知道是怎么回事吗?(蚂蚁可能在地图上爬。)对了。蚂蚁爬的是从和平县县城到广州市的图上距离,而人们坐车所行的是从和平县县城到广州市的实际距离。那图上距离与实际距离之间有什么关系呢?
(1)画线段。
让我们先来做个最简单的游戏——画线段游戏。我说物品的长度,你用线段画出它的长,行吗?
咦?怎么不画了?(画不下。)那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?(可以把1米缩小若干倍后画在纸上。)这个办法不错。就用这种方法画吧。
(2)学生画完,集体交流。
你是用图上几厘米的线段来表示实际1米的呢?像2厘米、5厘米、10厘
米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。你能用比表示出图上距离与实际距离的关系吗?(2厘米:1米、??)
教师指名回答,并板书计算过程。
其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成图上距离(板书) ?比例尺。实际距离
板书2厘米?5厘米?10厘米1米 一幅图的图上距离与实际距离的比?叫做这幅图的比例尺
同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)
同学们,你们还记得我们上课前所说的一道脑筋急转弯的题目吗?原来坐车是从和平县县城到广州市实际距离约是300千米,而蚂蚁行的是5厘米的图上距离,怪不得只要5秒呢!那么,你能求出这副地图的比例尺吗?(学生做前先交流)
小黑板出示:从和平县县城到广州市实际距离约是300千米,在一副地图上只画了5厘米,这幅图的比例尺是多少?
大家交流一下,谁能告诉大家首先要做什么事情?(先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先要把单位统一起来。)
1)和平县政府距我校直线距离约200米,可在和平县城的地图上只画了2厘米,这幅图的比例尺是多少?
评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?
从1﹕10000这一比例尺上,你能获取那些信息?(图上距离是实际距离的万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等)
2)填空并判别哪个是比例尺。
把一个长2米,宽1米的长方形画在图纸上,长画了10厘米,宽画了5厘米。
(1)图上的长和实际长的最简比为(1∶20)。
(2)图上宽和实际宽的最简比为(1∶20)。
(3)图上周长和实际周长的最简比为(1∶20)。
(4)图上面积和实际面积的最简比为(1∶400)。
追问:那这1:400是这幅图的比例尺吗?为什么?你发现了面积的比和比例尺有什么关系?
学生独立计算、回答。
强调:比例尺是图上距离:实际距离,不是图上面积:实际面积,这幅图的比例尺是多少?
五、介绍线段比例尺:
像前面这些比例尺是用数值来表示图上距离和实际距离关系的比例尺,我们把它们叫做数值比例尺(板书),而像这样的比例尺,是用线段来表示图上距离和实际距离关系,我们把这样的比例尺叫线段比例尺(板书)你能把它改成数值比例尺吗?
画一个物品,如果用1:10 (缩小了)1:1(相同) 2:1(放大了) 画的图和实际的图比较结果怎样?(设计意图:让学生抓住1:1000、1:10、1:1、2:1??.进一步认识比例尺有大有小,让学生打开思路,不拘一格的从多角度来思考比例尺的意义。结合实际培养学生用数学的眼光观察生活。)
在实际的生活中有没有要用到这种放大比例尺的情况呢?你能猜出工程师是如何把直径5毫米的机器零件画在图纸上的吗?
七、讨论:
1)比例尺与一般的尺相同吗?化简后的比例尺带不带单位?
2)求比例尺时,通常要做什么?
3)化简后的比例尺,它的前项和后项一般是什么形式?
1、直径5毫米的机器零件,画在图纸上的直径是10厘米。它的比例尺是多少?
2、判断下面的说法是否正确:
下面是小聪学习了比例尺后写的一段数学日记:
今天我们学习了比例尺,我知道了图上距离比实际距离就等于比例尺。老师叫我们找找比例尺的例子。我想:这岂不是小儿科吗。你瞧,我一口气就能说出几个来:图上长和实际长的比是1:100;图上长和宽的比是1:5;图上宽和实际宽的比是1:2分米;实际距离和图上距离的比是20:1.哈哈,原来比例尺就是这么简单!
这节课你有收获吗?有什么收获呢?我们学会了比例尺的概念,比例尺的关系式、书写形式、比例尺的种类及转换、求比例尺的方法等,谁能来说一下?
同学们的收获的确很大,这节课同学们的表现都很出色,谢谢大家!
4、一幅图上用10厘米表示实际距离200千米,这幅图的比例尺是( )
5、一幅地图的比例尺是1:20000,它表示实际距离是图上距离的( )倍,图上距离是实际距离的( );它还表示图上1厘米代表实际( )米
6、如上图1厘米表示实际距离( )千米,化为数值比例尺是( ),实际距离是图上距离的( )倍,图上距离是实际距离的( )
2、小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。()
3、某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。 ( )
4、一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离 .()
5、一个小型零件长5毫米,画在图上5厘米。这幅图的比例尺为1:10 ( )
比例尺课件 篇12
教学目的:
1.在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。
2.在操作、观察、思考、归纳等学习活动中理解比例尺的好处,正确计算比例尺,了解比例尺在实际生活中的各种用途。
师:坐公共汽车从泰安市到济南火车站,一共要用70分钟,但有只蚂蚁从泰安市爬到济南火车站却只用了40秒钟。你明白是怎样回事吗?
师:对了。蚂蚁爬的是从泰安市到济南火车站的图上距离,而人们坐车所行的是从泰安市到济南火车站的实际距离。
师:那图上距离与实际距离之间有什么关系呢?让我们先来做个游戏。
1、操作计算。
师:你们喜欢画画吗?那我们来个最简单的DD画线段游戏。我说物品的长度,你用线段画出它的长,行吗?
师:那怎样办呀?快想想,有什么好办法,能够把1米画到纸上去?
学生画完,群众交流。
师:你是用图上几厘米的线段来表示实际1米的呢?
教师有选取的板书:
师:像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。
师:你能用比表示出图上距离与实际距离的关系吗?
教师指名回答,并板书计算过程。
师:其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的资料D比例尺(板书课题及关系式)根据比与分数的关系,我们还能够把它写成图上距离/实际距离=比例尺。(板书)
师:同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)
师:同学们,你们还记得我们上课前所说的最后一道脑筋转弯的题目吗原先坐车是从泰安市到济南火车站实际距离约是40千米,而蚂蚁行的是25厘米的图上距离,怪不得只要3秒呢!那么,你能求出这副地图的比例尺吗?
师:大家交流一下,谁能告诉大家首先要做什么事情?
师:先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先写出比,再把单位统一齐来,最后化简比。(板书1.写出比。2.单位统一。3.化简比)
师:根据这幅图的比例尺,你能用另一种说法说出图上距离和实际距离的关系吗?
(让学生说出图上距离是实际距离的几分之几?实际距离是图上距离的几倍?)
1、比较比例尺,揭示数值比例尺的好处。
师:像1:1000000这样的比例尺是数值比例尺。它也能够写成1/1000000你.能说说比例尺1:100000000所表示的意思吗?
生:距离是实际距离的一百万分之一,实际距离是图上距离的一百万倍。
师:你还见过怎样的比例尺?(出示中国地图)引出线段比例尺。
小结:线段比例尺和数值比例尺是比例尺的两种基本形式.它们之间能够进行转换.把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就能够了.
同学们,刚才我们把米尺的实际距离缩小若干倍后画在纸上,我们还求出了它的比例尺是1:100等,在实际生活中有没有要把实际距离放大后再画在图上的呢(有)
师:这是同学们三年级科学书中蚂蚁图,他是把蚂蚁放大后画在书上,图上蚂蚁长6厘米,而蚂蚁实际长6毫米。你能算出这幅图的比例尺吗?
出示一些精密零件的图和图纸,介绍把实际距离放大后的比例尺。
纵观这节课所认识的比例尺,思考下列问题:
2、求比例尺时,通常要做什么?
3、化简后的比例尺,它的前项和后项一般是什么形式?
1、小结看书。
(1)在比例尺是1:2000的地图上,图上距离1厘米表示实际距离()
(2)在比例尺是1:4000000的地图上,图上距离是实际距离的(),实际距离是图上距离的()倍。
(3)出示一个线段比例尺表示图上1厘米相当于实际距离米,把这个比例尺改写成数值比例尺是)。
(1)小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为12。
(2)某机器零件设计图纸所用的比例尺为11,说明了该零件的实际长度与图上是一样的。
(3)一幅图的比例尺是61,这幅图所表示的实际距离大于图上距离.
六、谈学后体会。
这节课你学到了什么?
比例尺课件 篇13
教学内容:教材第37页例5和练一练,完成练习七中的其他习题。
教学要求:使学生能根据比例尺和图上距离求出相应的实际距离。
教学过程:
一、复习引新。
1、复习题。
在一幅地图上,10厘米表示实际距离100千米。求这幅地图的比例尺。
指名一人板演,其余学生做在练习本上。
2、引入新课。
上面我们学习的比例尺,除了数值比例尺外,还有线段比例尺。这节课,我们应用学习的比例尺知识解决一些实际问题,,。
二、教学新课。
1、教学例5
说明:如果我们知道了一幅图的比例尺,就可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。
出示例5,读题。
提问:题里已知什么,要求什么?
按照比例尺的关系式,你认为用什么方法解答比较好?
指名口称解答过程,老师板书。
2、教学试一试
提问:这道题已知什么,求什么?
谁能解答?
三、巩固练习
1、做练一练的题。
学生在练习本上的角答。
2、练习七第4题。
让学生先量一量,说出图上距离各是多少厘米。
学生在练习本上求出实际距离各是多少。
四、课堂小结
通过线段比例尺的学习,你学到了些什么?
五、布置作业
课堂作业:练习七第5、6题。
家庭作业:练习七第7、8题。
比例尺课件 篇14
1.使学生理解比例的意义,能应用比例的意义判断两个比能否成比例。
2.在比的知识基础上引出比例的意义,结合实例,培养学生将新、旧知识融会贯通的能力。
3.提高学生的认知能力。
【教学重点】比例的意义。
【教学难点】找出相等的比组成比例。
【教学方法】引导法。
1.什么是比?
(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。
(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。
2.求下面各比的比值。
1.用ppt课件出示课本情境图。
①说一说各幅图的情景。②图中图片有什么相同之处和不同之处?
(2)你知道这些图片的长和宽是多少吗?
(3)这些图片的长和宽的比值各是多少?
A.6 ∶4= B.3∶2= C.3∶8 =
D.12∶8= E.12∶2=
(4)怎样的两张图片像?怎样的两张图片不像?
①D和A两张图片,长与长、宽与宽的比值相等,12∶6=8∶4,所以就像。 ②A长与宽的比是6∶4,B长与宽的比是3∶2,6∶4=3∶2,所以就也像。
2.认一认。
图D和图A两张图片,长与长、宽与宽的比值相等,图A和图B两张图片长和宽的比值相等。
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什
么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”
比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。
(6)比较“比”和“比例”两个概念。
上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(7)找比例。
在这四副图片的尺寸中,你还能找出哪些比可以组成比例?学生猜想另外两副图片长、宽的比值。求出副图片长、宽的比值,并组成比例。
3.右表是调制蜂蜜水时蜂蜜和水的配比情况,根据比例的意义,你能写出比例吗?
(1)什么样的比可以组成比例?
(2)把组成的比例写出来。
(3)说一说你是怎么写的,一共可以写多少个不同的比例。
的比,判断这两个比能否组成比例。
比能否组成比例。
2.哪几组的两个比可以组成比例?把组成的比例写出来。15∶18和30∶36 4∶8和5∶20 1/4∶1/16和0.5∶21/3∶1/9和1/6∶1/18
三、课堂小结。
(1)什么叫做比例?(2)一个比例式可以改写成几个不同的比例式?
YJS21.cOm更多幼师资料小编推荐
生活中的比课件推荐
每位教师都需要预先准备好自己的教案和课件,相信对于撰写教案和制作课件,老师们并不陌生。教案是构建良好教育环境的有效手段,你是否对编写教案和制作课件感到困惑呢?这篇文章是幼儿教师教育网的编辑精心打造,为您展示了美好的“生活中的比课件”主题。感谢您的阅读,希望您喜欢并愿意分享这篇文章!
生活中的比课件 篇1
活动目标:
(1)初步感知数与物的关系,帮助幼儿积累有关数的感性经验。
(2)学习运用数字解决生活中的一些实际问题,从中体验活动的活动。
(3)激发对数字的兴趣,培养幼儿积极关注身边事物的.情感态度。
活动重点:初步感知数与物的关系,帮助幼儿积累有关数的感性经验。
活动难点:学习运用数字解决生活中的一些实际问题。
活动准备:
(1)课件;
(2)教具:0"9数字卡以及物体卡片若干套。
(3)布置数字展览区;
活动过程:
(一).参观数字展览区
1、通过参观展览,让小朋友发现物品上的数字。
2、相互交流:你发现哪些物品上有哪些数字?(组织幼儿用语言进行表述)
3、请你们猜猜:如果这些物品没有了数字会怎么样?
(二)观看课件,了解数字在我们生活中不可缺少
1、认识数字0---9
2、认识数字在生活中的应用
(1)门牌号码
(2)汽车号码
(3)座位号码
(4)运动员衣服号码等
(5)电话号码
(三).了解数字的用途
1、这些物品上的数字有什么用呢?
2、你觉得数字在我们生活中还有那些用处呢?(请幼儿回忆讲述生活中见过的数字)
(四)数字游戏(找座位)
给每位幼儿发一张数字卡片,要求幼儿找到比手里的数字多1的座位号坐下。
(五)延伸活动:
你能用这些数字组合成一个有意义的编码吗?(比如:1、1、0、组合成110)
(六)小结:原来我们生活中到处有数字,可以说我们生活在一
个“数字”的世界中,而且,数字对我们又是那么重要,所以,我们从小就要认真学习数字,千万不能因为弄错了数字而闹出笑话。
生活中的比课件 篇2
说课的内容是人美版四年级第7册第2课《生活中的暖色》,下面我就说教材、说学生、说教学目标、说教学重点难点、说教法教学过程和说教学评价等几方面进行说课。
(一)说教材、大纲
本课属于 “造型·表现”学习领域的内容。通过本课学习,让学生了解生活中的冷色,初步掌握冷色基本知识,并能根据观察和回忆来表现生活中以暖色为主的景象,提高学生色彩的审美感受。
(二)说学生
四年级学生对美术基础知识和基本技能有一定的掌握,学习习惯比较好,对美术的学习兴趣也比较浓厚。已经认识色等美术语言,有一定的色彩基础和造型能力,基本能积极主动地能通过观察、讨论、绘画等方面表现自己的感受。
(三)说教学目标
1、知识目标:通过学习,使学生初步掌握暖色的色彩特点和所表达的感受。
2、技能目标:能画一幅以暖色不主的画。
3、情感目标:了解暖色知识,体验暖色带来的感受,提高学生色彩审美感受能力。
(四)说教学重点和难点
1、教学重点:通过本课学习让学生了解生活中的暖色,初步掌握暖色基本知识,并能根据观察或回忆表现生活中以暖色为主的景象。
2、教学难点:以暖色为主的画中冷暖的搭配和感受。
(五)说教法和教学过程
1、学习方式:感受、欣赏、绘画实践
2、教学媒介:课本、课件、板书
3、教学过程
一、情景导入,初识暖色
1、出示暖色为主的风景图片。
(1)图片中大面积出现了哪些颜色?
(生:以红橙黄为主的色彩)
(2)谈谈暖色给人带来的感受。
(生:温暖、温馨、明亮、轻松、快乐)
师小结:这些颜色都能给我们温暖的感觉,因此我们称这些颜色为“暖色”。
今天,我们就来学习第2课《生活中的暖色》。
2、板书课题:2、生活中的暖色
二、探究活动,研究暖色
1、出示色卡,找出冷暖色。
你知道红橙黄是暖色,在这个色相环上那种颜色也属于暖色呢?
2、大自然是色彩的创造者,它五彩纷呈,大家能不能找到生活中和自然界的暖色呢?
暖色调中的部分冷色在画面中起什么作用?
3、暖色不仅我们喜欢,美术大师也非常钟爱。下面来欣赏法国画家马蒂斯的作品《红色的房间》。
(1)这幅国表现的是什么内容,用大了大量的什么颜色,给你产的感觉?
(2)除了暖色外还出现了什么颜色?有什么作用?
4、欣赏以暖色为主的作品。
(1)大师的画
(2)同龄小朋友的画
三、实践活动,运用暖色
天气比较冷,你不想画一幅暖暖的画吗?
1、作业要求:
尝试运用暖色画一幅画。
2、学生作画,教师巡视指导。
(1)及时纠正学生画幅过小的问题;
(2)及时展示表现好的学生作品,引导学生联想;
四、作业展评,展示暖色
1、作品展评
(1)学生互评、自评。
(2)师小结
2、拓展思维
有所新建的医院要刷墙漆,你帮着想一想,刷什么颜色最合适。
(六)说教学评价
在评价过程中以学生为主,鼓励学生说出自己的想法感受。
1、作品展评
(1)学生互评、自评。
(2)师小结。
教学反思:
本节课是一节绘画基础知识和练习课,是为学生学习色彩学知识而设置的,主要训练学生感受和认识色彩的冷暖,能辨别冷暖色调并感受其美感,提高学画色彩画的兴趣。
本课的教学内容比较抽象,主要使学生从对色彩的冷暖的认识到掌握并运用色彩的冷暖对比知识这一过程,是一个由感性上升到理性的一个难点。如果单凭教师空洞地去讲解、简单的操作演示,是很难让学生明白的,说不定还会越来越糊涂,调动不起学生的兴趣。为了更好的调动学生的兴趣,我准备了大量的色彩图片和冷暖色对比图案,充分利用课件及书中的图片、作品等。通过对比,使学生直接感受到同一画面不同色彩的冷暖感觉,而且还联系学生的生活实际进行举例,并让学生根据不同的颜色来联想不同的物体,辨别是冷色还是暖色,这样比起理论上的讲解更直观、更形象,使学生在轻松愉快的氛围中掌握色彩的冷暖知识。在教学过程中,我还让学生边感觉边动手操作,并联系生活中的一些冷暖事物让学生自己举例谈感觉谈体会,并放手让学生自己去寻找发现冷暖色的规律,从色相环中找出暖色和冷色。最后,我选用设计医院进行拓展延伸,。这样大大地调动了学生的积极性并开阔了他们的思维,起到事半功倍的教学效果。
生活中的比课件 篇3
一、活动目标
1、 认识公共场所中常见的标志牌,并理解它们所代表的含义。
2、 知道标志牌对人具有指引、约束等作用。
3、 能够完整、简洁明了的描述生活中看到的标志牌,并主动关注公共场所中出现的标志牌。
二、活动准备常见标志牌图片若干份(ppt形式)。
三、 活动过程
1、开始部分
1)引入师:“老师周末出门逛街的时候,走过了很多的地方,看到了很多很多的牌子,诶,会是一些什么牌子呢?老师先不说,我们一起来看看就知道了。”
2、基本部分
1)出示各种常见标志的汇总图片(缩略图形式)。提问1:小朋友们看一看,这些是什么?(标志牌)
2)依次出示每一张图片。提问1:这个标志你见过吗?在哪里看见过?提问2:它想要告诉我们什么?
3)调动幼儿已有经验,发散幼儿思维。提问1:在什么地方,你还看见过其它的标志牌?请幼完整、简洁的描述它的样子。提问2:为什么那么多的地方都要出示标志牌?提问3:看到这些标志,我们应该怎么做?(教师可举例提示)
3、 总结部分
1)教师归纳各种标志牌的作用。
2)请幼儿与家长一同在逛街、旅游的时候搜集看到的标志牌并与同伴交流分享。
园任导师评议:
1、 整体效果不错。
2、 活动内容的难易程度转换不够灵活。
同学评议:
1、 活动效果较好。
2、 教师运用“好不好”、“是不是”、“对不对”类型口语过多。
自我反思
一、教案设计
1、活动将培养幼儿对标志牌的认知意识作为重点,符合幼儿成长需要。
2、提问中明确指出幼儿回答的要点(地点、什么标志、它有什么含义),以及对幼儿回答的要求(完整、简洁),锻炼了幼儿的语言表达能力与逻辑思维能力。
3、标志牌辨别难度过低,应增加其它方面的提问(如,各种标志牌在颜色、含以上有什么不同?红色表示禁止,蓝色表示提醒,黄色表示警告),帮助幼儿达到经验的提升。
二、活动过程
1、教师在引导幼儿思考方面欠缺。
2、教师在总结归纳方面做的较好。
生活中的比课件 篇4
教学目标:
1.进一步理解小数的含义。
2.学生认识单名数和复名数、高级单位和低级单位,在明确各种计量单位和单位间进率的基础上,会进行简单的名数改写。
3.通过收集生活中的小数,体验生活中处处有数学。
教学重点和难点:
重点:使学生利用单位间的进率掌握名数改写的一般方法。
难点:进行单名数与复名数的改写时,小数点的移动规律。
教具准备:
幻灯片课件。
主要学习方法及教学策略分析
这节课在教法和学法上力求体现以下几点:
1、坚持以“学生为主体,教师为主导,训练为主线”的原则,主要采用启发诱导的教学方法,引导学生亲历知识的观察、发现、应用的过程。引导学生利用迁移法,讨论法,自主探究法对新知识进行主动学习。
2、注重创设情境,从学生已有的小数知识出发,紧密结合具体的生活情境和活动情境,激发学生的学习兴趣。
教学过程:
一、复习引入:
1、0.36×100=4.08×1000=30.2÷100=12÷1000=
2、1米=()分米=()厘米1千米=()米
1吨=()千克1千克=()克
1平方米=()平方分米
(设计意图:1、复习巩固,使学生能熟练移动小数点。2、使学生进一步明确常用长度单位、质量单位、面积单位间的进率。)
二、新课导入
在日常生活和生产中,我们经常用到小数。在课前大家都收集了生活中的小数,把你收集到的生活中的小数说给同学们听一听。学生汇报各自收集到的小数,并说一说每个小数表示的含义。
老师展示教科书上的图片和做一做,指名说它们表示的含义。
特别指出:小红体操得分是9.25分,你觉得这个成绩怎么样?小丽的体温是38.5度,你觉得她的体温正常吗?
同桌之间再互相交流一下自己收集的小数的含义。
(设计意图:学生通过课前的搜集生活中的小数的过程,互相交流自己收集到的小数,观察图片中的小数,以及互相说说这些小数表示的含义,使学生进一步体会和感受生活中处处有小小数,处处有数学,同时进一步理解了小数的含义。)
三、新课学习
1、名数的认识
在计量长度、面积、重量、时间时,得到的数都带有单位名称,如1米30厘米,125厘米,32千克,30.4千克……等.通常把量得的数和单位名称合起来叫做名数。
观察同学们说出的这些名数,有什么相同点和不同点?
相同点:都是测量的结果,有数有单位;
不同点:有的名数只带有一个单位名称,有的名数带有两个或两个以上的单位名称。
带有一个单位名称的名数,叫做单名数;带有两个或两个以上单位名称的叫做复名数。
大家能举出一些单名数和复名数的例子吗?
学生举手发言
(设计意图:让学生知道名数和数区别,同时知道单名数和复名数的概念)
2、教学例1
通过刚才的学习,大家发现小数在生活中的应用真是广泛呀!这里就有四个同学,他们在比身高,你们来给他们排排队吧。
投影出示图片
请同学们观察这四个名数,能直接比较它们的大小吗?要想比较它们的大小,你有什么想法?
学生讨论回答:
把它们的单位都化相同了再比较。
把它们都改写成以米为单位的数
把它们都改写成以厘米为单位的数
(设计意图:使学生明确要比较大小,必需把单位统一。有两种方案:或者都改写成高级单位的,或者都改写成低级单位的。)
(1)教学低级单位的数改写成高级单位的数
请你们以小组为单位合作完成把它们改写成以米为单位的数
学生交流讨论
80厘米=()米
应该怎样改写?学生汇报:说一说是怎样想的?
(设计意图:小组讨论,合作学习,自主对新知识进行主动探究学习。)
学生可能有这样两种方法:
①因为100厘米=1米,80厘米=米=0.80米
②80厘米=80÷100米=0.80米,其中的80÷100可以利用小数点移动的规律进行计算,缩小100倍也就是小数点向左移动2位,所以80÷100=0.80。
补充说明:小数末尾的.零可以去掉。
两种方法,你更喜欢哪一种?为什么?(学生可能会选择第二种,比较简便)
(设计意图:算法多样化与优化。)
像这样把一个单位的数换成另一个单位的数,叫做名数的改写。(板书课题)
再来看一看厘米和米这两个单位哪一个单位大,哪一个单位小?
我们把较大的单位叫做高级单位,而把较小的单位叫做低级单位。这道题就是把低级单位“厘米”作单位的名数改成高级单位“米”作单位的名数。
讨论:怎样把低级单位的数改写成高级单位的数?
小组讨论后,汇报(用低级单位的数去除以进率)
教师出示1米45厘米=()米
这道题与上面的题相比有什么不同?(是复名数改写成单名数)
引导学生讨论交流:怎样将复名数改写成单名数?小组讨论一下,谁能说说你是怎么想的?
(引导学生说出:45厘米=0.45米,0.45米和1米合起来是1.45米)
(设计意图:明确单名数改单名数、复名数改单名数的区别)
(2)练一练
用这种改写方法改写下面各题
9020千克=()吨7450米=()千米
23分米=()米1350克=()千克
(设计意图:熟练低级单位名数改写成高级单位名数的方法)
(3)教学高级单位的数改写成低级单位的数
0.95米=()厘米
观察这道题与刚才上面80厘米=()米哪道题有什么不同?你能根据上面哪道题改写的方法推想出这道题的改写方法吗?
小组讨论
这是一道高级单位改写成低级单位的数,应乘以进率。1米=100厘米,0.95×100=95,所以0.95米=95厘米
怎样把高级单位的单名数改写成低级单位的单名数呢?
小组讨论后,汇报(用高级单位的数去乘进率)
(设计意图:学生有了上面学习的经验,再利用知认的迁移和类推,让学生自主学习高级单位名数改写成低级单位名数的'方法,教师只作适当的指导)
1.32米=()厘米
可以这么想:1.32米=1米+0.32米=100厘米+32厘米=132厘米,还可以这么算:1.32米=1.32×100厘米=132厘米。
请同学们完成书上的做一做:
3.7吨=()千克0.86平方米=()平方分米
0.3千克=()克2.63千米=()米
四、课堂总结
1.这节课学习了什么?
2.通过这节课的学习你有什么收获和体会?
3.还有什么疑问?
五、作业
1、教科书第70页—71页第1题和第3题
第一题:下面牺物品价签上的小数点都标错了,请改正过来。
第二题:辩识托盘称上物品是重量是多少克或多少千克。
(设计意图:联系生活实际,进一步明确实际生活中的小学的含义。)
2、13厘米=()分米86克=()千克
109分米=()米5350米=()千米
3、1.09米=()毫米2.56吨=()千克
2.3千克=()克4.6米=()分米
2.95元=()元()角()分
4、71页6题
(设计意图:通过练习题,让学生巩固名数改写的方法)
教学后记:
本节课的主要目标是在学生已经掌握了小数性质以及小数点移动引起小数大小变化的基础上,通过身边的小数入手,主要让学生学会一般名数改写的方法。在整个的教学过程中,虽然也有一些亮点,如结合生活的数学,把数学问题生活化,教学安排有层次有坡度,也能按照知识迁移的方式让学生去学习,体现了算法多样化与最优化,但总得教学效果还是不太理想,离目标的达成还有一定的距离。
问题原因有多方面的:
一是在整堂课中由于缺乏必要的理论支撑,对新课程理念体现的较少。
二是教师问题有些零碎,问题缺乏有效性,把学生束缚得太多,总担心学生不明白。
三是这节名数改写的课要求学生必须对各计量单位间的进率以及小数点的移动特别明确和熟练,才能达到顺利的改写,但实际是学生对这部分知识已经生疏淡忘了,因此造成教学过程有些吃力。四是这节课学生的学习积极性没有被调动起来,可能跟与知识有一定的难度有关。五是教师在语言要更加精练准确,在评价学生的方式上还需多下功夫。
生活中的比课件 篇5
教学目标:
1、培养学生回忆生活中各种奇闻趣事,体验生活中点滴乐趣。
2、指导学生创作一幅《生活的趣事》的绘画作品。
教学重、难点:
1、把生活中的趣事表现清楚。
2、突出了主题,画面生动有趣。
教具学具:绘画工具
教学过程:
一、组织教学:
二、讲授新课:
1、导入:世界每天都在发生着不同的变化,每天都会发生很多有趣的事情。这几天你发生了哪些有趣的事情?
2、新授
教师说说自己以前发生的有趣的`事情
(1)出示一幅学生的绘画作品,启发学生看看说说画上所表现的故事。
(2)欣赏书中图例,谈谈你的感受。
(3)指导创作方法:明确主题,确定人物,添画相应的背景。
三、创作要求:
1、可以画有趣的课外活动,节日中发生的有趣的事,看到好玩的节目……
2、画面主体突出,层次清晰,人物要刻画仔细,颜*鲜艳。
3、添画相应的背景。
四、学生作画,教师辅导
五、收拾整理
生活中的比课件 篇6
活动设计背景
幼儿期的孩子们好奇心强,什么都想看以看、摸一摸,因为他们缺少生活经验,所以不能很好的把握什么事情能做什么事情不能做,遇到突发事件时不知如何处理,为保证孩子们的健康和安全,防止意外伤害的发生,我特设了本节课,让孩子们通过对安全标志的认识,了解安全标志的意义,从而提高安全意识,进一步培养自我保护意识和能力。
活动目标
1、认识生活中的一些常见标志,了解它们的含义和作用
2、有初步的安全意识,知道要留心观察生活中的标志
教学重点、难点
重点:了解生活中安全标志的含义
难点:在日常生活中如何正确运用安全标志
活动准备
1、教学活动课件,安全挂图
2、每幼儿一份安全标志图
活动过程
一、创设情景,激发兴趣
1、结合教学挂图讲述故事
2、在图中有很多标志,你在生活中见过这些标志吗?
二、会说话的标志
1、教师出示六个标志(当心触电、当心夹手、禁止攀登、禁止倚靠、紧张烟火、安全出口)请幼儿猜猜分别是什么含义
问题:你们见过它们吗?它们表示什么意思?
提示:有些图形比较形象,幼儿容易猜出其含义,有些比较抽象,需要教师加以引导。
3、介绍标志的含义和作用
三、小小标志大用处
1、请幼儿拿出活动材料,讲述图中的场景并动手操作
问题:图片里的小朋友遇到了什么?需要哪些小标志的帮助呢?请你把对应的标志贴在图片旁边的方框里
2、教师小结:今天我们认识了一些小小的标志,可别小看了这些标志,通过它们我们就能够避开危险,保护自己和身边的人
活动延伸:
1、让幼儿回家后把今天所学的讲给爸爸妈 妈听
2、将安全标志挂在班级适当的位置,便于幼儿巩固知识
3、在日常生活中让幼儿注意观察周围其他标志
教学反思
本节课是引导幼儿认识生活中常见的标志,并了解其含义和作用,培养了安全意识。在活动开始时我以故事的形式导入主题,幼儿很感兴趣,本节课所认识的标志都是幼儿生活中常见的,所以在活动操作的过程中,幼儿几乎都能很好的找出相应的标志。在活动结束时,我让幼儿回家后把今天所学的讲给爸爸妈 妈听,从而加深学习印象,巩固了学习知识。
生活中的比课件 篇7
培养学生的数感是新课标的一大领域。在平常的教学中,我们要试图挖掘教学中的潜在资源,培养学生的数感,以及培养学生的生活应用意识。
事先我做了布置,让学生去收集生活中的两个数据,并能知道它们的含义。课中交流时,我发现很多还是直接从课本里找定价,要么是各自的身高,要么是零食的价格。可见,农村学生的生活经验肤浅,调查途径以及收集数据的范围狭窄。但我想,学生能亲自去调查,收集数据,让学生形成数学来自于生活,沟通数学与生活的联系,目的已经达到。
课中,教师再呈现数据,让学生通过观察课本中的数据,并说说它们的实际含义,这里有质量、身高、成绩、体温等,拓宽学生的视野,感受到生活中处处体现数字。然后,让学生说说“做一做”几个数的含义,直接地感受到小数在生活中应用,并且体会到相同的小数在不同的情境中各具实际含义。学生汇报时,出现身高1.40米,我随机出现一支笔的价格是1.40元,问学生这两个1.40元的含义一样吗?学生自然能区别含义,让学生进一步体会到小数的不同含义,加深对小数的理解,培养学生的数感。
比例课件(范例12篇)
经验告诉我们,成功是留给有准备的人。在幼儿园教师的平时工作生活中,会经常需要提前准备参考资料。资料所覆盖的面比较广,可以指学习资料。有了资料,这样接下来工作才会更上一层楼!你是否收藏了一些有用的幼师资料内容呢?有请驻留一会,阅读小编为你整理的比例课件(范例12篇),相信你能从本文中找到需要的内容。
比例课件 篇1
尊敬的各位评委:
你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。
一、教材分析
1、教学内容:人教版六年级下册P39正比例的意义。
2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。
3、教学重点,难点、关键:
教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。
4、教学目标:
根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。
知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。
过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。
情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
二、学况分析
六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。
三、教法
遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。
四、学法
引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。
五、教学过程
本节课我安排了六个教学环节
第一个环节:游戏导入,激发兴趣
用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。
第二环节:引导观察,启发思考
教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。
第三环节:创设情景,观察实验
用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。
第四环节:探究成正比例的量
学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
第五环节:巩固练习,拓展提高
第六环节:全课小结
六、效果预测
在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。
本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。
比例课件 篇2
教学目的:
1.在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。
2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。
教学重点:
理解比例尺的意义
教学难点:
把线段比例转换成数值比例尺
教学过程:
一、激发兴趣,引入比例尺
脑筋急转弯
师:坐公共汽车从沙市红星路到荆州火车站,一共要用50分钟,但有只蚂蚁从沙市红星路爬到荆州火车站却只用了40秒钟。你知道是怎么回事吗?
生猜:蚂蚁可能在地图上爬。
师:对了。蚂蚁爬的是从沙市红星路至荆州火车站的图上距离,而人们坐车所行的是从沙市红星路到荆州火车站的实际距离。
师:那图上距离与实际距离之间有什么关系呢?让我们先来做个游戏。
二、动手操作,认识比例尺
1、操作计算。
师:你们喜欢画画吗?那我们来个最简单的——画线段游戏。我说物品的长度,你用线段画出它的长,行吗?
①橡皮长5厘米
②圆规长11厘米
③米尺长1米
师:咦?怎么不画了?
生:画不下。
师:那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?
生:可以把1米缩小若干倍后画在纸上。
师:这个办法不错。就用这种方法画吧。
学生画完,集体交流。
师:你是用图上几厘米的线段来表示实际1米的呢?
教师有选择的板书:
师:像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。
师:你能用比表示出图上距离与实际距离的关系吗?
教师指名回答,并板书计算过程。
2、揭示比例尺的意义。
(1)初步理解比例尺的意义
师:其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成图上距离/实际距离=比例尺。(板书)
师:下面每位同学算出自己的比例尺。
(生独立计算后汇报结果,师板书)
师:同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)
师:同学们,你们还记得我们上课前所说的最后一道脑筋转弯的题目吗?原来坐车是从沙市红星路到荆州的火车站实际距离约是18千米,而蚂蚁行的是30厘米的图上距离,怪不得只要3秒呢!那么,你能求出这副地图的比例尺吗?
(学生做前先交流)
师:大家交流一下,谁能告诉大家首先要做什么事情?
师:先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先写出比,再把单位统一起来,最后化简比。(板书1. 写出比。2. 单位统一。3. 化简比)
学生汇报计算结果
让能说说求一幅图的比例尺的方法是怎样的?
对应练习:
完成课本第49页“做一做”
(2)联系生活,进一步理解比例尺
师:你还在哪里见过比例尺?
生1:大型建筑。
生2:房屋装修。
师:根据这幅图的比例尺,你能用另一种说法说出图上距离和实际距离的关系吗?
(让学生说出图上距离是实际距离的几分之几?实际距离是图上距离的几倍?)
三、认真比较,深刻理解
1、比较比例尺,揭示数值比例尺的意义。
师:像1:1000000这样的比例尺是数值比例尺。它也可以写成1/1000000你。能说说比例尺1:100000000所表示的意思吗?
生:距离是实际距离的一百万分之一,实际距离是图上距离的一百万倍。
师: 你还见过怎样的比例尺?(出示中国地图)引出线段比例尺。
2、认识线段比例尺。
师:把上面的线段比例尺改写成数值比例尺。
1厘米:60千米
=1厘米:6000000厘米
=1:6000000
小结:
线段比例尺和数值比例尺是比例尺的两种基本形式。它们之间可以进行转换。把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就可以了。
3、认识把实际距离放大后的比例尺
同学们,刚才我们把米尺的实际距离缩小若干倍后画在纸上,我们还求出了它的比例尺是1:100等,在实际生活中有没有要把实际距离放大后再画在图上的呢(有)
(出示三年级科学书中蚂蚁图)
师:这是同学们三年级科学书中蚂蚁图,他是把蚂蚁放大后画在书上,图上蚂蚁长6厘米,而蚂蚁实际长6毫米。你能算出这幅图的比例尺吗?
(学生尝试算出这幅图的比例尺,指名板演)
出示一些精密零件的图和图纸,介绍把实际距离放大后的比例尺。
纵观这节课所认识的比例尺,思考下列问题:
1、比例尺与一般的尺相同吗?化简后的比例尺带不带单位?
2、求比例尺时,通常要做什么?
3、化简后的比例尺,它的前项和后项一般是什么形式?
四、巩固练习,灵活运用
1、小结看书。
2、练习:
(一)填一填
(1)在比例尺是1:20xx的地图上,图上距离1厘米表示实际距离( )
(2)在比例尺是1:4000000的地图上,图上距离是实际距离的( ),实际距离是图上距离的( )倍。
(3)出示一个线段比例尺表示图上1厘米相当于实际距离( )米,把这个比例尺改写成数值比例尺是( )。
(二)判断
(1)小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。
(2)某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。
(3)一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离 .
六、谈学后体会。
这节课你学到了什么?
比例课件 篇3
教学内容
教科书第54页例3,练习十二5,6,7题。
教学目标
1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。
2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。
3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。
教学重、难点
运用正比例知识解决简单的实际问题。
教学准备
教具:多媒体课件。
学具:作业本,数学书。
教学过程
一、复习引入
1.判断下面各题中的两种量是不是成正比例?为什么?
(1)飞机飞行的速度一定,飞行的时间和航程。
(2)梯形的上底和下底不变,梯形的面积和高。
(3)一个加数一定,和与另一个加数。
(4)如果y=3x,y和x。
2.揭示课题
教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。
二、合作交流,探索新知
1.用课件出示例3
教师:这幅图告诉我们一个什么事情?需要解决什么问题?
教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。
2.全班交流解答方法
指导学生思考出:
(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。
(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。
(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。
3.尝试用正比例知识解答
如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。
教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:
(1)题中有哪两种相关联的量?
(2)题中什么量是不变的?一定的?
(3)题中这两种相关联的量是什么关系?
引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。
随学生的回答,教师可同步板书:
教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?
引导学生讨论后回答,先要把李老师应付的.钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。
教师:同学们会计算吗?把这个比例式计算出来。
学生解答。
教师:解答得对不对呢?你准备怎样验算?
学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。
三、课堂活动
1.出示教科书第49页的例1图和补充条件
竹竿长(m)26…
影子长(m)39…
教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?
教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?
学生独立思考解答,讨论交流。
2.小结方法
教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)
(1)设所求问题为x。
(2)判断题中的两个相关联的量是否成正比例关系。
(3)列出比例式。
(4)解比例,验算,写答语。
四、练习应用
完成练习十二的5,6,7题。
五、课堂小结
这节课我们学习了什么知识?你有什么收获?
比例课件 篇4
导学目标
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
导学重点:成正比例的量的特征及其判断方法。
导学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。
预习学案
填空
1、如果路程时间=()(一定),那么()和()成正比例。
2、如果油的重量花生仁重量=()(一定),那么()和()成正比例。
3、如果yx=k(一定),那么()和()成正比例。
导学案
学习例1
在相同的杯子里装上水,下表显示了水的高度和体积,把表填写完整。
高度24681012
体积50100150200250300
底面积
体积和高度有什么变化?观察他们的比值,你发现了什么?
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:
yx=k(一定)
想一想,生活中还有哪些成正比例的量?
小组讨论交流。
看书P40例2。
(1)题中有几种量?哪两种量是相关联的量?
(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?
(3)它们的数量关系式是什么?
(4)从图中你发现了什么?
(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?
三、课堂小结:
什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?
课堂检测
下列各题中的两种相关联的量是否成正比例关系,并说明理由。
1、正方体的棱长和体积
2、汽车每千米的耗油量一定,耗油总量和所行千米数。
3、圆的周长和直径。
4、生产800个零件,已生产个数和剩余个数。
5、全班的人数一定,一、二组的人数和与其他组的人数和。
6、和一定,加数与另一个加数。
7、小苗牌2B铅笔的总价和购买枝数。
8、出油率一定,所榨出的油的重量和大豆的重量。
课后拓展
从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得12,二儿子分得13,小儿子分得19,但不能把牛杀掉或卖掉。三个儿子按照老人的要求怎么分也分不好。后来一位邻居顺利地把17头牛分完了,你知道三个儿子各分得多少头牛吗?
板书设计
成正比例的量
高度/cm24681012
体积/cm350100150200250300
底面积/cm2
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例表达式:yx=y(一定)
比例课件 篇5
教学内容:教科书第1921页正比例的意义,练习六的13题。
教学目的:
1.使学生理解正比例的意义,能够根据正比例的意义判断两种量是不是成正比例。
2.初步培养学生用事物相互联系和发展变化的观点来分析问题。
3.初步渗透函数思想。
教具准备:投影仪、投影片、小黑板。
教学过程:
一、复习
用,投影片逐一出示下面的题目,让学生回答。
1.已知路程和时间,怎样求速度板书:=速度
2.已知总价和数量,怎样求单价板书:=单价
3.己知工作总量和工作时间,怎样求工作效率板书:
=工作效率
4,已知总产量和公顷数,怎样求公顷产量板书:=公顷产量
二、导人新课
教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)
三、新课
1.教学例1。
用小黑板出示例1:一列火车行驶的时间和所行的路程如下表:
提问:
谁来讲讲例1的意思(火车1小时行驶60千米,2小时行驶120千米)
表中有哪几种量
当时间是1小时,路程是多少当时间是2小时,路程又是多少
这说明时间这种量变化了,路程这种量怎么样了(也变化了。)
教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢
教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢
让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来:=60.=60,=60让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。
然后教师指着=60,=60=60问:比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗板书:=速度(定)
教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量(两种相关联的量。)路程和时间这两种量的变化规律是什么呢(路程和时间的比的比值(速度)总是一定的。)
2.教学例2。
出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。
让学生观察上表,并回答下面的问题:
(1)表中有哪两种量
(2)米数扩大,总价怎样米数缩小,总价怎样
(3)相对应的总价和米数的比各是多少比值是多少
当学生回答完第二个问题后,教师板书:=3.1,=3.1,=3.1
然后进一步问:
这个比值实际上是什么你能用一个关系式表.示它们的关系吗板书:=单价(一定)
教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。
3.抽象概括正比例的意义。
教师:请同学们比较一下刚才这两个例题,回答下面的问题;
(1)都有几种量
(2)这两种量有没有关系
(3)这两种量的比值都是怎样的
教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定。像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系。(板书出教科书上第20页的倒数第二段。)
接着指着例1的表格说明:在例1中,路程随着时间的变化而变化,它们的比值(速度)保持一定,所以路程和时间是成正比例的量。随后让学生想一想:在例2中,有哪两种相关联的量:它们是不是成正比例的量为什么
最后教师提出:如果我们用字母X,y表示两种相关联的量.用字母K表示它们的比值,你能将正比例关系用字母表示出来吗?
学生回答后,教师板书:=K(一定)
4,教学例3。
出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例
教师引导:
面粉的总重量和袋数是不是相关联的量
面粉的总重量和袋数有什么关系它们的比的比值是什么这个比值是否定(板书:=每袋面粉的重量(一定))
已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例。
5.巩固练习。
让学生试做第21页做一做中的题目。其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以。
四、课堂练习
完成练习六的第13题。
第1题,做题前,让学生想一想:成正比例的量要满足哪几个条件然后让学生算出各表中两种相对应的数的比的比值,看看它们的比值是否相等。如果比值相等就可以列出关系式进行判断。第(3)小题,要问一问学生为什么正方形的边长和面积不成比例。(因为相对应的正方形的边长和面积的比的比值不相等。)
第2题,先让学生自己判断,再订正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。
第3题,可先让同桌的同学互相举例,然后再指名举出成正比例的例子。
比例课件 篇6
【教学内容】
《义教课标实验教科书数学》(人教版)六年级下册第39-41页成正比例的量。
【教学目标】
1、使学生理解正比例的意义,会正确判断成正比例的量。
2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
【教学重点】
正比例的意义。
【教学难点】
正确判断两个量是否成正比例的关系。
【教学准备】
多媒体课件
【自学内容】
见预习作业
【教学预设】
一、自学反馈
1、揭题:今天这节课,我们一起学习成正比例的量。板书:成正比例的量
2、通过自学,你能说说什么叫做成正比例的量?
3、你是怎样理解成正比例的量的含义的?
4、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?
在教师的引导下,学生会举出一些简单的例子。
二、关键点拨
1、正比例的意义
(1)出示表格。
高度/㎝24681012
体积/㎝350100150200250300
底面积/㎝2
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25平方厘米。
板书:
教师:体积与高度的比值一定。
(2)说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
(3)用字母表示。
如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:
2、判断正比例关系:下面哪些是成正比例的两个量?
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
地砖的面积一定,教室地板面积和地砖块数成正比例。
三、巩固练习
1、学生独立完成例2后反馈交流。
(1)从图中你发现了什么?
这些点都在同一条直线上。
(2)看图回答问题。
①如果杯中水的高度是7㎝,那么水的体积是多少?
②体积是225㎝3的水,杯里水面高度是多少?
③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?
(3)你还能提出什么问题?有什么体会?
2、做一做。
过程要求:
(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?
(2)表中的路程和时间成正比例吗?为什么?
(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。
(4)行驶120KM大约要用多少时间?
(5)你还能提出什么问题?
3、独立完成第44页练习七第1、2题。
4、判断并说明理由。
(1)圆的周长和直径成正比例。
(2)圆的周长和半径成正比例。
(3)圆的面积和半径成正比例。
四、分享收获畅谈感想
这节课,你有什么收获?听课随想
比例课件 篇7
教学目标:
1.在实践活动中体验生活中需要的比例尺。使学生认识比例尺的意义,学会求一幅平面图的比例尺。
2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。
教学重点:
认识比例尺的意义。
教学难点:
求一幅平面图的比例尺。
板书设计:
比例尺
(1)9.5厘米:95米=9.5:9500=1:1000
6厘米:60米=6:6000=1:1000
(2)19厘米:95米=19:9500=1:500
12厘米:60米=12:6000=1:500
图上距离 :实际距离=比例尺
教学过程:
(包括导引新课、依标导学、异步训练、作业设计等)
一、生活原型再现
师:(出示孙楠同学的照片)你们认识他吗?他是谁?
生:孙楠。
师:怎么可能呢?照片上的人这么小,怎么会是他呢?
生:是缩小了……
师:如果孙楠的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?
生:不像他了,像丑八怪……
师:那怎样才能像他呢?
生:都要缩小。
师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?
生:不像,要缩小相同的倍数。……
二、创设情境,以疑激思
同学们都喜欢足球,踢足球要讲究战术,要研究战术需要设计足球场的平面图,下面我们就来当一回小小设计师,设计出足球场的平面图。
出示:足球场:长 95米,宽60米。 学生作图。
三、 独立探究,合作交流。
1、通过学生讨论,引出学习要求。
(1)确定图上的长和宽的长度;
(2)画出足球场的平面图;
(3)写上图上的长和宽的长度;
(4)分别写出图上长、宽与实际长、宽的比,并化简。
根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。
2、学生小组学习。
3、学生汇报设计思路。
生1:我是把实际的长和宽都缩小1000倍,图上的长就是9.5厘米,宽就是6厘米,这样的长方形图就是足球场的平面图。……
(根据学生的汇报板书)
图上距离:实际距离
(1) 9.5厘米:95米=9.5:9500=1:1000
6厘米:60米=6:6000=1:1000
(2) 19厘米:95米=19:9500=1:500
12厘米:60米=12:6000=1:500
4、揭示比例尺的意义。
图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离 :实际距离=比例尺
师:1:500的比例尺,说说你是怎样理解的?
生:表示图上距离是实际距离的1/500;
表示实际距离是图上距离的500倍;
图上距离和实际距离的比是1:500;
图上1厘米表示实际距离5米,
介绍数值比例尺和线段比例尺。让学生掌握两种比例尺各自的特点。
四、加深理解,拓展应用。
(1)在咱学校校园的平面图上,用15厘米长的线段表示实际长度60米,你能求出这幅图的比例尺吗?
(2)辨析:比例尺是一把尺吗?
(3)比例尺一般出现在什么地方?(地图上或平面图上)
(4)出示山东省主要城市位置图。
师:在这张地图上,你去过什么地方?
师:今年暑假老师准备去泰安登泰山,你能帮老师算一算烟台到泰安有多远吗?需要什么条件?
生:比例尺。出示比例尺 1∶8000000
生:图上距离。
师:给你一把尺子能解决这个问题吗?
学生尝试解决。
交流:
生1:在这幅地图上,我用尺子量得烟台到泰安的距离是5.5 厘米,根据比例尺图上1厘米表示实际距离80千米,5.5×80=440千米。
生2:根据实际距离是图上距离的8000000倍,可以用
5.5×8000000=44000000厘米=440千米
生3:根据图上距离是实际距离的1/8000000,也可以用
5.5÷1/8000000=5.5×8000000=44000000厘米=440米
生4:老师,也可以用方程来解。
解:设烟台到泰安的距离是x厘米。
1:8000000=5.5:x
x=44000000
44000000厘米=440千米
师:那老师如果乘坐每小时100千米的汽车,几小时就能到达?
生:4.4小时
师:可是老师以前去过泰安,是需要8个多小时才能到达的,这是为什么呢?
一时,学生都皱起了眉头陷入了沉思,经过片刻的等待,终于有孩子举起了手:“老师,我们量出的图上距离是直线的,而实际的路线不可能是直的,汽车要走许多许多弯路的。”
忽有一学生喊到:“老师,如果我们通过飞机来计算,那肯定是准确的,因为飞机可是走直线的吧!”……
五、反思体验 拓展完善
1、学生谈自己的收获,总结本节课的内容。
2、你还想知道什么?
六、作业设计
自主练习:2、3
教学后记:
(包括达标情况、教学得失、改进措施等)
上完课,我有一种意犹未尽的感觉,经历了实践与理论的深思与探索,对新课标有了更深入的理解。
(1)在学生已有的经验上学习数学
新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示学生的照片,学生对照片上的人是按倍数缩小了这种生活常识有了深刻的体验,再让学生来画足球场的平面图,可以说是水到渠成的。
(2)让学生经历了知识的形成过程
只有体验过,理解才会深刻。让学生在画足球场的交流互动中,体验探究比例尺的产生过程,理解比例尺产生的必要性。同时在探究过程中,学生对比例尺的意义理解是多方位的,个性化的。有了学生个性化的体验,才有了后面解决问题的个性化的表达。
(3)让学生密切联系了生活实际
数学来源与生活,又应用于生活实际。本节课从让学生设计足球场平面图,到让学生计算老师到泰安的实际距离及需要的时间,“生活中处处有数学“的理念贯穿了整个教学的始终,使学生真切地感受到学习数学的价值。
比例课件 篇8
教学目标
1、通过自主探究,学生能理解比例的基本性质,认识比例的各部分名称。
2、学生能运用比例的基本性质正确判断两个比能否组成比例。
3、激发学生学习兴趣。
教学重点:
1、认识比例的各部分名称。
2、理解比例的基本性质。
教学难点:
会根据比例的基本性质正确判断两个比能否组成比例。
知识链接:
比例的意义
教学过程:
一、创设情境,明确目标
1、什么叫比例?
2、下面的比能组成比例吗?你是怎样判断的?
2.4:1.6和60:40
二、导学探究,建立模型
(一)导学探究,解决问题
1、导学提示,明确方向
请自学教材41页例1之前的内容,然后小组合作,完成下面的问题。
1)比例各部分的名称是什么?
2)找出比例2.4:1.6=60:40的外项和内项,计算比例中两个外项和两个内项的积,你有什么发现?
3)请自己任意举例,验证你的发现。
4)试着总结比例的基本性质。
2、自主学习,解决问题
(二)展示交流,建立模型
1、学生汇报,重点释疑
1)组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
2)2.4∶1.6=60∶40
两外项积是:2.4×40=96
两内项积是:1.6×60=96
2.4×40=1.6×60
学生自主学习,解决问题。
各小组代表汇报
全班交流
3)学生举例子,验证发现的规律。
2、归纳小结,建立模型
在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
三、练习检测,巩固应用
1、填空
1、组成比例的四个数,叫做比例的()。两端的两项叫做比例的(),中间的两项叫做比例的()。
2.在比例里,()等于()。这叫做比例的基本性质
3、在a:7=9:b中,()是内项,()是外项,a×b=()。
4、一个比例的两个内项分别是3和8,则两个外项的积(),两个外项可能是()和()。
2、判断
(1)因为6×9=18×3,所以6∶3=18∶9()
(2)在一个比例里,两个内项互为倒数,两个外项也应互为倒数。()
3、应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
6∶3和8∶50.2∶2.5和4∶50
四、回顾总结,反思提升
这节课你有什么收获?
先独立完成,再指名汇报,全班交流,集体订正。
先判断,并说明理由。
巩固学生对比例各部分名称的理解。
巩固学生对比例的意义的理解。
巩固学生能正确的应用比例的基本性质判断两个比能否组成比例
板书设计
比例的基本性质
组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
教学反思
1、在教学比例(特别是分数形式的比例)的各部分名称时,要特别强调哪是外项,哪是内项。
2、本节课充分的体现了学生是学习的主人,提高了学生自主探究的能力。
比例课件 篇9
教学内容:
九年义务教育六年制小学数学第十二册P63——64
教学目标:
1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。
2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。
3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。
教学重点:
能认识正比例关系的图像。
教学难点:
利用正比例关系的图像解决实际问题。
设计理念:
数学课堂教学中要让学生亲身经历知识形成的全过程。课堂中向学生动态地展示正比例图像的绘制过程,引导学生能用“描点法”画出表示正比例关系的图像,通过观察帮助学生体会成正比例的量的变化规律,进而掌握利用图像由一个量的数值估计另一个量的数值的方法,使学生能逐步利用正比例关系的图像解决实际问题
教学步骤教师活动学生活动
一、复习激趣1、判断下面两种量能否成正比例,并说明理由。
◎数量一定,总价和单价
◎和一定,一个加数和另一个加数
◎比值一定,比的前项和后项
2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?
学生口答
想象猜测
二、探究新知1、出示例1的表格(略)
根据表中列出的两种量,在黑板上分别画出横轴和纵轴。
你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?
2、学生尝试画出正比例的图像
3、展示、纠错
每个点都应该表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清:
(1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?
借助直观的图像理解两种量同时扩大或缩小的变化规律。
学生到黑板上示范
互相评价纠错
学生讨论
说说是怎样想的
三、巩固延伸
1、完成练一练
小玲打字的个数和所用的时间成正比例吗?为什么?
根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。
估计小玲5分钟打了多少个字?打750个字要多少分钟?
2、练习十三第4题
先看一看、想一想,再组织讨论和交流。
要求学生说出估计的思考过程。
3、练习十三第5题
先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。
组织讨论和交流
4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?
根据表中的数据,描出所对应的点,再把它们按顺序连起来。
同桌之间相互提出问题并解答。
独立完成,集体评讲
想一想,说一说
画一画,议一议
学生设计,交换检查并相互评价
四、评价反思
这节课你学会了什么?你有哪些收获?还有哪些疑问?
比例课件 篇10
教学内容:
北师大版小学数学第十二册第二单元第30—31页。
教学目标:
1让学生在实践活动中体验生活中需要比例尺。
2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。
3运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
4学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
教学重点:正确理解比例尺的含义。
教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
教学准备:多媒体
教学过程:
一、独立探究、合作生成
教师:请同学们在自己纸上画出长9米,宽7米的教室地面来。
学生1:(有学生会发出质疑)哪有那么大的本子?不够画怎么办?
学生2:可以利用前面所学的知识————图形的放缩,把教室的长和宽都缩小一定的倍数在纸上表示出来。
教师:你的想法很对,跟笑笑同学的想法一样(用课件出示第31页笑笑家的平面图),在这幅图上你们发现了什么新问题?
学生:在图的右下方有“比例尺1:100”
教师:观察真仔细!比例尺1:100是什么意思?
1学生讨论。
2学生汇报:
学生1:图上1厘米长的线段表示实际100厘米。
学生2:图上距离是实际距离的1/100。
学生2:表示实际距离是图上距离的100倍。
3揭示比例尺的意义。
教师:比例尺是表示图上距离与实际距离的比,这就是今天要学习的新知识——比例尺(板书课题)
二、自然生成、进行应用
1教师补充板书:图上距离∶实际距离=比例尺
图上距离/实际距离=比例尺
2教师:你们在什么地方看到过比例尺?
学生1:在中国地图上。
学生:在世界地图上。
学生:在房屋设计图上。
……
2教师:比例尺1∶300是什么意思?(注重意思的多样化)
学生交流(略)
3认识比例尺特征:
(1)课件出示中国地图的比例尺、世界地图的比例尺……
教师:通过观察,你们发现比例尺有什么特点?
学生:地图上的比例尺一般写成前项是1的比
4、运用知识,尝试解决问题:
教师:现在请大家量一量平面图中笑笑卧室的长是()厘米,宽是()厘米。
算一算笑笑卧室实际的长是()米,宽是()米,面积是()平方米。
(1)学生独立完成。
(2)汇报算法
学生1:先量出卧室的长5厘米,实际长=5厘米×100=500厘米=5米
学生2:量出卧室的长4厘米,实际宽=4厘米×100=400厘米=4米
学生3:卧室的实际面积是5×4=20平方米
三、解决问题、巩固提高
1、算出笑笑家的总面积是多少平方米?
2、在父母卧室南墙正中有一扇宽为2米的窗户,在平面图上标出来。
3按比例尺是1:200,画出我们教室的平面图。
四、总结深化、活化知识
这节课大家有哪些收获?
五、研究性作业
1完成第30页的思考题。
2、试画自己家庭的住宅平面图,并计算一下每个房间的面积。
比例课件 篇11
老师执教的《正比例的意义》这课,对我感受很深。
一.结合生活实际
周老师利用学校慈善一日捐的例子,引出了两个相关联的量,为新课后区别判断正比例关系提供了很好的材料。同时使学生感悟到生活中处处有数学,数学来源于生活。
二.突出学生的主体地位
周老师教态自然,语言幽默,轻松自如,具有大师风范。周老师利用汽车和自行车行驶的路程和时间变化的表格让学生去比较,去发现。寻找相同点和不同点,使学生发现汽车行驶的路程和时间的变化是有规律的,自行车行驶的路程和时间的变化是没有规律的。从而周老师点出了正比例的意义,使学生感悟到汽车行驶路程和时间的比值一定。让学生主动探究学习,突出了学生的主体地位,老师真正起到了引导作用。
三.练习设计具有阶梯性
周老师自从引出正比例定义后,让学生判断这两个量是否成正比例关系。首先出示表格让学生观察数量变化进行判断;其次出示文字叙述题进行判断;最后利用带有字母的等式进行判断。练习设计由易到难,符合了学生的认知规律。
建议:我觉得在某些环节有点快。例如引出正比例定义后,应该完整出示正比例的定义让学生读一读;在做练习时,第一题填空题和最后一题深化题不要马上让学生齐读,应该让学生看一看,想一想,再指名说一说。在教学正比例时最好和斜线图结合起来,这样可以使学生加深对正比例的理解。
比例课件 篇12
一、教材分析
【复习内容】
教科书第12册94页“整理与反思”和94-95页“练习与实践”1-6题
【知识要点】
1.比和比例的意义与性质:
比比例
意义两个数的比表示两个数相除。(老教材:两个数相除又叫做这两个数的比.)表示两个比相等的式子叫做比例。
基本
性质比的前项和后项都乘或除以相同的数(0除外),比值不变。在比例里,两个外项的积等于两个内项的积。
2.比、分数与除法的关系:
a:b==a÷b(b≠0)
3.求比值和化简比的联系与区别:
意义方法结果
求比值比的前项除以比的后项所得的商叫做比值。前项除以后项一个数(整数、小数、分数)
化简比把两个数的比化成最简单的整数比前项和后项都乘或除以相同的数(0除外)一个比
4.图形的放大与缩小(新教材增加的内容)
5.解比例
6.按比例分配的实际问题
【教学目标】
1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。
2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。
3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。
二、教学建议
复习比的知识抓住三点进行:一是举实例说说什么是比,既要有两个同类数量的比,也要有两个不同类数量的比,使学生对比的含义有比较全面的理解。二是通过改写a∶b,沟通比与分数、除法的关系,从除数不能是0体会分母、比的后项也不能是0。三是找出比的基本性质、分数的基本性质和商不变的规律之间的内在联系,完善认知结构。
练习与实践中,要利用第3题里的比组成比例,回忆比例的意义和性质,理解把照片①变成照片④是把图形按一定的比缩小,把照片④变成照片①是按一定的比把图形放大。
三、知识链结
1.认识比(教科书六上P68、69例1例2)
2.比的基本性质(教科书六上P70、例3)
3.化简比(教科书六上P71例4)
4.按比例分配(教科书六上P75例5)
5.图形的放大与缩小(教科书六下P38、39例1例2)
6.比例的意义和性质(教科书六下P40例3、P43例4)
7.解比例(六下P45例5)
四、教学过程
(一)比的知识:
1.举例说说什么是比?什么是比的基本性质?
2.说一说用比的知识可以解决哪些实际问题。
3.完成教科书p94“练习与实践”
(1)完成第一题:学生独立数出班上男女生人数,再完成此题。
(2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。
(二)比和分数、除法的联系
出示:a∶b=( )( )=( )÷( )(b≠0)
1.先填空,再说说这样填的根据是什么?
2.说说比的基本性质与分数的基本性质、商不变的规律的联系。
3.练一练:
(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。( )
(2)填空:( )( )=( )÷( )=( )∶( )(填好后展示学生不同的结果。)
(三)比例的知识
1.什么是比例?
2.比和比例有什么关系?(小组讨论后交流)
3.比例的基本性质是什么?
4.比例的基本性质有什么作用?怎样解比例?
5.练一练:完成教科书p94“练习与实践”
(1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。
估计后再算一算,来验证估计。
(2)完成第4题:解比例,做好后选两题验算一下。
(四)完成教科书p95“练习与实践”
(1)完成第5题:先学生独立做最后交流第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的93100。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。
(2)完成第6题:第一小题让学生独立得出:深色与浅色地砖铺地面积的比是20∶40,化简得1∶2。
第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。
(五)评价小结:
学了本课你对所学知识有什么新认识?还有什么问题?
习题精编
一、对号入座。
1.( )÷10=0.6=( )%=( ):( )=
2.把:化成最简单的比是( );千克:400克的比值是( )。
3.甲乙两数的比是3:5,甲数是乙数的( )%,乙数是甲数的( )%,甲数与两数和的比是( )。
4.一杯400克的盐水,含糖率是20%,糖与糖水的比是( ),再加入20克糖,糖与糖水的比是( )。
5.把3:8的前项加上6,要使比值不变,后项可以乘( )或加( )
6.如果A×=B×,那么A:B=( ):( ),当A=0.8时,B=( )
反比例课件9篇
常言道,优秀的人都是有自己的事先计划。在平时的学习和工作中,幼儿园教师经常会提前准备一些资料。资料主要是指生活学习工作中需要的材料。参考相关资料会让我们的学习工作效率更高。你是不是在寻找一些可以用到的幼师资料呢?小编特别为你收集的“反比例课件9篇”,请继续阅读本文相关内容!
反比例课件(篇1)
教学目标: 1.学生能通过表和图读出其中反映的数学信息。 2.结合丰富实例,认识反比例。能根据反比例的意义,判断两个相关联的量是不是成反比例。 3.解决简单的生活问题,感受反比例关系在生活中的广泛应用。 重、难点: 1.重点:理解反比例的意义。 2.难点:正确判断两种量是否成反比例。 教具准备: 电脑课件。 教学过程: 一、探究新知。 (一)故事引入。 师:从前有一个吝啬的人,有一天他去裁缝铺做帽子。他掏出一块布,说我要做一顶帽子。裁缝说行。这时他想,既然这块布能做一顶帽子,那么能不能再省点儿,做两顶呢?于是他接着说能做两顶吗?裁缝说行。他说三顶行吗?裁缝仍答道行。四顶呢?也行。好吧就做四顶。春夏秋冬各一顶。到他来去帽子的时候傻眼了。同学们知道怎么回事吗?那么在这个故事中谁发现了一对相关联的变量。他们是怎样变化的?什么量又没有变?今天,我们就来研究像这样的变量,并且揭示它们之间的变化规律。 出示课题。(师板书:反比例) (二)初步认识,直观感知。 1.教学例1(1)加法表 课件出示:加法表 师:请同学们上下对应着观察这加法表,你看懂了吗?把你看到的说给大家听听。 (这个表下面第一行书表示什么?左边第一列又表示什么?中间的这些数呢?指定两个数提问。) 师:在加法表上,把和是12的方格圈起来,提取出来一个简易的加法表。谁发现了一对相关联的变量?他们是怎样变化的?什么量没有变? 师:我们把这些和是12的`方格依次用线连接起来,可连成一条直线。 这条直线表示的是和一定,加数与加数之间的关系。谁还会用式子来表示? 师板书:加数+加数=和(一定) 2.教学例1(2)乘法表 课件出示:乘法表 师:你会看这个表吗?把你看到的说一说。提问。 课件演示:(2)在乘法表上,把积是12的方格圈起来。 师:谁发现了一对相关联的变量?当积是12时,哪个量随着哪个量的变化而变化?怎么变化的?什么量没有变? 师:把这些积是12的方格连起来,得到一条曲线。 师:这条曲线图表示的是积一定,乘数与乘数之间的关系,谁还会用式子来表示? 师板书:乘数*乘数=积(一定) 师:现在我们回过头来对比一下两个表:这两个变化关系相同吗? 追问:什么相同?什么不同? (三)深化理解,归纳概括。 1.探究活动。 生活中还有许多像这两个乘数一样的相关联变量,我们来看下面的两个生活情景。 课件示:例2、例3。 同桌合作完成以下任务。 A任选一题,完成表格。B找出相关联的变量。互相说一说,那些量在变化?怎么变?什么量没有变? 老师希望同学们在做一个思路清晰的表达者的同时,也能够耐心倾听与等待。 2.汇报小结。 找变量、怎么变(A甲随着乙的变化而变化、甲随着乙的扩大而缩小;B谁能说出变化过程中的倍数关系?甲扩大几倍,乙反而缩小到原来的几分之一。或扩大缩小相同的倍数。)谁不变、用关系式来表示。 师板书:速度*时间=路程(一定) 每杯果汁量*杯数=总量(一定) 师:回顾一下刚才我们研究的四组相关联的变量。如果让你来把它们分类,你会怎么分?为什么? 小结:这三组变量之间的变化关系有什么共同点? 生回答,师板书。一个量随着另一个量的变化而变化,在变化中这两个量的乘积一定。像这样的变量叫做成反比例的量,它们的关系叫做成反比例关系。 生读。 师:所以我们说当积一定时,两个乘数成反比例。当路程一定时,速度和时间成反比例。当果汁总量一定时,分的杯数和每杯的果汁量成反比例。 师:如果我们用字母x和y表示两种相互关联的量,用k表示他们的积。谁能够概括出反比例的关系式。 板书:X×Y=K(一定) 判断:当圆柱体的体积一定时,底和高成反比例。 (设数、列表、分析、判断) 三、练习完成练一练1、2、3题。 生找出生活中成反比例的例子,并且说明理由。(设数、列表、分析、判断。或根据公式判断。) 四、结语。 完成同一份学习任务,学习时间随着学习效率的提高而缩短;所以学习时间和学习效率成反比例。这就是反比例给我们的启示,提高效率、珍惜时间才能够尽情地享受少年时光。
反比例课件(篇2)
教学目标: 1.学生能通过表和图读出其中反映的数学信息。 2.结合丰富实例,认识反比例。能根据反比例的意义,判断两个相关联的量是不是成反比例。 3.解决简单的生活问题,感受反比例关系在生活中的广泛应用。 重、难点: 1.重点:理解反比例的意义。 2.难点:正确判断两种量是否成反比例。 教具准备: 电脑课件。 教学过程: 一、探究新知。 (一)初步认识,直观感知。 师:淘气和笑笑分12粒糖,可以怎样分?按照一定的顺序来说。 师板书:淘气糖数+笑笑糖数=12(和一定)找相关联的变量,你发现了什么变化关系? 师:有12个面积是1平方分米的小正方形,用它们来摆一个长方形。可以怎样摆?按照一定的顺序来说。 师板书:长*宽=面积(积一定)找相关联的变量,你发现了什么变化关系? 师:我们可以将这两种变化关系分别放置在加法表和乘法表中来观察。(目的在于观察图象) 课件出示:加法表 师:这个表下面第一行数表示一个加数,左边第一列表示另一个加数;中间的这些数是它们的和。我们把这些和是12的方格依次用线连接起来,你发现了什么?(可连成一条直线。) 课件示乘法表。 谁来为大家讲解这个乘法表? 师:把这些积是12的方格连起来,你发现了什么?(得到一条曲线。) 对比一下两个表:这两个变化关系相同吗? 追问:什么相同?什么不同? 两三个学生回答。(相同:一个量随着另一个量的变化而变化或两个量的变化方向相反,用手势表示;不同:和一定、积一定。图象不同,一个表示加法关系,一个表示乘法关系) (二)深化理解,归纳概括。 探究活动。 生活中广泛存在这样相关联的变量,我们来看下面的两个情景。 1.王老师和驴友外出春游,若以每小时10千米的'速度骑山地车出发,大约12小时到达目的地。那么我乘坐时速为40千米的旅游大巴车,几小时到达?自驾车以80千米每小时的速度行驶,几小时到达?生口算。提问怎么算的。 2.在旅途中,我和同伴分享600毫升的一瓶果汁。平均分成6杯每杯多少毫升?生口算。教师板书数据。 3.现在请同桌之间合作完成以下任务。 A任选一题,找出其中相关联的变量。B互相说一说,哪些量在变化?怎么变?什么量没有变? 老师希望同学们在做一个思路清晰的表达者的同时,也能够耐心倾听与等待。 4.汇报小结。 找变量、怎么变(A甲随着乙的变化而变化、甲随着乙的扩大而缩小;B谁能说出变化过程中的倍数关系?甲扩大几倍,乙反而缩小到原来的几分之一。或扩大缩小相同的倍数。)谁不变、用关系式来表示。 师随机板书用线段及箭头表示变化关系。 师:回顾一下刚才我们研究的四组相关联的变量,请将它们分类。 为什么这样分,这三组变量之间的变化关系有什么共同点? 生回答。两个变量,一个随着另一个的变化而变化,乘积一定。师板书。像这样的变量叫做成反比例的量,它们的关系叫做成反比例关系。这就是我们今天所要研究的主要内容,揭示课题:反比例。如何判断一对变量成反比例关系?生答。 师:所以我们说当积一定时,两个乘数成反比例。谁来接着说下去?当路程一定时,速度和时间成反比例。当果汁总量一定时,分的杯数和每杯的果汁量成反比例。 师:如果我们用字母x和y表示两种相互关联的量,用k表示他们的积。谁能够概括出反比例的关系式。 板书:X×Y=K(一定) 判断:第一题中哪一个变化关系成反比例?说明理由。不成反比例也说明理由。师进一步强调判断一对变量成反比例关系的条件缺一不可。 三、练习1.判断,并说明理由。完成练一练2、3题。 生找出生活中成反比例的例子,并且说明理由。(设数、列表、分析、判断。或根据公式判断。) 四、结语。 完成同一份学习任务,学习时间随着学习效率的提高而缩短;学习时间和学习效率成反比例。提高效率、珍惜时间才能够尽情地享受少年时光,这就是反比例给我们的启示。
反比例课件(篇3)
理解反比例函数的意义;根据已知条件确定反比例函数的解析式。
学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际问题;发展学生的抽象思维能力,提高数学化意识。
经历反比例函数的形成过程,体会数学学习的重要性,提高学生学习数学的兴趣;在学习过程中进行分组讨论,培养学生的合作交流意识和探索精神,体验学习的快乐与成就感。
理解反比例函数的意义;根据已知条件确定反比例函数的解析式。
体育课上测试了百米赛跑成绩,那么时间t与平均速度v的关系是怎样的?你能用含有t的代数式表示v吗?
我们知道,矩形的面积s与长a宽b之间的关系为S=ab,那么,当S=245时,长a宽b可用怎样的函数关系式表示?
下列问题中,变量间的`对应关系可用怎样的函数关系式表示?
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化。
(2)某住宅小区要种植一个面积为1000O的矩形草坪,草坪的长y(单位m)随宽x(单位m)的变化而变化。
(3)已知某市的总面积为1.68×10平方千米,人均占有的土地面积s(单位:平方千米/人)会随全市人口n(单位:人)的变化而变化。
1.这些关系式都体现了函数关系,它们是我们曾学习过的正比例函数或一次函数吗?
2.这些函数关系式与正比例函数、一次函数有何不同?
3.这些函数关系式有什么共同的特征?
4.各关系式中两变量之间有什么关系?
5.你能归纳出反比例函数的概念吗?
通过回答以上问题,师生共同总结反比例函数的概念。
1.反比例函数关系式中有几个变量?
2.变量之间存在什么关系?
3.反比例函数还有其他形式吗?若有请指出。
4.反比例函数中,变量x、y和常数k有什么具体要求?为什么?
1.下列函数中哪些是反比例函数?请指出反比例函数中的k值。
2.已知y是x的反比例函数,且当x=2时,y=6。
(1)写出y与x的函数关系式。
(2)求当x=4时,y的值。
3.当x为何值时函数y=x-2a-4 是反比例函数?
4.已知函数y= y1+y2, 与x成正比例, y2与x成反比例,且当x=1时,y=4;当x=2时,y=5。
(1)求y与x的函数关系式。
1.通过本节课的学习你对反比例函数有怎样的认识?
2.反比例函数与正比例函数的区别有哪些?
教材中本节习题17.1第1、2、4题。
反比例课件(篇4)
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想
教材第46页的思考题是为引入反比例函数的概念而设置的',目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的变化与对应的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
反比例课件(篇5)
1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
1.让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
1.教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2.归纳反比例的意义。
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3.用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?
在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5.组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
1.教材第48页的“做一做”。
2.教材第51页第9、10题。
答案:1.(1)每天运的吨数和所需的天数两种量,它们是相关联的量。
(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。
(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。
2.第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。
说一说成反比例关系的量的变化特征。
反比例课件(篇6)
1.使学生理解反比例的意义,掌握成反比例的变化规律,并能初步运用。
2.能正确判断成正反比例的量,为解答正反比例应用题打下基础。
理解反比例的意义,掌握两种相关联的量变化规律。
(1)表中哪个量是固定不变的量?
(2)哪两种量是相关联的量?它们的变化规律是怎样的?
(3)表内相关联的.两种量成正比例吗?为什么?
两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中________,这两种量叫做成________的量,它们的关系叫做________关系。
3.判断下面各题中两种量是否成正比例。
(1)文具盒的单价一定,买文具盒的个数和总价( )。
(2)水稻产量一定,水稻的种植面积和总产量( )。
(3)一堆货物一定,运出的和剩下的( )。
(4)汽车行驶的速度一定,行驶的时间和路程( )。
(5)比值一定,比的前项和后项( )。
可选其中一、二题,说一说为什么?
师:通过刚才的复习,我们对正比例的意义理解得很好。你们想一想,有正比例就一定有反比例。什么时候成反比例呢?今天我们就学习反比例的意义。(板书课题:反比例的意义)
例4 华丰机械厂加工一批零件,每小时加工的数量和加工的时间如下表:
①表中有哪种量?
②两种相关联的量是如何变化的?
③你能说出它们的关系式吗?
④相对应的每两个数的乘积各是多少?
⑤哪种量是固定不变的?
师:请同学们打开书自学,然后分组讨论以上问题。(老师巡视、指导。)
(2)同学们发言。
反比例课件(篇7)
教学内容:
本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。
教材分析:
本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。
教学目标:
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。
2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。
教学难点:
根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。
3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。
使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
根据正比例的意义正确判断两种相关联的量是不是成正比例。
2、这两种量的数据是怎样变化的?
时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。
小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。
3、但是,你能发现什么呢?
如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。
这个比值是什么呢?
引导学生观察,
指名说一说。
启发学生从“变化”中寻找“不变”。
学生试着回答,教师帮助完成。
1、引导学生观察例1和试一试,它们有什么共同点。
3、用字母怎样表示成正比例关系的两种量呢?
观察,说说自己的发现。
学生完整的说一说例1和试一试成正比例关系。
重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。
独立判断,交流时说出判断的理由。
学生先各自算一算,交流,说出思考过程。
指名判断,交流时说出思考过程,其它同学进行补充或纠正。
学生理解题意,然后在书上画一画,算一算,填在书上。
1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。
出示已标出纵轴、横轴以及相噶关信息的方格图。教师先示范描一两个点(边讲解边示范),你们会描点吗?
引导学生观察这些点的排布规律,并用直线连起来。
提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)
(2)图中所描的点在一条直线上吗?
(3)根据图象判断一下,这辆汽车2。5小时行驶多少千米?行驶440千米需要多少小时?
学生描点。
如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。
问:你们画出的表示打字时间和打字个数关系的图象有什么特点?
追问:你是怎样判断打750个字用多少分钟的?估计7分钟、10。5分钟呢?打450个字、625个字各用几分钟?
既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。
先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。
讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。
今天学习了什么?你有了什么新的认识?你知道今后还可以根据什么来判断两种量是否成正比例的量吗?
反比例课件(篇8)
一、教材分析
反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初三学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
二、 教学目标分析
根据课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。因此把教学目标确定为:
1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象.
2.体会函数的三种表示方法的互相转换.对函数进行认识上的.整合.
3.逐步提高从函数图象获取信息的能力,探索并掌握反比例函数的主要性质.
(二)能力训练要求
通过学生自己动手列表、描点、连线,提高学生的作图能力;通过观察图象,概括反比例函数的有关性质,训练学生的概括、总结能力.
(三)情感与价值观要求
让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.
三、教学重点难点分析
本堂课的重点是:
1、画反比例函数的图象;并从函数图象中获取信息。
2、探索并研究反比例函数的主要性质.
本堂课的难点是:反比例函数的图象特点及性质的探究.
为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。
反比例课件(篇9)
一、教学目标
1、利用反比例函数的知识分析、解决实际问题
2、渗透数形结合思想,提高学生用函数观点解决问题的能力
二、重点、难点
1、重点:利用反比例函数的知识分析、解决实际问题
2、难点:分析实际问题中的数量关系,正确写出函数解析式
3、难点的突破方法:
用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。
三、例题的意图分析
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
正比例课件6篇
根据教学要求老师在上课前需要准备好教案课件,因此老师会仔细规划每份教案课件重点难点。要知道做好教案课件的前期准备,在教学的时候学生也能更理解课堂知识点。本文聚焦于与“正比例课件”相关的主题,希望能帮助到你,请收藏!
正比例课件(篇1)
教学目标:
1.掌握用正比例的方法解答相关应用题。
2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.培养学生分析问题、解决问题的能力。
4.发展学生综合运用知识解决问题的能力。
教学重点:
掌握用正比例的方法解答相关应用题。
教学难点:
通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,掌握用正比例的方法解答相关应用题。
教 法:
创设情境,质疑引导。经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。
学 法:
理解分析与合作交流相结合。
教 具: 课件
教学过程:
一、 定向导学(5分)
1、判断下面每题中的两种量成什么比例?并说明理由。
(1)单价一定,总价和数量。
(2)我们班学生做操,每行站的人数和站的行数。
(3)速度一定,路程和时间。
(4)每吨水的价钱一定,水费和用水的吨数。
2、出示学习目标
(1).掌握用正比例的方法解答相关应用题。
(2).通过解答应用题,熟练地判断两种相关联的量是否成正比例,加深对正比例意义的理解。
二、自主学习(10分钟)
内容:课本61页
1、 方法:先自己看书,在思考问题,尝试做跟踪练习题
2、 时间:5分钟
3、 思考问题:
(1)、题目中有哪些变化的量和不变的量?你是从题中哪里发现的?
(2)、这三种量成什么关系?你是怎样判定的?
(3)、列出关系式。
(4)、学习课本的解题格式。
跟踪练习
小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用多少钱?
三、合作交流(10分钟)
1、选择:
(1)
用比例列式是( )。
① x:2=5:16 ②x:5=16:2 ③5:x =16:2
(2)、用100千克小麦可以磨出75千克面粉,照这样计算,要磨面粉15吨,需要小麦多少吨?解:设需要小麦x吨( )。
① x:15=75:100 ②15:x =100:75 ③15:x =75:100
2、张奶奶家上个月用了8吨水,水费是12.8元。李奶奶家用了10吨水。应缴的水费是多少钱?
3、聪聪8分钟走了500米,照这样的速度,她从家走到学校用了14分钟,聪聪家离学校大约多少米?
四、质疑探究(5分)
做这类应用题的方法步骤是;
(1)题目中有哪些变化的量和不变的量
(2)这三种量成什么关系
(3)列出关系式
五、小结检测(10分)
1、这节课有什么收获?你学会了什么?
2、练习十一的第3、4题
板书设计:
用比例解决问题
(1)题目中有哪些变化的量和不变的量
(2)这三种量成什么关系
(3)列出关系式
正比例课件(篇2)
教学目标
1、使学生理解正比例的意义.
2、能根据正比例的意义判断两种量是不是成正比例.
3、培养学生的抽象概括能力和分析判断能力.
4、使学生理解正比例的意义.
教学难点
引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.
教学过程
一、复习
出示下面的题目,让学生回答..已知路程和时间,怎样求速度?板书: =速度
2.已知总价和数量,怎样求单价?板书:=单价
3.已知工作总量和工作时间,怎样求工作效率?板书:=工作效率
4.已知总产量和公顷数,怎样求公顷产量?板书:=公顷产量
二、导入新课
教师:这是我们过去学过的一些常见的数量关系.这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系.(板书课题:正比例的意义.)
三、新课
1、教学例1.
用小黑板出示例1:一列火车行驶的时间和所行的路程如下表;
时间(时) 1 2 3 4 5 6 7 8
路程(千米) 90 180 270 360 450 540 630 720
提问:
表中有哪几种量?
当时间是1小时时,路程是多少?当时间是2小时时,路程又是多少?
这说明时间这种量变化了,路程这种量怎么样了?(也变化了.)
教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量(板书:两种相关联的量).
时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?
让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值.教师板书出来:=90,=90,=90,=90,
让学生观察这些比和它们的比值,看有什么规律.教师板书:相对应的两个数的比值(也就是商)一定.
比值90,实际上是火车的什么?你能将这些式子所表示的意义写成一个关系式吗?板书:=速度(一定)
教师小结:通过刚才的观察和分析,我们知道路程和时间是两种什么样的量?(两种相关联的量.)路程和时间这两种量的变化规律是什么呢?〔路程和时间的比的比值(速度)总是一定的.〕
2、教学例2.
(1)表中有哪两种量?
(2)米数扩大,总价怎样?米数缩小,总价怎样?
(3)相对应的总价和米数的比各是多少?比值是多少?
然后进一步问:
这个比值实际上是什么?你能用一个关系式表示它们的关系吗?板书:=单价(一定)
教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价随着扩大;米数缩小,总价也随着缩小.它们扩大、缩小的规律是:总价和米数的比的比值总是一定的.
3、抽象概括正比例的意义.
教师:请同学们比较一下刚才这两个例题,回答下面的问题:
(1)都有几种量?
(2)这两种量有没有关系?
(3)这两种量的比值都是怎样的?
教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定.像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系.
最后教师提出:如果我们用字母x,y表示两种相关联的量,用字母k表示它们的比值,你能将正比例关系用字母表示出来吗?教师板书
4、教学例3.
出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
教师引导:
面粉的总重量和袋数是不是相关联的量?
面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否一定?板书:=每袋面粉的重量(一定)
已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例.
5、巩固练习.
让学生试做第13页做一做中的题目.其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以
四、课堂练习
正比例课件(篇3)
设计说明
本节课教学的正比例是数学中比较重要的两个量的关系,它比较抽象、难理解,是今后学习反比例及初中学习函数知识的基础。结合本节课的教学内容及学情实际,本节课在教学设计上主要体现以下几个方面:
1.有效利用教材图表,增强对相关联的量的形象感受。
教学伊始,在复习铺垫的基础上,引导学生仔细观察图表。在观察中,使学生发现正方形的周长和面积随着边长的变化而变化及变化规律,充分体会到什么是相关联的量,为进一步学习正比例知识打下基础。
2.科学调动多种感官,增强对知识形成过程的体验。
在数学教学过程中,教师如果能够有效地调动学生的多种感官参与学习活动,让学生利用更多的大脑通路来处理学习信息,建立起对知识与技能的深刻记忆,成为学习的主人,就能促进学生提高学习效率。本设计努力为学生创设动眼、动手、动脑、动口的机会,使学生在观察、操作、分析、比较、讨论、交流中,不断探究相关联的两个量之间的关系,逐渐发现其中的规律,体会正比例的意义。
3.体会数学与生活的密切联系,关注对正比例意义的理解。
因为正比例表示的是两个相关联的量之间的关系,是学生接下来学习反比例及今后进一步学习函数知识的重要基础。所以,本设计十分重视学生对知识的理解。通过创设具体情境,激发学生的学习兴趣,使学生积极主动地思考并结合熟悉的情境及数量关系理解正比例的意义。
课前准备
教师准备 多媒体课件
教学过程
第1课时 正比例的认识
⊙复习导入
1.引导回顾。
师:什么是相关联的量?请举例说明。
(学生汇报)
2.导入新课。
师:两个相关联的量之间肯定存在着某种关系,我们今天要学习的正比例就是表示两个相关联的量之间的关系的,这种关系是怎样的呢?让我们一起进入今天的学习。
设计意图:通过回顾旧知,进一步理解相关联的量,为在新情境中探究两个相关联的量之间的变化规律作铺垫。
⊙探究新知
1.借助图表,进一步感知相关联的量。
面积/cm2
小组合作探究,交流下面的问题:
(1)上面是正方形周长与边长、面积与边长之间的变化情况,把表格填写完整,并说说你分别发现了什么。
(2)同桌合作填表。
(3)仔细观察表格,讨论:正方形的周长是怎样随着边长的变化而变化的?正方形的面积是怎样随着边长的变化而变化的?
预设
生1:我从表中发现正方形的边长增加,周长也增加。
生2:我从表中发现正方形的边长扩大到原来的几倍,周长就随着扩大到原来的几倍。
生3:我从表中发现正方形的周长总是边长的4倍。
生4:我从表中发现正方形的边长增加,面积也增加。
……
(4)比较:正方形的周长与边长的变化规律和正方形的面积与边长的变化规律有什么异同?
预设
生1:相同点是都随着边长的增加而增加。
生2:不同点是周长随边长变化的规律与面积随边长变化的规律不同。
生3:在变化过程中,正方形的周长与边长的比值一定,都是4。
生4:在变化过程中,正方形的面积与边长的比值是一个不确定的值。
正比例课件(篇4)
一、说教材
正比例的意义是九年义务教育六年制小学西南师大版第十二册第3单元的内容。本节教科书安排的是正比例,其内容主要是正比例的意义和正比例图像,并通过例1和例2介绍这些内容。这部分知识是在学生学习了除法、分数和比的知识等的基础上教学的,是本套教材的一个重点内容。教材通过实例说明:两种相关联的量,一种量扩大(或缩小)若干倍,另一种量也随着扩大(或缩小)相同的倍数,这两种量叫做成正比例的量,它们的关系叫做正比例关系。另外从具体的数据中看出:这两种相关联的量扩大、缩小的变化规律是它们相对应的两个数的比值(商)总是一定的,写成关系式就是:=k(一定)。引导学生学习正比例的图像,并利用正比例图像解决问题,通过正比例意义的教学,向学生渗透初步的函数思想。
二、说目标
1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。
2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。
三、说教学重点、难点
重点:认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系
难点:理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
四、说学情
学生在前面已经初步接触了正比例的变化规律,学习了比的意义、比的化简与比的应用等。学生最容易掌握的是判断有具体数据的两个量是否成正比例,最难掌握的是离开具体数据,判断两个量是否成正比例。
五、说教法
通过本课教学,使学生学会利用旧知构建新知的方法、合作探究的方法、分析小结的方法等等。例1利用小区收水费的事件,引导学生体会在单价一定的前提下水费随用水量的变化而变化的规律,并根据这种规律概括出正比例的意义。为了便于学生发现规律,用表格分户把用水量和水费对应起来,使学生一看就容易发现“用水量扩大几倍,水费就扩大几倍”的变化规律。例2主要是引导学生学习正比例的图像,并利用正比例图像解决问题,与传统的小学数学教科书相比较,这是一个全新的内容。教科书仍然用实际问题引入,通过小麦和面粉之间的正比例关系引出图像,教科书只作了在方格纸上描小麦质量和面粉质量对应点,并连线表示两者之间正比例关系的方法提示,而正比例图像包括描点、连线等步骤都由学生自己完成。重要的结论教科书都没有将结果写出来,而是让学生通过自主探索和合作交流等方式去概括出来。教学过程中我给学生也留下了自主探索的空间。首先是正比例的意义,我让学生根据两个具体事例通过讨论交流,从三个方面得出概念的内涵。其次,正比例图像教科书不仅让学生在方格纸上作图,同时还通过问题“观察上图,你发现了什么?”向学生提出探究任务,让学生根据其图像去探究正比例中两个相关联的量的变化趋势。
六、说学法
在本节课中,我着重引导学生,在独立思考的基础上,学会小组合作交流。具体表现在学会思考,学会观察,学会表达,学会思考教师要设计好问题,学会观察教师要指导学生观察表格和图像,学会表达教师要引导学生如何说,并对学生进行激励性的评价,让学生乐于说,善于说。
七、说教学过程:
一、联系生活,复习引入
(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。
住户张家赵家
水费(元)1520
用水量(吨)68
(2)揭示课题。
在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们平时的生活中,除了这两种量,我们还要遇到哪些数量呢?
这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。
通过复习生活中常见的数量关系,唤起学生的回忆,让学生对学习内容产生亲切感,从而引发学生的学习欲望,增强学习积极性。二、自主探索,学习新知
1.教学例1
同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。
教师根据学生的回答将表格完善,并作必要的板书。
同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。
板书:相关联
教师:你们还发现哪些规律?
学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:
水费用水量=15:6=20:8=35:14=……=2.5
教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。
板书:水费用水量=每吨水单价(一定)
2.教学“试一试”
教师:我们再来研究一个问题。
课件出示第52页下面的“试一试”。
学生先独立完成。
教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?
教师根据学生的回答归纳如下:
表中的路程和时间是相关联的量,路程随着时间的变化而变化。
时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。
路程与时间的比值是一定的,速度是每时80km,它们之间的关系可以写成路程时间=速度(一定)
3.教学“议一议”
教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?
引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。
教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。
从学生已有知识经验和生活经验出发,经过讨论、探索,师生互动过程,学生就可以归纳数量之间隐含的变化规律,正确理解正比例的意义。
4.教学课堂活动
请大家说一说生活中还有哪些是成正比例的量。
三、夯实基础,巩固提高
(1)完成练习十二的第1题。
学生独立思考,先小组内交流再集体交流。
(2)完成练习十二的第2题。
让学生应用正比例的意义,尝试着判断数量之间的关系,是对正比例学习的深化,同时培养了学生的应用意识。
四、全课小结
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
这节课从常见的数量关系复习入手,准确把握学生的认知起点,沟通学生新旧知识之间的关系,有利于本节课的学习;同时采用了准备题和新授课用同一个表格,只是表格的数据和列数增加的方式展开教学,有利于帮助学生体会新旧知识间的关系,认识到这些问题在前面已经有所研究,只是这节课的研究角度不同,研究的层次更深而已,在教学例1时,从多方面关注学生主体作用的发挥,鼓励学生通过自己的努力去发现表中的规律,并且还通过多个例题找规律的方式,增加规律的说服力,这样的教学有利于学生体会所学知识的价值,培养学生的情感、态度,在教学中也比较注意培养学生学习能力的培养,在“试一试”环节鼓励学生用例1的研究方法尝试研究,这样不仅使两个例题的教学形式有所变化,而且从中可以帮助学生掌握必要的学习方法。
正比例课件(篇5)
教学目标:
1 、使学生理解什么是相关联的量。
2、掌握正比例的意义及字母表达式。
3、学会判断两个量是否成正比例关系。
生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。
生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)
生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。
这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”
生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。
师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?
生:答对一题得10分,答对两题得20分,答对三题得30分……
生:答对的题目与最后的成绩,它们是两个相关联的量。
生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。
生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。
师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。
师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?
(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)
师:刚才这位同学在算出比值的时候,你们发现了什么?
师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)
1、表中有( )和( )两种量。
2、路程是怎样随着时间的变化而变化的?
3、任意写出三个相对应的路程和时间的比,并算出它们的比值。
4、比值实际上表示( ),请用式子表示它们的关系。
师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?
(结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)
正比例课件(篇6)
各位领导、各位老师:
大家好。
今天我说课的题目是六年级的《正比例的意义》一课。我将从教学背景分析、我的思考、教学目标、教学重难点、教学过程和教学特色六个方面来开展。
一、教学背景分析
1、教材分析
首先是这节课的教学背景,正比例的意义是小学数学“数与代数”当中重要的内容之一,也是学生系统学习函数的开始。提起函数,可以简单的说:函数是一种以运动和变化的观点来反映两种数量之间相互联系的一种数学模型。而正比例的意义,正比例关系也是当中最简单最线性的关系,其实在学生以往的学习过程当中,比如说探索规律,还有对数量关系、运算公式的学习,包括字母表示数以及统计图、统计表的认识,以及比和比例等内容,都为学生学习正比例的意义奠定了一定的知识基础。同时,正比例意义的学习将直接为反比例意义的学习提供研修方法和研修模式,又为后续的解决实际问题,乃至于将在初中系统的学习函数做好了知识和方法的准备。
2、学情分析
刚刚谈到了学生已有的知识经验,另外从学生的学习情况来考虑,在课前访谈中,通过学生对于涉及的两种相变化的量思考的时候,还能够结合自己充分的生活经验,举出了大量实例。比如在访谈中,当涉及到“两种相关联的量”这个话题的时候,有的孩子就说:大树生长的高度跟它生长的年份相关系,还有的说一天当中气温是随着时间的变化而发生变化的等等。这些展示出了孩子对于日常生活中那种变化现象的关注和探究的兴趣。但是不可否认的是从学生面对正比例的学习角度来看,这方面的学习还是存在一定的认知困难的,因为从研究数量关系的角度来看,应该说孩子对以往的数量关系,包括一些运算公式有了比较清晰的了解,比如说路程、时间、速度这组常见的数量关系,应该说孩子比较熟悉,但是还仅仅停留在对具体问题的解决上,而正比例的意义是要从一种运动和变化的观点去理解数量间的关系,要通过观察、分析两种数量之间的变化情况,变化规律,进而达到对两个变量关系的进一步理解。因此说学生对数量关系的认识和思考将从以往的静态过渡到今天的动态观察分析,乃至于抽象概括上来。这种研究问题的角度,学生相对来说还是比较陌生的。
二、我的思考
基于以上的了解,我进行了这样的思考。关于正比例意义的学习,是仅仅让学生记住描述正比例意义的一段文字,还是说仅仅让学生能够记住关于正比例的关系式,或者说能利用正比例意义,利用关系式进行判断等等。能做到这些就够了吗?经过思考,不难发现,事实上这些仅仅是基本知识、基本技能的层面,学生学习正比例的意义,应该在系统地认识所谓函数的这样一个大的背景下来展开,其更深远的价值在于学生以一种运动和变化的观点,变化的眼光来看待生活中的现象,应该在变化当中寻求对应关系,在对应中确定事物间的联系,从而实现从另外一个角度,或者说与以往观察的角度不同的理解,来促进学生进一步的理解常见的数量关系。基于这一部分内容的抽象性,也应该在教学过程中适当的采取文字、表格、关系式和图像等多种形式来促进学生的理解,从而有意义的建构正比例的意义。
三、教学目标
基于以上的思考,我制定了本课的教学目标如下:
1、在具体情境中认识成正比例的量,理解正比例的意义,并能结合生活实例进行判断。
2、在借助多种形式理解正比例意义的过程中,培养学生的观察、比较和抽象概括能力。
3、进一步体会数学与现实的密切联系,渗透数形结合思想和初步的函数思想。
四、教学重难点
本课的教学重点是理解正比例的意义,掌握正比例关系的判断方法。教学难点比较突出,通过多种形式的表征来丰富学生的认识,从而达到深入理解正比例的意义。
五、教学过程
第五方面是教学过程,我将从以下四个方面来进行。一是情境引入,初步感知,二是联系实际,建立意义,三是巩固练习,促进理解,四是质疑总结,拓展延伸。
1、情境引入,初步感知
首先是课堂的起始阶段,从情境引入,初步引发学生对两种相关联量的感知,出示这样一个实际的调查表,是一个男孩的体重变化情况,从出生到七周岁,当然这个表格的出示可以用动态的形式来呈现,随着出生后年龄的变化,而逐个出示与之相对应体重的具体情况。当观察表格之后,明确引发学生思考:通过观察这个表格,你有什么发现?引发孩子具体观察里边的数据,当然这个过程学生很快就会意识到,这个小男孩的体重是随着他年龄的变化而变化的。从而产生两种相互依赖的相关联的量这样一层含义。而后是引导学生继续结合自己的日常生活举例,比如说刚才所提到的课前调研到的:树木生长的高度与年份的问题,包括孩子一些感兴趣的话题,都可以借助这个机会引导学生充分举例,老师适时的呈现关于这个树木生长的话题,以曲线统计图的形式来丰富学生的理解,进一步提高学生对于图像当中所反映问题的初步思考。
刚才的两个情境,其实并没有直接进入典型的正比例关系这样一个话题,而是从学生已有的生活经验出发,引导学生明确地认识到:只要是一种量变化,引起另一种量发生变化,那么这两种量就是相关联的量,并且充分感知,大量实例证明两种相关联的量在我们现实世界中是广泛存在的。以上是课堂的第一个环节。
2、联系实际,建立意义
第二是联系实际,建立意义的过程。首先呈现的是两幅表格,第一个是关于老师步行回家的时间和路程的统计表,还是以动态的逐个逐列的呈现形式来进行,老师步行回家1分钟80米,2分钟140米,一直到8分钟提出明确的与之相对应的问题:8分钟行多少米?第二个表格是国庆时三军仪仗队通过天安门受阅区时间和路程的统计表,形式大致相同,但是观察两个表格,可以明确引发学生进一步思考,在完成表格填空的过程中,不难发现,都是关于步行时间和路程的统计表。为什么第一幅表格不能确定准确的与8分钟相对应的路程,而第二幅表格却通过推算、简单的思考,能够确定出准确的路程呢?
那么,通过具体的观察、讨论,学生们可以明确的意识到虽然时间和路程这两种相关联的量是在不断发生着变化,这一点不容置疑,但是仔细观察,两种量中相对应的数据,我们也可以明确的发现,三军仪仗队通过天安门受阅区的时候,他们所步行的速度是保持不变的,也就是能够算出准确的与8分钟相对应的路程。当然这个素材的选取也是经过一定思考的,比如相关的还有一些信息也可以藉此机会给学生提供,比如说还是关于天安门受阅区三军仪仗队的通过问题,还有相关的信息,比如说每步行进75厘米,一分钟116步,通过天安门整个受阅区911步,分秒不差这样一个奇迹,增强学生的民族自豪感,从中也可以结合丰富的信息积累更多的经验,包括可以进行以后的初步判断等等。以上是第一个表格的问题。
第二个问题呢,是想丰富学生的进一步感知的材料,准备以单价、数量、总价这组常用的数量关系来进行,大致情况是这样的:首先是以图像的形式呈现部分数据,一个是苹果的质量,一个是总价。1千克对应的是5元,2千克对应的是10元,3千克对应的是15元,这里突出的是以图像的形式呈现对应。在此基础上,可以直观的发现苹果的单价,并且可以利用学生获取的这样一些数据信息,引发学生进一步思考:买6千克苹果需要多少元呢?这里学生可以借助单价进行简单的计算,从而确定出与6千克对应的点的位置,其实孩子可以借助刚才三个点的发展变化趋势,来推测出与6千克相对应的点的位置。而后可以进一步借助图像增进学生的理解,也就是还可以购买不同质量的苹果,而且都能在这个图中找出与之相对应的价钱。无数多个点集合在一起,并通过连点成线,就更明确地发现了事物的变化趋势,从而以运动和变化过程中的观点去认识变与不变的内在规律。当然还可以涉及到更多的价钱,乃至于0千克的价钱,从而完善了学生对这条直线的一个明确的认识。当然这个过程也是进一步让学生理解到总价是随着数量的变化而变化的,苹果的单价始终保持不变,所关注的还是内在规律,这样就把数据信息和图像信息有机的结合在一起。
接下来为了实现从图像和表格的多种形式融合,将上述内容移植到表格当中去,从而初步实现图像和表格的进一步沟通。通过以上两个情境的具体材料,应该说学生对于正比例的意义已经有了一个初步的认识。
接下来的环节就是借助刚刚两个事例引导学生进行明确的对比和沟通,从而找到两个事例当中的共同点。当然孩子可以借助自己的理解,用文字的形式进行表达,老师也可以进一步丰富学生的认识,可以借助手势的形式来进行。比如说刚才所提到的两个事例当中,都涉及到两种相关联的量,一种量变化,另一种量也随着变化。具体来说是一种量扩大,另一种量也随之扩大(手势),一种量缩小的话,另一种量也随之缩小(手势)。同时,这两种量中相对应的两个数的比值是保持不变的。从而以文字和手势的形式明确正比例的意义。当然还要引导学生进一步关注以关系式的形式来进行总结概括。这样的情况下,通常都可以采用一个关系式来进行,刚才所涉及到的路程、时间和速度,总价、数量和单价都可以用字母的形式来明确概括,即y/x=k(一定)的形式。从而初步引导学生用多种形式完成对正比例意义的初步概括。
以上这个环节给孩子提供了熟悉的情境,通过观察、分析、对比和抽象概括的过程,努力地抓住了示例中两个量变化的基本特点,进而总结和概括出正比例的意义。
3、巩固练习,促进理解
课堂的第三大环节是巩固练习,促进理解。首先是利用表格的一个判断形式,表格中所涉及到的是关于总价随着单价的变化而发生变化,但是始终不变的是什么?是买3只笔的这样一个常量。这道练习题目的设计,努力克服掉了刚刚学生所形成的总价/数量=单价(一定)的思维定式,从而实现关注整个事情变化两种相关联量的理解,以及到底谁没有发生变化这样一个关注点,进一步促进学生理解,同时,这里还有一个训练表达的问题。
第二个练习是进一步丰富学生的判断经验,引导学生用连贯的、完整的话来进行分析和判断。是判断下面问题中的两种量是否成正比例关系,第①个练习很清晰,每分钟打字50个,请思考打字的总数和打字的时间是否成正比例关系。这道题的训练目的是引导孩子初步形成判断正比例的方法以及表达的步骤。当然学生也可以举出实例,具体的数据加以解释说明。第②个判断的题目是正方形的周长与边长。它的目的是在于引导学生关注周长与边长之间固定不变的四倍关系这个常量的思考,从而引导学生进一步引发判断时应该注意关注对定量的思考。第③个是一本书有200页,每天读20页,看过的页数和剩下的页数, 这里明显是总和一定,从而进一步引发学生思考,判断两种量是否成正比例关系,至关重要的是看他们两种量行对应的比值是否一定,才能下结论。第④个是借助函数图像的形式来丰富学生的判断。就是以图像的形式来判断大树的生长时间和生长的高度是否成比例关系。当然这里还可以通过计算去解决,也可以通过直观预测和推断来完成判断过程。到15年后,大树的高度是不再生长的,现在不能准确说它成正比例关系。
4、质疑总结,拓展延伸
课堂最后一个环节是质疑总结,拓展延伸。通过设计这样一个开放一点的题目来进行,就是观察图中信息,你有什么发现?
这里还是以图像形式来进行的,引出香蕉和苹果两种水果的单价与总价之间变化情况图像,引发学生思考:这里学生的发现应该是开放的,可以借助直观的图像找到相对应的价钱,比如说香蕉3千克是24元,苹果5千克是20元等等找到单价,计算单价。也可以通过描述发展变化的情况,变化的规律进行准确地判断,总价是随着数量的变化而变化的,是成正比例关系的。还可以从另外一个角度来思考,两种线,蓝颜色的线和红颜色的线倾斜的.角度是不一样的,从而初步渗透所谓的一次函数y=ks,k值的倾斜角度的感知和理解。以上是课堂的主体环节。
六、教学特色
如果从教学特色来看,有以下两点,一是关注知识系统抓本质,二是注重多种表达促理解。
以上只是基于已有的教学经验和对学生的初步了解所形成的教学设计,还需要进一步在教学实践中检验,也诚恳希望得到各位领导和老师的宝贵意见。我的说课就到这里,谢谢大家。
比和比例课件实用
宜未雨绸而缪,毋临竭而掘井。在幼儿园教师的工作中,经常会提前准备一些需要的资料。资料的定义比较广,可以指生活学习资料。有了资料才能更好的在接下来的工作轻装上阵!所以,关于幼师资料你究竟了解多少呢?下面是小编精心整理的"比和比例课件实用",欢迎你收藏本站,并关注网站更新!
比和比例课件 篇1
教学目标:
1、知识与技能
经历正比例意义的建构过程,通过具体问题认识成正比例的量,初步感受生活中存在很多成正比例的量,并能正确判断成正比例的量。
2、过程与方法
通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。
3、情感态度与价值观
在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。教学重点:正确理解正比例的意义。教学难点:能准确判断成正比例的量。教学准备:多媒体课件,学生练习纸 教学过程:
一、在学生熟悉的儿歌中引入正比例的量: 你听过《数青蛙》这一首儿歌吗?(课件)
师:你会往下唱吗?三只青蛙,四只青蛙,n只青蛙呢?
师:你在唱得时候有什么规律吗?
生:嘴巴数和青蛙只数一样,眼睛数总是青蛙只数的2倍,腿数总是青蛙只数的4倍。
师:你真聪明,会横着观察观察表格。
生:青蛙每增加一只,嘴巴数增加1张,眼睛增加2只,腿数增加4条。
师:很好,你是竖着观察表格的。
师:我已经学过比,所以还可以说,眼睛数/青蛙只数=2;腿数/青蛙只数=4;嘴巴数/青蛙只数=1。
看来,嘴巴数、眼睛数、腿数都随着青蛙只数的变化而变化,像这样有一定关系的量,在数学上,称为相关联的量。
(学生的自主学习需要教师的引导,此处教师看似无意的评价,实际是对学生学习方法的指导,直接影响学生后续的自主学习活动,有了此处的指导,学生接下来就能顺利地自主观察表格发现规律了。)
二、自主建构正比例的量
(一)初步感受成正比例量的变化规律
看来,像这样相关联的量在变化的时候有一定的规律,有兴趣继续研究吗?在我们的生活中,像这样相关联的量还有许多,老师为同学们的研究找了几组材料:(课件)
1、学生独立填表。
2、选择其中的一张表格,通过观察说说你发现了什么规律? 你可以模仿前面找规律的方法。
3、反馈交流
4、小结:这两张表格的变化情况有什么相同点? 一种量增加或(减少),另一种量也相应增加或(减少),它们相对应的两个数的比值一定
(二)在比较中继续感受成正比例量的变化规律
看到同学们学得那么认真,数学老爷爷也要来考考我们,想挑战吗?他给我们带来下面两组信息,并告诉我们只有一张表格的变化情况和前面的变化规律一样,但不知是哪一张,你能找出是哪一张吗?我们先把表格填写完整。
1、出示材料:
下面是边长与周长,边长与面积的变化情况,把表填写完整。
2、四人小组活动:
思考:哪一张表格的变化情况和前面的变化规律一样? 3、比较图像,再次感受正比例
除了用表格的形式表示它们的变化情况,我们还可以用图来表示它们的变化情况,你想看吗? 指导看图,说说你发现了什么?
师:另外两张表格的变化情况我们也画成了图,你想看吗? 思考:这四张图如果让你分类,你会怎么分?为什么这样分? 其中三张图为什么都呈直线状态,朝一个方向生长?(比值一定)其中一张图为什么呈曲线?(比值不一定)
揭题:像这样的两个相关联的量,我们在数学上就说它们成正比例,具体可以这样描述:
(三)尝试归纳正比例的意义
1、出示:
像这样时间增加(或减少),所走的路程也相应增加(或减少),而且相应的路程与时间的比值(也就是速度)相同,那么,我们就说路程和时间成正比例。
2、你觉得这里哪几个词比较重要?
3、你能照这样说说另外几组成正比例的量吗? 不成正比例的用虽然但是来说
三、运用提高
1、小明和爸爸的年龄变化情况如下,把表填写完整。父子的年龄成正比例吗?你怎么想的?
2、在《数青蛙》儿歌中找找成正比例的量。
四、小结提升:
通过今天这节课的学习,你有什么收获?成正比例的量有什么重要特征?
刚才同学们在一首《数青蛙》的儿歌中就找到了这么多的成正比例的量,可以想象在我们的生活中一定存在着更多的成正比例的量,希望同学们在课后能以数学的.眼光去观察,发现生活中成正比例的量,下一节课我们一起交流
板书设计:
正比例的意义
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)③两种量中相对应的两个量的比的比值(商)是一定的 路程/时间=速度(一定)总价/数量=单价(一定)
《正比例》教学反思
对比过北师大和人教版两个版本的教材,人教版的教材中介绍了“两个相关联的量”,而北师大版中没有,在最初的教学设计中本没有设计介绍“相关联的量”这一环节,但课前准备中我也为是否设计这一环节而矛盾,但最后还是在我的课堂中呈现了这一概念,课后自己不禁反思,“正比例的意义”本来就是一抽象的概念,我还在课堂上有加入“相关联的量”这一概念,无疑是增加了学生理解的难度。另在设计教案之初,本以为本班学生整体情况较好,在处理“正比例的意义”中的“比值一定”时,只注重了口头上的描述而忽略了让学生动手去算算比值。课后看见学生的作业,自己不尽感叹“失策”,对于抽象的概念一定要让学生通过实际的生活经验或者是通过自己的实际操作去理解。
还有本节课还有一个最大的问题,就是没有及时抓住学生精彩的生成。也许我们每一位老师都有过这样的经历:我们精心设计的一节课,原想着会很顺利地在课堂教学中予以实施,但事实却并不是这样,往往会因为学生的一些出乎意料的想法或问题,而使我们的教学偏离了预设的轨道,课上得并不那么顺利。比如,象正方形的周长、面积与其边长,原的周长与半径这些特例是否成正比例,我觉得这实际上就是教师如何有效处理动态生成的问题。
教学不应只是平实地传递和接受知识的过程,更多的是师生双方在课堂上互动对话、实践创造,随机生成与资源开发的过程。它是教师及时捕捉课堂上无法预见的教学因素,利用课堂上随机生成的资源展开再教学的过程。就正如赵老师前面提到的“课中也要备课”,动态生成才能真正体现学生的主体性和课堂的真实性,它追求课堂的真实、自然、和谐,再现师生“原汁原味”的教学生态情境,从而达到师生共识、共享、共进的教学高境界,实现师生生命价值的不断超越。
那么,怎样才能做到课堂上的精彩生成呢?从生成的内容看,有显性的知识、技能生成和隐性的情感、态度生成。因此,我认为:促进课堂生成的关键是教师课前的预设、教学的机智和学生的心理环境。要达到课堂有精彩的生成且能很好的抓住并能利用生成这点还需要我的不断努力。
比和比例课件 篇2
教学内容:成正比例的量
知识与技能:使学生理解正比例的意义,会正确判断成正比例的量。
过程与方法:使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
情感态度与价值观:在计算的过程中,使学生逐步养成验算的良好学习习惯。
教学重点:正比例的意义。
教学难点:正确判断两个量是否成正比例的关系。
教学过程:
一、揭示课题
1、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?
在教师的此导下,学生会举出一些简单的例子,如:
1、班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
2、送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
3、上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
4、排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
5、这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量
二、探索新知
1、教学例1
(1)、出示小黑板。问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)、出示表格。
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25立方厘米。
板书:50100150200 ?......?252468
教师:体积与高度的比值一定。
(3)、说明正比例的意义。
在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一、两种相关联的量。
第二、其中一个量增加,另一个量也增加; 一个量减少,另一个量也减少。
第三、两个量的比值一定。
(1)、用字母表示。
如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:
Y?K(一定) X
(2)、想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
比和比例课件 篇3
一、比例是数学中重要的概念之一,它在现实生活中有着广泛的应用。本文将基于比例的应用课件,详细介绍比例在日常生活中的具体应用。
二、城市规划中的比例应用
城市规划是一项复杂而严谨的工作,其中比例的应用尤为重要。在城市规划中,通过比例的运用可以精确计算出道路、建筑物的尺寸,确保城市的布局和建筑的合理性。在课件中,可以使用图片展示不同城市规划图,然后引导学生通过比例计算建筑物的高度、宽度等尺寸,加深对比例的理解。
三、地图比例尺的意义
地图是我们认识世界的重要工具,而地图上的比例尺则是我们了解实际距离与地图距离关系的关键。在课件中,可以通过展示不同地图的比例尺,让学生通过比例计算实际距离与地图距离之间的换算关系,以此加深对比例的理解。
四、商业中的比例运用
商业中的比例运用无处不在。例如,在超市的商品陈列中,不同商品的比例安排往往决定了销售量的高低。通过在课件中展示超市各个商品的陈列方式,并让学生通过比例计算各个商品的比例关系,引导他们思考如何通过合理的比例安排来提升商品的销售量。
五、工程中的比例运用
在工程中,比例的应用也是必不可少的。例如,在建筑工程中,通过比例可以计算出建筑物的体积、面积等。在课件中,可以使用建筑工程图纸的案例,让学生通过比例计算建筑物的各项尺寸参数,培养他们的实际问题解决能力。
六、生活中的实际比例运用
在日常生活中,比例的应用也随处可见。例如,在购物时,通过比较不同商品的价格与质量,我们可以作出合理的选择。在课件中,可以设立购物场景的案例,让学生通过比例计算商品的性价比,培养他们的消费观念和数学思维能力。
七、总结与展望
通过比例的应用课件,我们可以让学生了解比例在不同领域的应用,并培养他们运用比例解决实际问题的能力。希望通过课件的设计,可以激发学生对数学的兴趣,提高他们的数学素养。
比和比例课件 篇4
“认识比例”教学设计
高县来复镇中心小学 唐尚春
一、教学目标:
1.理解比例的意义,认识比例的各部分名称,初步了解比和比例的区别,理解比例的基本性质。
2.能根据比例的意义和基本性质正确判断两个比能否组成比例。
3.培养学生自主参与的意识,主动探究的精神。培养学生初步的观察、分析、判断、概括的能力,发展学生的思维。
4.树立生活中处处有数学的思想意识。
三、重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
四、难点:自主探究比例的基本性质。
五、教学过程:
(一)、复习导入
同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?还记得怎么求比值吗?
老师这儿有几组比,出示:口算下面每组中两个比的比值。
(1)3:5和24:40
(2):和1: (3)5/8:1/4和:3
(4)2:8和9:27 (二)、认识比例的意义
(1)比例的意义 1.指名口答每组中两个比的比值,并出示答案
口算完了,你有什么发现?
2.是呀,生活中确实有许多像这样比值相等的例子,这种现象早就引起了人们的重视和研究,人们把比值相等的两个比用等号连起来写成一种新的式子。例如3:5=24:40 第四组能用等号连接吗?为什么?
像这些式子我们把它叫做比例。
3.今天这节课我们一起来学习比例的有关知识。
4.仔细观察这三个等式,你觉得组成比例要满足什么条件?谁能用语言来表达一下什么叫做比例?出示:表示两个比相等的式子叫做比例。
(2)练习
1.出示例题:一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。请你分别说出上下午行驶的路程和时间的比,再判断这两个比能否组成比例。
根据回答出示:上午行驶的路程和时间的比是200:4 下午行驶的路程和时间的比是150:3
因为200:4=50
150:3=50
200:4=150:3 所以200:4和150:3能组成比例。
你还能写出其他的比吗?哪两个比能组成比例?为什么?
2.学到这儿你觉得比和比例一样吗?有什么区别? 3.我们把组成比例的四个数叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(课件演示)
老师这儿还有一个比例200:4=150:3,你能找出它的内项和外项吗?比例还可以写成分数的形式如:/=1/3,你能找出它的内项和外项吗?
(三)、比例的基本性质
1.刚才我们已经研究了比例的意义,各部分名称,也知道了比例在生活中的应用。老师这儿有一组数,出示:3、5、10、6 运用这四个数,你能组成几个等式?(等号两边各两个数)
学生回答后师整理出示:
3:5=6:10
5:3=10:6
3:6=5:10
6:3=10:5 现在我们一起来观察这些比例,你能不能发现什么规律?先独立思考后小组交流。
2.小组汇报。
出示:两个内项的积等于两个外项的积。
老师这儿还有几组比例,它们中有这样的规律吗?
4:5=20:25
0. 1:=100:10
16/28=4/7 你自己能举个比例来验证一下吗?
小结。出示:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
(四)、练习
1.判断下面每组的两个比能否组成比例。 6:9和9:12
:=1/3:1/6
揭示比例的两种判断方法。
2.现有两组数:(1)4、3、6、8
(2)12、8、4、20 哪一组的四个数能组成比例?
3.(1)请你用4、3、6、8写两个比例。
(2)你能改掉12、8、4、20中的一个数,使新的四个数组成比例吗?
4.数学问题:你知道我们学校的旗杆有多高吗?一天阳光明媚,小红拿来了一根竹竿和一把卷尺,在地上量了起来,并很快知道了旗杆的长度。你知道小红是怎么知道的吗?
(五)、全课总结
今天这堂课你有哪些收获?
(六)、拓展、延伸
六、教学反思:
有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,知道了比例从生活中来,从而进一步认识到了数学在生活中有着广泛的应用,激发了学生学好数学的信心和积极情感。
(一)、创设探究空间,经历探索过程 我大胆地组织学生探究比例的基本性质,没有根据教材上所提供的现成问题“分别算一算比例的两个外项和两个内项的积,你发现了什么?”机械地执行,而是大胆放手,用四个数组成等式这一开放练习产生新鲜有用的教学资源,我通过引导让学生展开讨论,进行有效的探究,体验了探究的成功。
(二)、找准知识与生活的契合点,学以致用
为了充分体现数学知识与现实生活的联系,在课的最后我安排了与生活联系的数学问题,让学生来测测我们学校的旗杆的高度,把数学和实际紧密地联系起来,这样既渗透了学数学用数学的教学思想,同时也潜移默化的帮助学生树立了学好文化知识有利于社会发展的意识。
比和比例课件 篇5
一、
比例作为数学中的重要概念,应用广泛且丰富。在我们的日常生活和工作中,比例的应用无处不在。通过比例的运用,我们可以更好地理解和处理各种实际问题。本文将围绕比例的应用展开,以帮助读者更好地理解和运用比例。
二、比例的定义和性质
比例是指两个量或两个数据之间的比值关系。具体而言,比例可以表示为a:b,表示a和b的比值为常数。比例具有以下几个重要性质:
1. 具有相等性:比例中的两个数之间的比值是相等的,即a:b = c:d,表示a/b = c/d。
2. 具有可扩展性:比例中的两个数同乘一个非零数,比例依然成立。即若a:b = c:d,则na:nb = nc:nd。
3. 具有可归并性:比例中的两个数可以成倍合并或分解,比例依然成立。即若a:b = c:d,则a±c:b±d = a±c:b±d。
三、比例的应用
1. 比例的尺度问题
比例可以用来解决尺度问题。例如,在绘制地图时,我们需要将实际距离缩小到合适的比例尺上,以便在有限的纸张上反映真实情况。比如,1:10000的比例尺表示地图上的1cm相当于现实中的10000cm,也即100m。通过比例尺的应用,我们可以准确地表示各种地理空间关系。
2. 比例的商业运用
比例在商业运作中也起到了重要的作用。比如,在打折促销活动中,我们常常会看到“五折”、“七折”等字样。这其实是一种比例的应用。以五折为例,它表示售价是原价的一半,即折扣率为50%。通过比例的运用,商家可以吸引消费者,促进销售。
3. 比例的金融运用
比例在金融领域有着广泛的应用。例如,贷款利率就是比例的一种应用。假设贷款利率为年利率8%,那么每年需要支付贷款本金的8%作为利息。通过比例的计算,我们可以得到具体的数值,帮助我们了解贷款的成本和还款计划。
4. 比例的医学应用
比例在医学研究中也有重要的应用。比如,在药物临床试验中,常常会用到液体的浓度。通过比例的计算,可以得到合适的药物浓度,确保治疗的效果。在人体中各种物质的比例关系也是研究疾病和健康的重要指标。
5. 比例的设计应用
比例在设计中起到了重要的作用。例如,在建筑设计中,比例可以帮助我们确定建筑物各个部分的大小和位置关系。而在工业设计中,比例可以帮助我们设计出符合人体工程学的产品。通过比例的运用,可以使设计更加合理和美观。
四、比例的解题方法
在解决比例问题时,可以采用多种方法。常见的方法有比值法、乘除法、倍数法等。根据具体情况选择合适的方法,可以更快地解决问题。
1. 比值法:通过比值的等于关系,建立方程式来求解问题。
2. 乘除法:通过乘除法的转换,将问题转化为等价的比例方程。
3. 倍数法:通过观察比例的规律,找到相应的倍数关系来求解问题。
五、比例误差与改进
在比例的应用过程中,误差是不可避免的。比如,由于实际条件的限制,比例尺无法完全准确地反映真实情况。在比例的转换过程中也可能存在误差。为了降低误差,需要在应用比例时认真计算,增加精度。
要改进比例的应用,需要注意以下几点:
1. 提高计算精度:对于精确度要求较高的问题,要使用更准确的方法计算,避免舍入误差。
2. 考虑实际条件:在应用比例时,要考虑到实际情况,避免过度理想化,尽量准确地反映真实情况。
3. 不断实践:通过不断实践和运用,积累经验,提高应用比例的能力。
六、总结
比例的应用是数学中重要的内容之一,其在日常生活和工作中的作用不可忽视。通过比例的应用,我们可以更好地理解和处理各种实际问题。在应用比例时,我们需要熟练掌握比例的性质和解题方法,并注意误差的控制和改进。通过不断的练习和实践,我们可以提高应用比例的能力,更好地应对各种实际问题。希望通过本篇文章的阐述,读者对比例的应用有更深入的了解。
比和比例课件 篇6
《比例的意义》
五年级 魏丽君
教学目标: 1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2.通过动手、动脑、观察、计算、讨论交流等方式,使学生自主获取知识,全面参与教学活动,体验获取获取知识的过程。
3.培养学生在实际生活中发现数学的存在,感受数学的区位和快乐,获得成功体验,增强学好数学的信心,提高学习积极性。适时进行爱国主义教育。 教学重点: 理解比例的意义。 教学难点: 应用比例的意义判断两个比能否组成比例,并能正确地组成比例。 教学过程:
一、创设情境
1、播放国歌 :
你知道他们在干什么?
你们知道在哪些地方可以看到国旗呢?
2、媒体出示国旗画面,学生观察,激发爱国情操,并分别说出是什么地方。 天安门升国旗仪式
校园升旗仪
教室场景 三幅图不同的场景,都有共同的标志——国旗,国旗是中华人民共和国的象征;这些国旗有大有小,你想不想知道这些国旗的长和宽是多少吗?
3、媒体出示国旗的长和宽,并提出问题。 (1)呈现信息:
天安门升国旗仪式:长5米,宽10/3米。 校园升旗仪式:长米,宽米。 教室场景:长60厘米,宽40厘米。
(2)问:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?
4、学生探索,发现问题。
(1)设计问题:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
(2)学生自主探索:学生自主观察、计算,发现国旗的长和宽的比值相等。 (3)通过计算,发现它们的比值都相等,解释说明我国国旗法规定:任何一面国旗的长宽之比都是3:2。,这是对国旗的尊重,进行爱国主义教育。
二、认识比例,理解含义
1、引出比例,理解比例的意义。
(1)媒体出示操场上的国旗和教室里国旗长和宽,计算出两面国旗的长和宽的比值。
并板书:
2.4∶ =3/2
60∶40=3/2 (2)引导写出:指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并板书:2.4∶ =60∶40 (3)指着这些等式说:“在数学中,像这样的等式就叫做比例 (4)学生尝试说说什么叫比例。
(5)共同归纳,得出结论:表示两个比相等的式子叫做比例。这就是我们这节课所学的内容“比例的意义”。(板书课题)请同学们齐读并理解。
2、探讨一:判断两个比是否能够组成比例,关键是什么?(学生讨论,教师参与引导)
3、探讨二:我们刚才一直在强调比和比例的联系,那么比和比例有什么区别吗?(小组讨论)
学生从形式上区分:比由两个数组成;比例由四个数组成。
学生从意义上区分:比表示两个数相除;比例表示两个比相等的式子。
三、巩固应用
课本做一做(1)选择两题。(学生汇报比值是否相等,所以成不成比例。) ( 四)拓展练习(课件演示):
1、猜一猜并填空,说说你是怎样思考的? 120:6 = (
) :2
2、生活中的比例 。
导语:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧! (1)课前三面国旗有关数据还能组成哪些比例呢?
(2)汽车上午5小时行驶了250千米,下午小时行驶了125千米。 A、分别写出上午、下午路程的比和时间的比,求出比值,看两个比能否成比例?
B、分别写出上午、下午时间与路程的比,求出比值,看两个比能否组成比例?
四、总结评价 。
1、课件出示:你说我说大家说,说你说我说大家。(前一句偏重是说收获,后一句是互相评价,当然包括评价老师。)
2、课件出示老师的话:我为你们今天的表现感到骄傲和感动!期待你们更好的表现!
总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识,继续加油哦! 板书设计:
比例的意义
表示两个比相等的式子叫做比例。
:=3/2
60:40=3/2
:=60:40
教学反思:
比例这部知识是在学习了比的知识和除法与分数关系的基础上教学的,属于概念教学,为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触对应函数的思想,而且可以用来解决日常生活中一些具体的问题。
本节课,为了更好地突出重点,突破难点,按照学生的认知规律,遵循自主性原则,主要让学生在情境中通过观察、计算、比较等的学习过程中掌握知识。为充分调动学生的学习积极性,促进学生有效学习。本节课力求做到以下几点:
一、创造有效学习情境,激发学习激情。
数学课堂教学需要必要的生活情境,这节课为学生提供四个实际情境图,创设这个情境有五方面的考虑:一是歌曲情境引入;二生活情境和已有知识经验、基础引入比例意义的教学;三是依据四面国旗长与宽可以组成多个比例式。四是有助于在教学中渗透爱国主义教育,注重了“数学化”和“生活化”,为学生展现出了“活生生”的思维活动过程,充分发扬自主。
二、活用教材。
教材是提供给学生学习内容的一个文本,我根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。这节课中在四面国旗的尺寸中找比组成比例,学生比较容易找到国旗长与宽的比,两两可以组成比例。同样国旗宽与长的比,两两也可以组成比例。另外每两面国旗的长之比与它们的宽之比也可以组成比例,课题中通过“你还能找出其它的比例吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。
比和比例课件 篇7
【教学内容】
《义务教育课程标准实验教科书·数学》六年级下册45页~46页
【教学目标】
1.通过观察、比较、判断、归纳等方法,帮助学生理解正比例的意义。
2.培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。
3.用 表示变量之间的关系,初步渗透函数思想。
【教学重点】理解正比例的意义。
【教学难点】引导学生通过观察、思考发现两种相关联的量的比值一定,概括出成正比例的概念。
【教具准备】
课件 一.创设情境 导入新课
同学们,再有两个多月的时间,我们就小学毕业了。学习了六年的数学,有一样东西跟我们最亲密,那就是数学书。
(师拿出一本数学书)大家看,这是一本数学书、2本、3本、 随着书的本数在增多,什么也在变化?
(学生说什么,教师就引导学生理解:如书的本数越多,书的总价就越厚高,说明书的本数和书的总价有关系,我们就说:书的本数和书的总价是两个相关联的量)板书:相关联的量
由此可以看出:书的厚度、重量、价格都和书的本数是相关联的量,他们随着书的本数的变化而变化,这里面蕴含着一个重要的观点,那就是变化的观点,今天我们就来研究数量间的变化,去发现变化中的规律。
(设计意图:由和学生最为亲密的数学课本入手这一例子,引出了两个相关联的量,由于事例为学生所熟悉,故很快将学生带入轻松愉快的学习情境,使学生及时进入状态,手脑并用,课堂气氛活跃。同时使学生感悟到生活中处处有数学,数学来源于生活。)
二、探索交流 解决问题
(一)探究成正比例的量
课前,老师选择了书的本数和价格这两个相关联的量,并制作了一张统计表,我们一起来看
看。
1.教师引领 初步感知——教学例1 教师课件出示统计表
(1)师:表中有哪两个相关联的量?
生:总价与本数
(2)师:总价是怎样随着数量的变化而变化的?
生:(当本数是1本,总价是5元,当本数是2本,总价是10元.本数变化,总价也随着变化.从左住右看,本数增加,总价也随着增加;从右住左看,本数减少,总价也随着减少.本数和总价是相关联的两种量.一种量变化,另一种量也随着变化.)
(3)师:总价与本数的变化有什么不变的规律? 预设:方案1(学生若回答有困难)
师启发:相应的总价与本数的比分别是多少?比值是多少?你从中发现了什么规律吗? 生:(5|1=5 10|2=5 15|3=5 20|4=5(相对应的两个数的比值一定)
师:相对应的两个数的比值一定也就是书的单价一定。你能用一个数量关系式来表示总价 数量、单价之间的关系?
生:总价|本数=单价(一定)师:为什么特意加上一定两个字?
生:因为不管总价与本数怎么变,书的单价始终保持不变
师:是的,这个很重要,下面继续我们的探索之旅。路程与时间是不是也具有这样的关系呢?
预设方案2(学生能回答)生:一本书的价格不变
师:也就是书的单价不变,单价不变,就是总价与数量的比值不变。
师:相对应总价与数量的比值是多少?你能用一个数量关系式表示他们之间关系吗?
生:总价|本数=单价(一定)师:为什么特意加上一定两个字?
生:因为不管总价与本数怎么变,书的单价始终保持不变
师:是的,这个很重要,下面继续我们的探索之旅。路程与时间是不是也具有这样的关系呢?(设计意图:利用学生较熟悉的数量关系单价、数量、总价,由学生观察,找出规律。并借助教材中的三个问题,适时提问“总价与数量的变化中什么不发生变化?”引导学生用多种方式表征,初步感受“一个量增加,另一个量也随着增加”以及一个不变的量(比值一定),为后面学生的进一步发现学习提供了充分的心理准备与知识准备。
2、小组合作,加深理解
出示例2: 一辆汽车行驶的时间和路程如下表:
时间(小时)路程(千米)
分组讨论: 80
…...…...160 240 320 400
(1)表中有哪两种相关联的量?(表中有时间和路程两种量,它们是相关联的两种量)
(2)仔细观察,路程是怎样随着时间的变化而变化的?(当时间是1小时,路程则是80千米,时间是2小时,路程是160千米,时间变化,路程也随着变化.时间增加,路程也随着增加;
一种量变化,另一种量也随着变化.时间减少,路程也随着减少.)
(3)相对应的路程和时间的比分别是多少?比值是多少?
80|1=80 160|2=80 240|3=80 320|4=80
(4)这个比值表示的是什么?如何用关系式来表示他们之间的关系? 生:这里的80表示一辆汽车的速度。也就是路程和时间的比值一定. 路程|时间=速度(一定)
(设计意图:因为成正比例的量这个概念本来就比较难理解,学生在短短的一节课中很难一下子正确建模。因此,教学例1之后,应根据教学需要和学生学习实际,我自主开发了一些新的教学内容,对学生的课本学习形成补充和拓展。)
3、归纳总结
师:比较例
1、例2,这两个例子有什么共同点?学生汇报讨论结果。汇报时教师引导学生比较上面两种情况的相同点和不同点。同时教师根据学生的回答板书:(1)都有两种相关联的量
(2)一种量变化,另一种量也随着变化
(3)相对应的两个数的比值(也就是商)一定
4.建立模型,抽象概括正比例的意义
(1)师:具有这样变化规律的两个量到底是什么关系呢?请到数学书45页去寻找答案吧!
生:自学汇报 师:我们一起来看大屏幕(课件总结)两种相关联的量,一种量变化,另一种量也随着变化。两种量中相对应的两个数的比值(也就是商)一定。这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
板书课题:正比例
(设计意图:让学生自学课本,一是为了培养学生的阅读能力,和自学意识,第二是为让学生加深对正比例的理解和认识
(2)判断条件:
根据成正比例的量的概念,谁来说说一说,要想知道两种量是不是正比例关系,应该抓住哪些关键点?
(3)教学字母关系式
师:如果用y和x表示两种相关联的变量,不变的量(即定量)用k表示,谁能用字母表示正比例关系?
生:= k(一定)(3)全班交流:根据正比例的意义以及正比例关系的式子,想一想,成正比例的两种量必须具备哪些条件?
(4)小结:两种量要有关联。
一个量增加,另一个量随着增加。一个量减少,另一个量随着减少。两种量的比值一定。(设计意图:为使学生更好地理解、把握、运用概念,概念归纳出来后,引导学生找准把握概念的“关键词”非常必要,而且十分有效。如提出“要判断两个量是不是成正比例的量,要具备哪几个条件?”引导学生用言语、图象、关系式等不同方式加以表征,以揭示概念的本质,加深对概念的理解。)
5、引导举例,强化认识
师:想一想,生活中还有哪些成正比例的量?
(1)学生自由举例。
(2)预设:因为长方形的面积÷长=长方形的宽,所以长方形的面积和长成正比例。师:日常生活和生产中有很多相关联的量,有的成正比例,有的相关联,但不成比例。判断两种相关联的量是否成正比例,要看这两个量的比值是否一定,只有比值一定,这两个量才成正
比例。
6、判断下面的两种量是否成正比例?并说明理由
(1)长方形的宽一定,长和它的面积
(2)《小学生作文》的单价一定,总价和订阅的数量。
(3)小新跳高的高度和他的身高。
(4)小麦每公顷的产量一定,小麦的公顷数和总产量。
(5)书的总页数一定,已经看的页
(设计意图:这个环节设计的练习目的是让学生在巩固的基础上,学会明辨是非,加深对正比例的认识,同时,也让学生明确:“相关联的两个量也未必就是正比例,判断两种量是否成正比例,关键还要看它们的比值是否一定。)
(二)研究正比例图像
师:正比例关系不但能通过计算看比值是不是一定来判读,还能用图像来表示。
出示例2:
一辆汽车行驶的时间和路程如下表:
时间(小时)路程(千米)
出示图表 80
…...…...160 240 320 400
师:仔细观察,从图中能获得哪些信息?
生:
学生尝试画图。
温馨提示:
(1)在图中找到相对应的点并画出来。
(2)仔细观察画出的点,先猜一猜,再连一连,你有什么发现?
3.学生展示画图,感知正比例图像。
猜测:我们经过观察发现这些点连起来好像是一条直线。师质疑:是不是这样呢?
师:老师发现刚才有很多连线的时候都是从第一点开始连得,孩子们想一想,到底应该从哪儿开始连?
生:0点
师:0点意思表示什么意呢?
教师引导学生说出0点表示:0小时行驶了0千米的路程(汽车还没有出发在原点)。师:那就请同学们把图像完善好。
师 质疑:A点表示什么意思?B点表示什么意思?
生:
4、师小结:大家把所描的各点连起来都在一条直线上。看出正比例的图像就是一条从(0,0)出发的无线延伸的射线。我们可以利用这个发现判断两个量是否成正比例。大家刚才的发现和法国著名数学家笛卡儿的发明不谋而合,大家真了不起!
(课件)数和形是数学的'两大根基,以前毫不相干,正是笛卡儿的发明,把“数”转化为“形”的图象,从此数学发展更蓬勃,令数有了几何意义,是很多高等数学的思想。这是数学史上的伟大创举!大家的发现和数学家想的一样,好样的。请同学们把掌声送给最棒的自己。
(设计意图:这一环节向学生渗透数学文化,从而数形完美结合)
5、引导学生利用正比例图像解决问题。
师:我们可以运用正比例图像解决生活中的一些问题。抛出问题:
(1)根据图像判断,这辆汽车2.5小时行驶多少千米?
(2)估计一下,行驶440千米需要多少小时? 引导学生:
①想一想,2.5小时大约在横轴的什么位置,能否在正比例图像上找到相对应的点?这个点对应纵轴上什么位置?
②动动手,利用三角板在图上试着画一画、找一找、验证一下。
③动画演示,将想象的点画出来。师:你为什么找得这么快?有什么好办法?
生:台前演示
师:利用正比例关系图像,不用计算,可以由一个量的值,直接找到对应的另一个量的值。得出结论:
(设计意图:把研究的机会放给学生,充分发挥学生的主体地位。通过猜一猜、想一想、画一画等数学活动,提高学生解决问题的能力,并适时对学生进行数学人文教育。)
6、总结
今天我们通过猜想验证和“画一画、说一说、估一估”等数学活动,初步感知了正比例图像,并能在图中根据一个变量的值估计它所对应的变量的值。同学们真的非常了不起!
四、回顾整理 反思提升
1、通过这一节课的学习,你有什么收获?
生:(2-3名学生回答)
2、盘点学习过程
千金难买回头看,我们一起来回顾这节课的学习过程,首先我们研究了总价、本数这两个相关联的量之间的关系,接着又研究了路程、时间这两个相关联的量,借助这两个具体的数量关系,由此归纳抽象出正比例模型。接着又研究了正比例图像,从而实现了数与形的完美结合!在以后的学习中,我们也可以用这种方法去学习研究其他的知识。
3、最后送一句话给大家,“学而不思则罔,思而不学则怠”。希望同学们在以后的学习中勤于反思,善于总结,只有把学习和思考结合起来,才能有更大大多的发现!
(设计意图:俗话说:“授之以鱼,不如授之以渔”本环节的设计既有知识的提升,更有学习方法的总结。)
比和比例课件 篇8
《比例尺的认识》教学设计案例
南京市秦淮实验小学
肖俊晖
教学内容:义务教育课程标准实验教材第十二册数学P48---49的内容,并完成课后练习P53---54的1---3题
教材分析:本节课的内容是六年级下册的《比例尺》,它是学生学完 “图形的放缩”后安排的内容。比例尺在生活中有广泛的应用,学好它很有现实意义。
学情分析:六年级的下学期的学生,对于各种图形有着丰富的生活经验,所以讲解有关比例尺的知识,同学们会很有兴趣的。
教学目标:
1、知识与技能
(1)理解比例尺的含义,知道比例尺的种类,能读懂不同种类的比例尺。
(2)根据比例尺的含义,会正确的求出一幅图的比例尺;
(3)正确进行线段比例尺和数值比例尺的互化;
(4)培养学生发现问题、分析问题、解决问题能力;
2、过程与方法
在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。
3、情感态度与价值观
(1)体验数学与生活的联系,培养学生用数学眼光观察生活的习惯.
(2)在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣.
教学重点:比例尺意义的理解和比例尺的求法。
教学难点:比例尺意义的理解 。
教学过程:
一、情境导入
1、脑筋急转弯引出地图;
2、师问:中国960万平方公里的广阔土地为什么可以画在这么一张小小的图纸上呢?(缩小以后画出来的)
3、那你还能举出一些生活中像这样余姚将实际尺寸缩小以后画在图纸上的例子吗?(学生举例)
4、师根据学生回答总结:是的,像这样的例子有很多。工程师在设计桥梁或房屋时,都要将原物体缩小以后画在设计图上;其实生活中还有需要将原物体扩大以后画在图纸上的例子,比如手表零件图,电脑芯片图等。那么今天老师也想请大家当一回小小设计师。
二、探究新知
(一)学习比例尺的含义
1、设计画出教室的占地平面图; 设计要求:
2、小组内交流自己时怎么设计的?重点交流你是怎么确定图上距离的。
3、请几个有代表性的同学回报自己的设计方案(最低3个同学,各代表一类),老师根据学生的回答情况板书:
(1)8cm:8m=8cm:800cm=1:100
6cm:6m=6cm:600cm=1:100
(2)4cm:8m=4cm:800cm=1:200
3cm:6m=3cm:600cm=1:200
(3)8cm:8m=8cm:800cm=1:100
3cm:6m=3cm:600cm=1:200
4、比较以上3副图,有什么不同?
(3)和(1)(2)的形状不相同,显得长而窄,改变了原来的形状。
(1)和(2)形状相同,但大小不同,不过它们的形状和教室的原形状相同,只不过大小不同。
5、接着问:为什么会出现这样的情况呢?(学生试说)
6、引导学生发现:第(3)副图是因为长和宽缩小的倍数不同,所以改变了形状,(2)和(3)的长和宽都是同时缩小的相同的倍数,只是第(1)副图上的长和宽同时缩小的是100倍,而第(2)图上的长和宽同时缩小的是200倍,所以大小不同,但形状相同,而且没有改变原来的形状。
7、师随即说明:通过刚才的活动,我们可以发现“图上距离”和“实际距离”有着一定的倍数关系,在数学中我们就约定用一个“比”来表示它们之间的倍数关系,像这里的“1:100和1:200”这些比都是表示一副图中“图上距离”和“实际距离”之间的倍数关系,我们把它叫做“比例尺”。
8、那谁能说说什么叫“比例尺”?(学生用自己的话说说后,老师表述完整“比例尺”的含义“一副图中图上距离和实际距离的比叫做这副图的比例尺。
9、强调比的前项是“图上距离”,后项是“实际距离”,不可以调换,并解释“叫做这副图的比例尺”的含义。同时板书: 图上距离:实际距离=比例尺(并强调分数比的形式)
(二)学习比例尺的种类
1、你在那里见过比例尺?(学生说)
2、出示3副图片,学生找出比例尺并读一读;
3、在学生不认识其中的“线段比例尺”时瞬势介绍比例尺的种类:线段比例尺和数值比例尺。
4、说说每个比例尺表示的含义。(学生用不同的方法说一说)
5、当学生不知道线段比例尺所表示的含义时,老师顺势解释它所表示的含义,再让学生说一说它的含义。
(三)数值比例尺和线段比例尺之间的转换。
1、可以将这个“线段比例尺”改写成“数值比例尺”吗?怎么改写呢?(学生试着说说)
2、那就在草稿纸上用你们的方法试一试。(学生试做)
3、交流你的改写方法。老师根据学生说的过程板书改写过程。
4、数值比例尺可以改成线段比例尺吗?怎么改?(学生试着说说)
5、师生一起将1:这个比例尺改成线段比例尺。
三、课堂小结
1、闭上眼睛回忆一下,刚才我们学习了关于“比例尺”的一些什么知识?
2、学生回忆后说一说;
3、师根据学生回答做一个简要的知识小结。
四、巩固练习
下面就请大家把刚才学到的知识用上,去完成下面的练习:
1、判断对错,并说明理由。
(1)比例尺是一种测量工具。(
)
(2)所有比例尺的前项都是1。(
)
(3)一个小型零件长5毫米,画在图纸上是5厘米,这幅图的比例尺是1:10。(
)
(4)比例尺按照表现形式可分为数值比例尺和线段比例尺。(
)
(5)一幅图的比例尺应根据图纸的大小来确定。
(
)
2、阅读下面一段话,找出其中的比例尺。
把一快长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了厘米。
(1)图上长与实际长的比 是 (
)
(2)图上面积与实际面积的比是1:。(
)
(3)图上宽与实际宽的比是1:400。
(
)
(4)实际长与图上长的比是400:1 。
(
)
3、完成书P53的第2题。
五、总结拓展
1、评价自己本节课的学习情况;
2、拓展。 教学评价:
1、这节课,体现了教师的先进教学理念——教师为学生服务,关注学生的发展,教师“教不越位”,学生“学习到位”。整体特点是:教师自然巧妙地创设问题情境,引入新课;充分调动学生的学习积极性,探究新知;重视启发引导学生,解决问题。其中,最大亮点是:学生体会了比例尺产生的必要性,经历了比例尺产生的过程,即经历了比例尺的“定义化”过程。
2、整节课,教师始终以大朋友的身份与学生谈话交流,以师生平等的心态实施教学。宽容、善待、鼓励每一位学生,对学生的新发现及时给予肯定。
3、教师善于加工、重组学习材料,帮助学生沟通数学与生活的联系,实现生活问题数学化和数学问题生活化两个转化,让学生感受到:噢,原来数学离我们这么近,我们的生活中处处有数学呀!数学能帮助我们解决好多问题啊!
比和比例课件 篇9
《认识比例》说课稿
一、说教材
1、教学内容:
《比例的意义和基本性质》是西师版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等的基础上教学的,是本册教材教学内容的第三单元的第一个课时。而本节课内容主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。
2、教学目标: 教学目标:
理解比例的意义,认识比例各部分的名称。 能用比例的意义判断两个比能否组成比例,并会组成比例,理解并掌握比例的基本性质。
在自主探索学习的过程中体验发现数学规律的乐趣。 引导学生通过观察、比较、计算、交流探索新知。 教学准备:题卡 教学重难点:
理解比例的意义和比例的基本性质。
给学生装提供自主探索及合作交流的时间与空间,让学生装在探索活动中获得成功的体验,增进学生学好数学的信心和乐趣。
二、说教学设计
课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。
(一)复习导入
先复习比的一些知识,什么叫比?什么叫比值?然后通过一个小练习让学生写比并求出比值。揭示课题。
(二)教学新课
分成两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。
第一部分:先出示例1中的两个比,让学生计算它们的比值,然后观察、比较,发现比值相等,于是组成比例。让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。教学比例的意义后,及时组织练习。完成练习中第一题的第
1、2小题,用比例的意义来判断四个比能否组成比例,并说明理由。第二个练习是师生间、生生间合作说一个比例。在这个过程中,充分运用了比例的意义的知识,用比例的意义来解决问题,同时培养学生合作学习的能力。
第二部分:教学比例的基本性质。
在揭示比例的基本性质时,我先让学生计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。特别强调了已知两个外项的积等于两个内项的积,利用这个基本性质再次判断两个比能否组成比例。接着就做些练习对所学的知识进行巩固及应用,通过一个填数游戏充分巩固学生对比例的基本性质知识的应用。
《认识比例》教学设计
教学内容:
教科书第
49、50页例
1、例2相关内容。 教学目标:
理解比例的意义,认识比例各部分的名称。
能用比例的意义判断两个比能否组成比例,并会组成比例,理解并掌握比例的基本性质。
在自主探索学习的过程中体验发现数学规律的乐趣。 引导学生通过观察、比较、计算、交流探索新知。 教学准备:题卡 教学重难点:
理解比例的意义和比例的基本性质。
给学生装提供自主探索及合作交流的时间与空间,让学生装在探索活动中获得成功的体验,增进学生学好数学的信心和乐趣。 教学过程:
一、复习导入
1、师:同学们,大家还记得什么是比吗? 教师引导举例说明,并说出比的各部分名称。
2、出示题卡:一辆汽车2小时行120千米,3小时行180千米。请你写出路程和时间的比。
师:你能把这两个比化简并求出它们的比值吗?(学生独立完成,并反馈。) 师引导:我们发现这两个比的比值相等,我们就可以把它们用等号连接起来,这样,我们就把表示两个比相等的式子叫做比例。(板书,齐读。)
二、新课教学
1、师:3:2和9:6能组成比例吗?请大家求比值来判断一下。 汇报,引导归纳:判断两个比能否组成比例,可以看它们的比值是否相等,还可以看这两个比化简后是否一样来进行判断。
2、即时练习。
完成书上练习第一题的第
1、2小题。(学生独立完成,再全班反馈。) 师生、生生合作说比例。
3、认识比例各部分的名称。
学生自学课本中相应的内容,色画出认为重点的信息,再汇报。 找出120:2=180:3的内外项。
4、认识比例的基本性质。
师:现在让我们一起来探索在比例中有什么特殊的规律吧!请把题卡上四个比例中的两个外项和两个内项的积分别相乘,看看你发现了什么?
学生独立完成,全班交流。(师引导学生说完整的句子,并在书上作上喜欢的重点记号。) 师:这就是比例的基本性质,想一想,我们可以把比例的基本性质用一个什么等式来表示?
指名回答,板书。
师:如果把比例写成分数的形式,你还能找出比例的内外项吗?
(学生同桌完成,并交流想法,再全班交流。教师引导学生明确:把比例写成分数的形式,即等号两边的分子分母交叉相乘,积相等。)
三、巩固提高
1、用比例的基本性质完成第1题其余两道小题。
2、完成题卡上的填数游戏。
四、课堂小结。
五、评价。
比和比例课件 篇10
教学内容:教材例7题。
素质教育目标
(一)知识教学点
1.理解反比例的意义。
2.能根据反比例的意义,正确判断两种量是否成反比例。
(二)能力训练点
1.培养学生的抽象概括能力。
2.培养学生的判断推理能力。
(三)德育渗透点
通过反比例意义的教学,使学生受到辩证唯物主义观点的启蒙教育。
教具学具准备:投影仪、投影片。
教学重点:引导学生总结概括出成反比例的量,是相关联的两种量中相对应的两个数的积一定,进而抽象、概括出成反比例关系式:X×Y=K(一定)
教学难点:利用反比例的意义,正确判断两种量是否成反比例。
教学步骤
一、铺垫孕伏
1.下表中的两种量是不是成正比例?为什么?
2.回忆:成正比例的量有什么特征?
二、探究新知
2.教学例4
(
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(2)学生讨论交流。
(3)引导学生回答:
①表中的两种量是每小时加工的数量和所需的加工时间。
(板书:每小时加工数加工时间)
②每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
③每两个相对应的数的乘积都是。
教师适时点拨:
①想一想:每小时加工的数量和所需的加工时间是两种相关联的量吗?为什么?
(引导学生回答:是两种相关联的量,每小时加工的数量变化,加工时间也随着变化。同时板书。)
②议一议:这两种量的变化有什么规律吗?
(教师可以操作:一个竹筒内放
(订正时,随学生回答,板书:积一定)
③教师问:这个)
师指板书问:每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?(板书:×=)
(4)小结:通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
3.教学例5
(1)投影出示例5,根据题意,学生口述填表。
(2)观察上表,你发现了什么?引导学生回答下列问题:
①表中有哪两种量?(板书:每本页数装订本数)是相关联的量吗?
②装订的本数是怎样随着每本的页数变化的?
③表中的两种量有什么变化规律?
(3)订正时板书:在原板书“每小时加工数变化,加工时间也随着变化”的“每小时加工数”下板书“每本页数”,在“加工时间”下板书“装订本数”。
()指板书问:每本页数、装订本数和纸的总页数之间有什么关系?(板书:×=)
4.比较例4和例5,概括反比例的意义
(
(2)学生回答:
①都有两种相关联的量。
②都是一种量变化,另一种量也随着变化。
(板书:用“一种量”盖住“每小时加工数”和“每本页数”;用“另一种量”盖住“加工时间”和“装订本数”。)
③都是两种量中相对应的两个数的积一定。
(3)师小结:像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
(4)通过观察比较,谁能说说什么样的两种量叫做成反比例的量?
(找
5.教师引导学生明确:在例4中,所需的加工时间随着每小时加工数量的变化而变化,并且,每小时加工的数量和所需的加工时间的积,也就是零件总数是一定的。我们就说每小时加工的数量和所需的加工时间是成反比例的量。
议一议:在例5中,有哪两种相关联的量?它们是不是成反比例的量?为什么?
)反比例关系可以用一个什么样的式子表示?(板书:×=)
7.教学例6
(1)出示例6
(2)学生交流。
(3)学生汇报,教师点拨。
①每天播种的公顷数和要用的天数是不是相关联的量?
②每天播种的公顷数和要用的天数有什么关系?它们的积是什么?这个积一定吗?(板书:每天播种的公顷数×天数=播种的总公顷数(一定))
③播种总公顷数一定,每天播种公顷数和要用的天数成反比例吗?为什么?(板书:每天播种的公顷数和要用的天数成反比例。随着问为什么,板书:因为,所以)
想一想,播种的总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?(组织学生讨论)
8.完成做一做
三、巩固发展
1.想一想:成反比例的量应具备什么条件?
2.练习三第4题
3.判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
4.你能举一个反比例的例子吗?
四、全课小结
这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
五、布置作业练习三6题。
比和比例课件 篇11
教学要求:
1、使学生进一步理解比例的意义和基本性质,能区分比和比例。
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、培养学生的思维能力。
教学过程:
知识整理
1、回顾本单元的学习内容,形成支识网络。
2、我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习
1、填空
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。
甲乙两数的比是5:3。乙数是60,甲数是()。
2、解比例
5/x=10/340/24=5/x
3、完成26页2、3题
综合练习
1、A×1/6=B×1/5A:B=():()
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例():()、():()
实践与应用
1、如果A=C/B那当()一定时,()和()成正比例。当()一定时,()和()成反比例。
2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的.和是5.4它们的比是5:4,这块钢板的实际面积是多少?