数列教案
发布时间:2023-08-02 数列教案数列教案。
俗话说,手中无网看鱼跳。。为了使每堂课能够顺利的进展,教师通常会准备好下节课的教案,为了给孩子提供更高效的学习效率,教案是个不错的选择,教案有利于老师在课堂上与学生更好的交流。所以你在写幼儿园教案时要注意些什么呢?下面是小编为大家整理的“数列教案”,但愿对你的学习工作带来帮助。
数列教案(篇1)
铜仁一中 吴 瑜
【教学目标】 1、知识与技能
掌握几种解决数列求和问题的基本思路、方法和适用范围,进一步熟悉数列求和的不同呈现形式及解决策略。2、过程与方法
经历数列几种求和方法的探究过程、深化过程和应用过程,培养学生发现问题、分析问题和解决问题的能力,体会知识的发生、发展过程,培养学生的学习能力。3、情感与价值观
通过数列几种求和法的归纳应用,激发学生的学习热情和创新意识,形成锲而不舍的钻研精神和合作交流的科学态度。感悟数学的简洁美﹑对称美。【教学重点】
本节课的教学重点为倒序相加、裂项相消、分组求和、错位相减求和的方法和形式,能将一些特殊数列的求和问题转化上述相应模型的求和问题。【教学难点】
本节课的教学难点为建构几种求和方法模型的思维过程,不同的数列采用不同的方法,运用转化与化归的思想分析问题和解决问题。【课堂设计】
一、知识回顾
1、等差数列通项公式ana1(n1)d,前n项和公式Snn(a1an)
2na(1q)1n1(q1)
2、等比数列通项公式ana1q,前n项和公式Sn1q
二、合作探究
1、倒序相加法:
例
1、求和:snsin21sin22sin23sin289 设计意图:应用倒序相加并感受此种方法的优越性——简洁美、对称美。
2、裂项相消法: 例
2、求数列 1111,,, 的前n项和。122334n(n1)一般化:1111()
n(nk)knnk设计意图:体验通分和裂项这对运算的互逆关系以及相消过程的简洁美、对称美。【变式1】已知数列{an}的通项公式为an2n1,求数列
1的前n项和。
anan1【变式2】求和:sn
3、分组求和法:
1111 1447710(3n2)(3n1)例
3、求和:sn123456(2n1)2n 【变式1】求和:sn
14、错位相减法:
例
4、求和:sn12222323n2n
三、归纳小结 数列求和常用的方法:
1、倒序相加法:数列an中,与首末两项等距离的两项之和等于首末两项之和,求和时可把正着写与倒着写的两个和式相加,就得到一个常数列的和。
2、裂项相消法:设法将数列an的每一项拆成两项或若干项,并使它们在相加时除了首尾各有一项或少数几项外,其余各项都能前后正负相消,进而求出数列的前n项和。
3、分组求和法:an,bn是等差数列或等比数列,求数列anbn的前n项和。
4、错位相减法:an是等差数列,bn是等比数列,求数列anbn的前n项和。思考题:
1.求数列1,12,122,,122222n1111135(2n1)n 2482前n项的和。
2.求和:sn10029939829722212
数列教案(篇2)
§3.1.1、的通项公式 目的:要求学生理解的概念及其几何表示,理解什么叫的通项公式,给出一些能够写出其通项公式,已知通项公式能够求的项。重点:1的概念。按一定次序排列的一列数叫做。中的每一个数叫做的项,的第n项an叫做的通项(或一般项)。由定义知:中的数是有序的,中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。2.的通项公式,如果{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做的通项公式。从映射、函数的观点看,可以看成是定义域为正整数集N*(或宽的有限子集)的函数。当自变量顺次从小到大依次取值时对自学成才的一列函数值,而的通项公式则是相应的解析式。由于的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。难点:根据前几项的特点,以现规律后写出的通项公式。给出的前若干项求的通项公式,一般比较困难,且有的不一定有通项公式,如果有通项公式也不一定唯一。给出的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。过程:一、从实例引入(P110)1. 堆放的钢管 4,5,6,7,8,9,102. 正整数的倒数 3. 4. -1的正整数次幂:-1,1,-1,1,…5. 无穷多个数排成一列数:1,1,1,1,…二、提出课题:1. 的定义:按一定次序排列的一列数(的有序性)2. 名称:项,序号,一般公式 ,表示法 3. 通项公式: 与 之间的函数关系式如 1: 2: 4: 4. 分类:递增、递减;常;摆动; 有穷、无穷。5. 实质:从映射、函数的观点看,可以看作是一个定义域为正整数集 N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。6. 用图象表示:— 是一群孤立的点 例一 (P111 例一 略)三、关于的通项公式1. 不是每一个都能写出其通项公式 (如3)2. 的通项公式不唯一 如: 4可写成 和 3. 已知通项公式可写出的任一项,因此通项公式十分重要例二 (P111 例二)略 四、补充例题:写出下面的一个通项公式,使它的前 项分别是下列各数:1.1,0,1,0. 2. , , , , 3.7,77,777,7777 4.-1,7,-13,19,-25,31 5. , , , 五、小结:1.的有关概念2.观察法求的通项公式六、作业 : 练习P112 习题 3.1(P114)1、2七、练习:1.观察下面的特点,用适当的数填空,关写出每个的一个通项公式;(1) , , ,( ), , …(2) ,( ), , , … 2.写出下面的一个通项公式,使它的前4项分别是下列各数:(1)1、 、 、 ; (2) 、 、 、 ; (3) 、 、 、 ; (4) 、 、 、 。3.求1,2,2,4,3,8,4,16,5,…的一个通项公式4.已知an的前4项为0, ,0, ,则下列各式 ①an= ②an= ③an= 其中可作为{an}通项公式的是 A ① B ①② C ②③ D ①②③ 5.已知1, , , ,3, …, ,…,则 是这个的( ) A. 第10项 B.第11项 C.第12项 D.第21项 6.在{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。7.设函数 ( ),{an}满足 (1)求{an}的通项公式;(2)判断{an}的单调性。8.在{an}中,an=(1)求证:{an}先递增后递减;(2)求{an}的最大项。 答案:1. (1) ,an= (2) ,an= 2.(1)an= (2)an= (3)an= (4)an= 3.an= 或an=这里借助了1,0,1,0,1,0…的通项公式an=。4.D 5.B 6. an=4n-27.(1)an= (2)
数列教案(篇3)
证明等比数列
cn/c(n-1)=an*a(n+1)/an*a(n-1)=a(n+1)/a(n-1)=3
bn=a(2n-1)+a(2n)=3*a(2n-3)+3*a(2n-2)=3(bn-1)
因此bn/b(n-1)=3,所以bn为等比数列,公比为3。
2
设数列{a的第n项}的前n项和Sn=1/3(a的第n项-1),n属于自然数
Sn-S(n-1)=an=1/3(an-1-a(n-1)+1)=(an-a(n-1)/3
已知前三项是2,4,8,数列满足a(n+1)=a(n)+2n(就是第n+1项等于第n项加上2n),求数列的通项公式。这儿没有告诉你数列是等比数列,求通项公式之前必须证明它是等比数列,请问怎么证明?
上n-1个式子相加得到:
右边是等差数列,且和=[2+2(n-1)](n-1)/2=n(n-1)
根据题意,数列是3*2^n(^n表示肩膀上的方次),n=1,2,3,...
为了验证它是等比数列只需要比较任何一项和它相邻项的比值是一个不依赖项次的`固定比值就可以了.
所以第n项和第n+1项分别是3*2^n和3*2^(n+1),相比之后有:
数列an前n项和为Sn 已知a1=1 a(n+1)=(n+2)/n乘以Sn(n=1,2,3......) 证明
那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)
数列教案(篇4)
§3 数列极限存在的条件
教学内容:单调有界定理,柯西收敛准则。
教学目的:使学生掌握判断数列极限存在的常用工具。掌握并会证明单调有界定理,并会运用它求某些收敛
数列的极限;初步理解Cauchy准则在极限理论中的主要意义,并逐步会应用Cauchy准则判断某些数列的敛散性。
教学重点:单调有界定理、Cauchy收敛准则及其应用。
教学难点:相关定理的应用。
教学方法:讲练结合。
教学学时:2学时。
引言
在研究比较复杂的极限问题时,通常分两步来解决:先判断该数列是否有极限(极限的存在性问题);若有极限,再考虑如何计算些极限(极限值的计算问题)。这是极限理论的两基本问题。
本节将重点讨论极限的存在性问题。为了确定某个数列是否有极限,当然不可能将每一个实数依定义一一加以验证,根本的办法是直接从数列本身的特征来作出判断。本节就来介绍两个判断数列收敛的方法。
一、单调数列:
定义 若数列an的各项满足不等式anan1(aan1),则称an为递增(递减)数列。递增和递减数列统称为单调数列. (1)n12例如:为递减数列;n为递增数列;不是单调数列。nn
二、单调有界定理:
考虑:单调数列一定收敛吗?有界数列一定收敛吗?以上两个问题答案都是否定的,如果数列对以上两个条件都满足呢?答案就成为肯定的了,即有如下定理:
定理2.9(单调有界定理)在实数系中,有界且单调数列必有极限。
证明:不妨设an单调递增有上界,由确界原理an有上确界asupan,下面证明limana.0,n
一方面,由上确界定义aNan,使得aaN,又由an的递增性得,当nN时aaNan; 另一方面,由于a是an的一个上界,故对一切an,都有anaa;
所以当nN时有aana,即ana,这就证得limana。n
同理可证单调递减有下界的数列必有极限,且为它的下确界。
例1 设an1111,n1,2,其中2,证明数列an收敛。23n
证明:显然数列an是单调递增的,以下证明它有上界.事实上,an1111 22223n
11111111111 1223(n1)n223n1n
212,n1,2, n
于是由单调有界定理便知数列an收敛。
例2 证明下列数列收敛,并求其极限:
n个根号
解:记an
显然a1222,易见数列an是单调递增的,现用数学归纳法证明an有上界2.22,假设an2,则有an12an222,从而数列an有上界2.n2于是由单调有界定理便知数列an收敛。以下再求其极限,设limana,对等式an12an两边
2同时取极限得a2a,解之得a2或a1(舍去,由数列极限保不等式性知此数列极限非负),从而 lim2222.n
例3证明lim(1)存在。n1nn
分析:此数列各项变化趋势如下
我们有理由猜测这个数列单调递增且有上界,下面证明这个猜测是正确的。
证明:先建立一个不等式,设ba0,nN,则由
bn1an1(ba)(bnbn1abn2a2ban1an)(n1)bn(ba)得到不等式 an1bn(n1)anb(*)
以b111111a代入(*)式,由于(n1)anb(n1)(1)n(1)1 nn1n1n
n1nn111由此可知数列1为递增数列; nn1于是1n1
再以b11111a代入(*)式,同样由于(n1)anb(n1)n(1),2n2n
2n2nn14由此可知数列1为有界数列; n111于是1112n22n
n综上由单调有界定理便知lim(1)存在。nn
n1注:数列1是收敛的,但它的极限目前没有办法求出,实际上它的极限是e(无理数),即有n
1lim(1)n=e,这是非常有用的结论,我们必须熟记,以后可以直接应用。nn
例4 求以下数列极限:
(1)lim(1);(2)lim(1nn1nn1n1);(3)lim(1)2n.n2nn
n1n1 解:(1)lim(1)lim1nnnn11; e
(2)lim(1n1n1)lim1n2n2n2ne 12
(3)lim(1n12n)n1nlim1e2.nn2
三、柯西收敛准则:
1.引言:
单调有界定理只是数列收敛的充分条件,下面给出在实数集中数列收敛的充分必要条件——柯西收敛准则。
2.Cauchy收敛准则:
定理2.10(Cauchy收敛准则)数列an收敛的充分必要条件是:对任给的0,存在正整数N,使得当n,mN时有|anam|;或对任给的0,存在正整数N,使得当nN,及任一pN,有anpan。
3.说明:
(1)Cauchy收敛准则从理论上完全解决了数列极限的存在性问题。
(2)Cauchy收敛准则的条件称为Cauchy条件,它反映这样的事实:收敛数列各项的值愈到后面,彼此愈接近,以至于充分后面的任何两项之差的绝对值可以小于预先给定的任意小正数。或者,形象地说,收敛数列的各项越到后面越是“挤”在一起。
(3)Cauchy准则把N定义中an与a的之差换成an与am之差。其好处在于无需借助数列以外的数a,只要根据数列本身的特征就可以鉴别其(收)敛(发)散性。
(4)数列an发散的充分必要条件是:存在00,对任意的NN,都可以找到n,mN,使得anam0;存在00,对任意的NN,都可以找到nN,及pN,使得anpan0.例5设an1112n,证明数列an收敛。101010
证明:不妨设nm,则
anam111m1m2n101010
1110m11nm11011111 mnm19101010mm110对任给的0,存在N
例6设an1
证明:0,对一切nmN有|anam|,由柯西收敛准则知数列an收敛。11,证明数列an发散。2n
anp1,对任意的NN,任取nN,及pn,则有 211111111an(共n项)n0 n1n22n2n2n2n2n2由柯西收敛准则知数列an发散。
数列教案(篇5)
教学理念: 数学教学是思维过程的教学,如何引导学生参与到教学过程中来,尤其是在思维上深层次的 参与 ,是促进学生良好的认知结构,培养能力,全面提高素质的关键。数学教学中的探究式对培养和提高学生的自主性、能动性和创造性有着非常重要的意义。
设计思想: 本节借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。
教学内容:
高中数学必修第五模块第二章第二节,等差数列,两课时内容,本节是第一课时,研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。
教学地位:
本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对 后续 内容的学习,无论在知识上,还是在方法上都具有积极的意义。高考资源网
教学重点:
理解等差数列概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题,体会等差数列与一次函数之间的关系。
教学难点:
对等差数列概念的理解及从函数、方程角度理解通项公式,概括通项公式推导过程中体现出的数学思想方法。
二、学习者分析:
高二学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。
知识目标:
理解等差数列定义,掌握等差数列的通项公式。
培养学生观察、归纳能力,在学习过程中,体会数形结合思想、归纳思想和化归思想并加深认识;通过概念的引入与通项 公式 的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。
情感目标:
①通过个性化的学习增强学生的自信心和意志力。
②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。
③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。
通过探究式教学方法充分利用现实 情景 ,尽可能的增加教学过程的趣味性、实践性。利用多媒体课件和实例等丰富学生的学习资源,强调学生动手操作试验和主动参与,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。
2、 在学法上,引导学生多角度,多层面认识事物,学会探究。教师是学生的学习的组织者、促进着、合作者,在本节课的备课和教学过程中,为学生的动手实践,自主探索与合作交流的机会搭建平台,鼓励学生提出自己的见解,学会提出问题解决问题,通过恰当的教学方式让学生学会自我调适,自我选择。
通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。本节课打破传统的一言堂的格局代之以人为本、民主、开放、特色和建立在信息网络平台上的现代教学格局。
六、教学程序:
(一)设置问题,引导发现形成概念w。
北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):
情景2 水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)
情景3 我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:
时间 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%,那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)
每行数有何共同特点?请同学们互相讨论。
(从宏观上 : 情景1 让学生体验成功申办奥运会的喜悦心情,激发勇于拼搏的坚强意志;情景2让学生认识到保护水资源,保护生态平衡的意识;情景3 倡导节约意识,纳税意识。)
从微观上,数学研究的对象是数,我们抛开具体的背景,从表格中抽象出一般数列。
48 53 58 63 18 15.5 13 10.5 8 5.5 10072 10144 10216 10288 10360 师:(启发学生)你能用数学语言来描述上述数列的共同特征吗?
师:反例:1,3,5,6,12,这样的数列特征和上述数列的特征一样吗?
师:反例:1,3,4,5,6,7,这样的数列特征和上述数列的特征一样吗?
学生3:从第二项起,每一项与它的前一项的差等于同一个常数。
(教师把学生的回答写在黑板上,通过反例,使学生深刻理解几组数列的共同特征:
= 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起)
这样的数列在生活中的例子,谁能再举几个?
52,50,48,46,44,42,40,38.
21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25
学生7:马路边的路灯,相邻两盏之间的距离构成的数列。
a,a,a,a,……,为常数列,即常数列都具有这种特征。
师:满足这种特征的数列很多,我们有必要为这样的数列取一个名字?
一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首相。
对定义进行分析,强调: = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起。注意对概念严谨性的分析。
学生9:依次是d=7,d=1,d=8,d=-6,d=5,d=-2.5,d=72.(wj62.com 泡泡演讲稿)
师:在计算年末本利和的问题中求 时,能不能不按本利和=本金 (1+利率 存期)
求而按数列的特征求呢?
师:把问题推广到一般情况。若一个数列 是等差数列,它的公差是d,那么数列 的通项公式是什么?高考资源网
启发学生:(归纳、猜想)可用首相与公差表示数列中任意一项。
数列教案(篇6)
一、教材分析
从教材的编写顺序上来看,等比数列的前n项和是第三章“数列”第五节的内容,一方面它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习“数列的极限”等内容作准备。
就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如分类讨论等在各种数列求和问题中有着广泛的应用;另外它在如“分期付款”等实际问题的计算中也经常涉及到。
就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。
教师教学用书安排“等比数列的前n项和”这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系。
二、教学目标
依据课程标准,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:
知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
过程与方法目标:通过公式的`推导过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。
情感与态度目标:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。
三、教学重点和难点
重点:等比数列的前 项和公式的推导及其简单应用。从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识特点而言,蕴涵丰富的思想方法;就能力培养来看,通过公式推导教学可培养学生的运用数学语言交流表达的能力。
突出重点方法:“抓三线、突重点”,即(一)知识技能线:问题情境→公式推导→公式运用;(二)过程与方法线:特殊到一般、猜想归纳→ 错位相减法等→转化、方程思想;(三)能力线:观察能力→数学思想解决问题能力→灵活运用能力及严谨态度。
难点:等比数列的前 项和公式的推导。从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通,而知识的整合对学生来说恰又是比较困难的,而且错位相减法是第一次碰到,对学生来说是个新鲜事物。
突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,及时地给以鼓励,使他们知难而进;二抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导。
数列教案(篇7)
目的:
要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
按一定次序排列的一列数叫做数列。数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。
2.数列的通项公式,如果数列{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做数列的通项公式。
从映射、函数的观点看,数列可以看成是定义域为正整数集N*(或宽的有限子集)的函数。当自变量顺次从小到大依次取值时对自学成才的一列函数值,而数列的通项公式则是相应的解析式。由于数列的.项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。
难点:
根据数列前几项的特点,以现规律后写出数列的通项公式。给出数列的前若干项求数列的通项公式,一般比较困难,且有的数列不一定有通项公式,如果有通项公式也不一定唯一。给出数列的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。
1. 堆放的钢管 4,5,6,7,8,9,102. 正整数的倒数 3. 4. -1的正整数次幂:-1,1,-1,1,…5. 无穷多个数排成一列数:1,1,1,1,…
递增数列、递减数列;常数列;摆动数列; 有穷数列、无穷数列。
5. 实质:
从映射、函数的观点看,数列可以看作是一个定义域为正整数集 N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。
6. 用图象表示:
3. 已知通项公式可写出数列的任一项,因此通项公式十分重要例二 (P111 例二)略
四、补充例题:
写出下面数列的一个通项公式,使它的前 项分别是下列各数:1.1,0,1,0. 2. , , , , 3.7,77,777,7777 4.-1,7,-13,19,-25,31 5. , , ,
1.观察下面数列的特点,用适当的数填空,关写出每个数列的一个通项公式;(1) , , ,( ), , …(2) ,( ), , , …
2.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1、 、 、 ; (2) 、 、 、 ; (3) 、 、 、 ; (4) 、 、 、
3.求数列1,2,2,4,3,8,4,16,5,…的一个通项公式
4.已知数列an的前4项为0, ,0, ,则下列各式 ①an= ②an= ③an= 其中可作为数列{an}通项公式的是A ① B ①② C ②③ D ①②③
5.已知数列1, , , ,3, …, ,…,则 是这个数列的( )A. 第10项 B.第11项 C.第12项 D.第21项
6.在数列{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。
(1)求数列{an}的通项公式;
(2)判断数列{an}的单调性。
8.在数列{an}中,an=
(2)求数列{an}的最大项。
答案:
1.(1) ,an= (2) ,an=
2.(1)an= (2)an= (3)an= (4)an=
3.an= 或an= 这里借助了数列1,0,1,0,1,0…的通项公式an= 。
7.(1)an= (2)
数列教案(篇8)
教材:(一)目的:要求学生掌握等差数列的意义,通项公式及等差中项的有关概念、计算公式,并能用来解决有关问题。过程:
一、引导观察数列:4,5,6,7,8,9,10,…… 3,0,-3,-6,…… , , , ,…… 12,9,6,3,…… 特点:从第二项起,每一项与它的前一项的差是常数 — “等差”
二、得出等差数列的定义: 注意:从第二项起,后一项减去前一项的差等于同一个常数。1.名称: 首项 公差 2.若 则该数列为常数列3.寻求等差数列的通项公式: 由此归纳为 当 时 (成立) 注意: 1° 等差数列的通项公式是关于 的一次函数 2° 如果通项公式是关于 的一次函数,则该数列成ap 证明:若 它是以 为首项, 为公差的ap。 3° 公式中若 则数列递增, 则数列递减 4° 图象: 一条直线上的一群孤立点三、例题: 注意在 中 , , , 四数中已知三个可以求 出另一个。例一 (见教材)例二 (见教材)
四、关于等差中项: 如果 成等差数列则 证明:设公差为 ,则 ∴ 例四 《教学与测试》p77 例一:在-1与7之间顺次插入三个数 使这五个数成ap,求此数列。五、小结:等差数列的定义、通项公式、等差中项六、作业:
数列教案(篇9)
《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和是第一章“数列”第六节的内容,它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系。就知识的应用价值上来看,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。
从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
教学对象是刚进入高二的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但对问题的分析缺乏深刻性和严谨性。
公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。
1.知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
2、过程与方法目标:通过公式的推导过程,培养学生猜想、分析、综合的思维能力,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。
3、情感态度与价值观:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。用数学的观点看问题,一些所谓不可理解的事就可以给出合理的解释,从而帮助我们用科学的态度认识世界。
本节课属于新授课型,主要利用计算机辅助教学,
采用启发探究,合作学习,自主学习等的教学模式、
学生是认知的主体,也是教学活动的主体,设计教学过程必须遵循学生的认知规律,引导学生去经历知识的形成与发展过程,结合本节课的特点,我按照自主学习的教学模式来设计如下的教学过程,目的是在教学过程中促使学生自主学习,培养自主学习的习惯和意识,形成自主学习的能力。
一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,以后每天所借的钱数都比上一天多1万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠、穷人听后觉得挺划算,本想定下来,但又想到此富人是吝啬出了名的,怕上当受骗,所以很为难。”请在座的同学思考讨论一下,穷人能否向富人借钱?
启发引导学生数学地观察问题,构建数学模型。
学生直觉认为穷人可以向富人借钱,教师引导学生自主探求,得出:
(2)教师紧接着把如何求?的问题让学生探究,
②若②式减去①式,可以消去相同的项,得到:
【设计意图】留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是很显然的事,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而培养学生的辩证思维能力。
解决情境问题:经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就可以消去了,得到:≈1073(万元)>465(万元)。老师强调指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?
【设计意图】经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了,让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心,同时也为推导一般等比数列前n项和提供了方法。
这时我再顺势引导学生将结论一般化,设等比数列为,公比为q,如何求它的前n项和?让学生自主完成,然后对个别学生进行指导。
这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?
【设计意图】在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。
探究2.求等比数列的.第5项到第10项的和.
方法2:此等比数列的连续项从第5项到第10项构成一个新的等比数列。
【设计意图】采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,让全体学生都参与教学,以此培养学生自主学习的意识.解题时,以学生分析为主,教师适时给予点拨。
以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。
【设计意图】以此培养学生的口头表达能力,归纳概括能力。
若=3,=81,求q及,若,求及q。
【设计意图】对公式的再认识,剖析公式中的基本量及结构特征,识记公式,并加强计算能力的训练。
【设计意图】布置弹性作业以使各个层次的学生都有所发展、让学有余力的学生有思考的空间,便于学生开展自主学习。
本节课通过推导方法的研究,使学生掌握了等比数列前n项和公式.错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性.同时通过展示交流,学生点评,教师总结,使学生既巩固了知识,又形成了技能,在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质,形成学习能力。
1.情境设置生活化、
本着新课程的教学理念,考虑到高二学生的心理特点,让学生学生初步了解“数学来源于生活”,采用故事的形式创设问题情景,意在营造和谐、积极的学习气氛,激发学生主动探究的欲望。
2.问题探究活动化.
教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程的舞台,通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习成功的喜悦、通过师生之间不断合作和交流,发展学生的数学观察能力和语言表达能力,培养学生思维的发散性和严谨性。
3.辨析质疑结构化.
在理解公式的基础上,及时进行正反两方面的“短、平、快”填空和判断是非练习、通过总结、辨析和反思,强化了公式的结构特征,促进学生主动建构,有助于学生形成知识模块,优化知识体系。
4.巩固提高梯度化.
例题通过公式的正用和逆用进一步提高学生运用知识的能力;由教科书中的例题改编而成,并进行适当的变式,可以提高学生的模式识别的能力,培养学生思维的深刻性和灵活性。
5.思路拓广数学化.
从整理知识提升到强化方法,由课内巩固延伸到课外思考,变“知识本位”为“学生本位”,使数学学习成为提高学生素质的有效途径。以生活中的实例作为思考,让学生认识到数学来源于生活并应用于生活,生活中处处有数学.
6.作业布置弹性化.
通过布置弹性作业,为学有余力的学生提供进一步发展的空间,有利于丰富学生的知识,拓展学生的视野,提高学生的数学素养.
学生的根据高二学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,案例为浅层次要求,使学生有概括印象。公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。
其中,案例是基础,使学生感知教材;公式为关键,使学生理解教材;练习为应用,使学生巩固知识,举一反三。
在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,不仅加深了学生理解巩固与应用,也培养了思维能力。
这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。本节课教学过程分为导入新课、公式推导、合作探究、课堂小结、当堂检测、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。
亮点之处:
学生成为课堂的主体,教师要甘当学生的绿叶由于数学的抽象、思维严谨等特点,学生往往对于一些较为复杂或者变化多样的题目容易望而生畏,出现懒得动脑思考、动笔去做的现象。教师也常因为时间的限制不可能给学生过多的时间去做“无用功”。在本节课上我放手让学生去思考,让学生去摸索。不怕学生出错,就是让学生能够在摸索中增强思维能力、解题技能和计算经验。特别是在例3中,教师针对题目做了简要的分析和提示,让学生去尝试着解题。张漫同学的板书详尽,将思路方法概括表述出来,过程完整。只是结果出现了一个小错误,教师在点评过程中给予指出,同时也个结果错误也是学生经常犯的。
数列教案(篇10)
1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。
(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念。
(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项。
(3)通过通项公式认识等比数列的性质,能解决某些实际问题。
2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。
3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。
教学建议
(1)知识结构
等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用。
(2)重点、难点分析
教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用。
①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点。
②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉。在推导过程中,需要学生有一定的观察分析猜想能力。第一项是否成立又须补充说明,所以通项公式的推导是难点。
③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点。
教学建议
(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用。
(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义。也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义。
(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解。
(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法。 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象。
(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现。
(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用。
数列教案(篇11)
经典教案集萃之数列 数列第五部分:数列的求和 (一)课标解读及教学要求:会灵活运用等差、等比数列的求和公式,掌握数列求和的几种特殊方法。 (二)典型例题: 例题1:求下列个数列的和: (1) ; (2) ; (3) (4)1,1+2,1+2+22,1+2+22+23,…。 【命题意图】本题主要考查分组求和法、裂项相消法等数列求和的基本方法,考查等价转化等数学思想方法。 【分析】对于非等差、等比数列的求和问题,求出其通项公式是关键,学会从通项公式的结构特征进行分析,选择合理的方法。 【变题】(1)求和: ( ; (2)求数列 的各项的和。 (3)求 (4)求 ( ; 例题2:若数列 中, ,求 。 【命题意图】本题主要考查特殊数列求和的方法。 【分析1】分类讨论。 【分析2】求出奇数项和偶数项的通项,再分别求和。 【分析3】展开分别求和。 例题3:设a为常数,求数列 的前n项和。 【命题意图】本题主要考查错位相消法求和。 【分析】分a=1与 讨论。 时用错位相消法。 【变题1】:若公比为c的等比数列为 的首项为 且满足 (1)求c的值; (2)求数列 的前n项和 。 【分析】根据数列的递推关系和等比数列的知识,建立关于c的方程,解方程即可求出c的值,从而求得 的通项公式,进一步求出 的表达式,根据 的特点,再运用错位相消法求和。 【变题2】设 ,定义 , 。 (1)求数列 的通项公式; (2)若 , ,试比较 的大小,并说明理由。 例题4:设 的定义域为R,其图象关于点 成中心对称,令 是常数,且 , ,求数列 的前n项的和。 【命题意图】本题考查颠倒相加求和 【分析】本题中 【变题】设 ,利用推导等差数列前n和公式的方法,求 的值。 例题5:已知数列为 的.通项为 前n项和为 ,且 是 与2的等差数列;数列 中, 点 在直线 上。 (1)求数列 的通项公式; (2)设数列 前n项和为 ,试比较 与2的大小; (3)求 的和。 【命题意图】本题主要考查等差数列的通项公式、前n项和公式等基础知识和裂项相消、错位相减等特殊数列的求和的基本方法,考查综合运用所学知识分析问题、解决问题的能力。 【分析】首先根据已知条件求出 考察 灵活地对 与 求和处理。 【变题1】数列 满足: 求 。 【变题2】已知 ,且 成等差数列,n为正偶数,又 。求证: 。 (三)建议课时:2课时
数列教案(篇12)
一、设计思想
1、设计理念
本课的教学设计基于“人人都能获得必要得数学”即平等性的考虑,坚持面向全体学生,努力设计“适合学生发展得数学教育”,体现“人人学数学”,“不同的人学不同的数学”的理念。教学中强调“培养学生情感、态度与价值观”的重要性,注重引导学生主动地进行探索,从而帮助学生树立正确的数学观,但又与教师的设计问题与活动的引导密切结合,强调“活动”的内化,即在头脑中实现必要的重构或认知结构的重组,从而引起真正的数学思维,提高思维的效益。通过联系学生的生活实际使其真正感到数学是有意义的,一方面培养学生的社会意识,明确肯定“日常数学”的`合理性等,另一方面,再调动学生生活经验的同时,又应努力帮助他们清楚地去熟悉生活经验并上升到“学校数学”的必要性。
2、设计背景
传统的数学作业单调枯燥,脱离生活和学生实际,不利于学生个性和能力的发展。在新课程标准的理念下,重新认识作业的意义和价值,突破传统,改变现状,树立正确的作业观,创新作业方式,激发兴趣,发展学生数学素质,既注重基础知识的巩固,更要注重学生思维和能力的发展,既要创新又要保证其科学有效,使学生在做作业的过程中体验快乐、形成能力、学会合作、体验自主。
3、教材的地位与作用
本节教材在学生学习过等比数列的概念与性质的基础上,学习等比数列n前项和公式,能用等比数列的前n项和公式解决相关求和问题。探索公式的推导、体会错位相减法以及分类讨论的思想方法。本节内容基础知识和基本技能非常重要,涉及的数学思想、方法较为丰富,因此是重点内容之一。本设计是第一课时的教学内容。
二、学习目标
⑴知识与技能
掌握等比数列的前n项和公式,能用等比数列的前n项和公式解决相关问题。
⑵过程与方法
通过等比数列的前n项和公式的推导过程,体会错位相减法以及分类讨论的思想方法。 ⑶情感、态度与价值观
通过对等比数列的学习,发展数学应用意识,逐步认识数学的科学价值、应用价值,发展数学的理性思维。
教学重点
教学难点
错位相减法以及分类讨论的思想方法的掌握。
三、教学设想:
本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下:
四、教学过程
(一)创设问题情景
课前给出复习:等比数列的定义及性质
课首给出引例:“一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了
下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,
以后每天所借的钱数都比上一天多1万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后
每天所还的钱数都是上一天的两倍,30天后互不相欠.穷人听后觉得挺划算,本想定下来,但
又想到此富人是吝啬出了名的,怕上当受骗,所以很为难。”请在座的同学思考讨论一下,穷
人能否向富人借钱
[设计一个学生比较感爱好的实际问题,吸引学生注重力,使其马上进入到研究者的角色中
来!]
(二)启发引导学生数学地观察问题,构建数学模型。
学生直觉认为穷人可以向富人借钱,教师引导学生自主探求,得出:
穷人30天借到的钱:S301230
穷人需要还的钱:S301222229'(130)302 465(万元)
[直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!]
教师紧接着把如何求S301222229?的问题让学生探究,
S301222229 ①若用公比2乘以上面等式的两边,得到
2S30222229230②
若②式减去①式,可以消去相同的项,得到:
S3023011073741823(分) ≈1073(万元)>465(万元)
答案:穷人不能向富人借钱
(三)引导学生用“特例到一般”的研究方法,猜想数学规律。
提出问题:如何推导等比数列前n项和公式?(学生很自然地模仿以上方法推导)
yJS21.com更多精选幼儿园教案阅读
等比数列教案
跟幼儿教师教育网小编一起来了解关于“等比数列教案”的内容吧。学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,需要大家认真编写每份教案课件。教案是帮助教师组织教学活动的重要工具。希望您觉得本文是有价值的阅读!
等比数列教案 篇1
教学目的:1.会用等比数列的通项公式和前n项和公式解决有关等比数列的 中知道三个数求另外两个数的一些简单问题 2.提高分析、解决问题能力。 教学重点:进一步熟练掌握等比数列的通项公式和前n项和公式。 教学难点:灵活使用公式解决问题 教学过程: 一、复习:等比数列的有关概念,等比数列前n项和的公式二、例题 例1 已知等差数列{ }的第二项为8,前十项的和为185,从数列{ }中,依次取出 按原来的顺序排成一个新数列{ },求数列{ }的通项公式和前项和公式 ——由题设求{bn},再分组求和法
例2 已知等比数列{an}的前n项和是2,紧接着后面的2n项的和是12,再紧接着后面的3n项的和是s,求s的值。
——(1)认真审题(紧接着…);(2)对q的判断。
例3等比数列 前 项和与积分别为s和t,数列 的前 项和为 ,
求证:
——计算验证形的证明,按公比q=1和 两类分别计算验证。
例4设首项为正数的等比数列,它的前 项之和为80,前 项之和为6560,且前 项中数值最大的项为54,求此数列。
解:由题意
代入(1), ,得: ,从而 ,
∴ 递增,∴前 项中数值最大的项应为第 项。
∴
∴ ,
∴ ,
∴此数列为
例5 已知数列{an}中,sn是它的前n项和,并且sn+1=4an+2,a1=1.
(1) 设bn=an+1-2an,求证数列{bn}是等比数列。
(2) 设 求证数列{cn}是等差数列;
(3) 求数列{an}的通项公式及前n项和的公式。
——思路分析(1)利用题设的递推公式和等比数列的定义证明;(2)利用等差数列的定义证明;(3)借助(2)的结论及题设的递推公式求解。 三、练习:
设数列 前 项之和为 ,若 且 ,问:数列 成等比数列吗? 四、课后作业:《精讲精练》p132 智能达标训练。
等比数列教案 篇2
证明等比数列cn/c(n-1)=an*a(n+1)/an*a(n-1)=a(n+1)/a(n-1)=3
bn=a(2n-1)+a(2n)=3*a(2n-3)+3*a(2n-2)=3(bn-1)
因此bn/b(n-1)=3,所以bn为等比数列,公比为3。
2
设数列{a的第n项}的前n项和Sn=1/3(a的第n项-1),n属于自然数
Sn-S(n-1)=an=1/3(an-1-a(n-1)+1)=(an-a(n-1)/3
已知前三项是2,4,8,数列满足a(n+1)=a(n)+2n(就是第n+1项等于第n项加上2n),求数列的通项公式。这儿没有告诉你数列是等比数列,求通项公式之前必须证明它是等比数列,请问怎么证明?
上n-1个式子相加得到:
右边是等差数列,且和=[2+2(n-1)](n-1)/2=n(n-1)
根据题意,数列是3*2^n(^n表示肩膀上的方次),n=1,2,3,...
为了验证它是等比数列只需要比较任何一项和它相邻项的比值是一个不依赖项次的`固定比值就可以了.
所以第n项和第n+1项分别是3*2^n和3*2^(n+1),相比之后有:
数列an前n项和为Sn 已知a1=1 a(n+1)=(n+2)/n乘以Sn(n=1,2,3......) 证明
那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)
等比数列教案 篇3
《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和是第一章“数列”第六节的内容,它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系。就知识的应用价值上来看,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。
从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
教学对象是刚进入高二的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但对问题的分析缺乏深刻性和严谨性。
公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。
1.知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
2、过程与方法目标:通过公式的推导过程,培养学生猜想、分析、综合的思维能力,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。
3、情感态度与价值观:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。用数学的观点看问题,一些所谓不可理解的事就可以给出合理的解释,从而帮助我们用科学的态度认识世界。
本节课属于新授课型,主要利用计算机辅助教学,
采用启发探究,合作学习,自主学习等的教学模式、
学生是认知的主体,也是教学活动的主体,设计教学过程必须遵循学生的认知规律,引导学生去经历知识的形成与发展过程,结合本节课的特点,我按照自主学习的教学模式来设计如下的教学过程,目的是在教学过程中促使学生自主学习,培养自主学习的习惯和意识,形成自主学习的能力。
一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,以后每天所借的钱数都比上一天多1万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠、穷人听后觉得挺划算,本想定下来,但又想到此富人是吝啬出了名的,怕上当受骗,所以很为难。”请在座的同学思考讨论一下,穷人能否向富人借钱?
启发引导学生数学地观察问题,构建数学模型。
学生直觉认为穷人可以向富人借钱,教师引导学生自主探求,得出:
(2)教师紧接着把如何求?的问题让学生探究,
②若②式减去①式,可以消去相同的项,得到:
【设计意图】留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是很显然的事,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而培养学生的辩证思维能力。
解决情境问题:经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就可以消去了,得到:≈1073(万元)>465(万元)。老师强调指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?
【设计意图】经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了,让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心,同时也为推导一般等比数列前n项和提供了方法。
这时我再顺势引导学生将结论一般化,设等比数列为,公比为q,如何求它的前n项和?让学生自主完成,然后对个别学生进行指导。
这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?
【设计意图】在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。
探究2.求等比数列的.第5项到第10项的和.
方法2:此等比数列的连续项从第5项到第10项构成一个新的等比数列。
【设计意图】采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,让全体学生都参与教学,以此培养学生自主学习的意识.解题时,以学生分析为主,教师适时给予点拨。
以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。
【设计意图】以此培养学生的口头表达能力,归纳概括能力。
若=3,=81,求q及,若,求及q。
【设计意图】对公式的再认识,剖析公式中的基本量及结构特征,识记公式,并加强计算能力的训练。
【设计意图】布置弹性作业以使各个层次的学生都有所发展、让学有余力的学生有思考的空间,便于学生开展自主学习。
本节课通过推导方法的研究,使学生掌握了等比数列前n项和公式.错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性.同时通过展示交流,学生点评,教师总结,使学生既巩固了知识,又形成了技能,在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质,形成学习能力。
1.情境设置生活化、
本着新课程的教学理念,考虑到高二学生的心理特点,让学生学生初步了解“数学来源于生活”,采用故事的形式创设问题情景,意在营造和谐、积极的学习气氛,激发学生主动探究的欲望。
2.问题探究活动化.
教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程的舞台,通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习成功的喜悦、通过师生之间不断合作和交流,发展学生的数学观察能力和语言表达能力,培养学生思维的发散性和严谨性。
3.辨析质疑结构化.
在理解公式的基础上,及时进行正反两方面的“短、平、快”填空和判断是非练习、通过总结、辨析和反思,强化了公式的结构特征,促进学生主动建构,有助于学生形成知识模块,优化知识体系。
4.巩固提高梯度化.
例题通过公式的正用和逆用进一步提高学生运用知识的能力;由教科书中的例题改编而成,并进行适当的变式,可以提高学生的模式识别的能力,培养学生思维的深刻性和灵活性。
5.思路拓广数学化.
从整理知识提升到强化方法,由课内巩固延伸到课外思考,变“知识本位”为“学生本位”,使数学学习成为提高学生素质的有效途径。以生活中的实例作为思考,让学生认识到数学来源于生活并应用于生活,生活中处处有数学.
6.作业布置弹性化.
通过布置弹性作业,为学有余力的学生提供进一步发展的空间,有利于丰富学生的知识,拓展学生的视野,提高学生的数学素养.
学生的根据高二学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,案例为浅层次要求,使学生有概括印象。公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。
其中,案例是基础,使学生感知教材;公式为关键,使学生理解教材;练习为应用,使学生巩固知识,举一反三。
在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,不仅加深了学生理解巩固与应用,也培养了思维能力。
这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。本节课教学过程分为导入新课、公式推导、合作探究、课堂小结、当堂检测、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。
亮点之处:
学生成为课堂的主体,教师要甘当学生的绿叶由于数学的抽象、思维严谨等特点,学生往往对于一些较为复杂或者变化多样的题目容易望而生畏,出现懒得动脑思考、动笔去做的现象。教师也常因为时间的限制不可能给学生过多的时间去做“无用功”。在本节课上我放手让学生去思考,让学生去摸索。不怕学生出错,就是让学生能够在摸索中增强思维能力、解题技能和计算经验。特别是在例3中,教师针对题目做了简要的分析和提示,让学生去尝试着解题。张漫同学的板书详尽,将思路方法概括表述出来,过程完整。只是结果出现了一个小错误,教师在点评过程中给予指出,同时也个结果错误也是学生经常犯的。
等比数列教案 篇4
教学目标 1.熟练运用等差、等比数列的概念、通项公式、前n项和式以及有关性质,分析和解决等差、等比数列的综合问题。 2.突出方程思想的应用,引导学生选择简捷合理的运算途径,提高运算速度和运算能力。3.用类比思想加深对等差数列与等比数列概念和性质的理解。教学重点与难点 1.用方程的观点认识等差、等比数列的基础知识,从本质上掌握公式。 2.等差数列与等比数列的综合应用。例1已知两个等差数列5,8,11,…和3,7,11…都有100项,问它们有多少公共项。例2 已知数列{an}的前n 项和 ,求数列{|an|}的前n项和tn.例3已知公差不为零的等差数列{an}和等比数例{bn}中,a1=b1=1,a2=b2,a8=b3,试问:是否存在常数a,b,使得对于一切自然数n,都有an=logabn+b成立。若存在,求出a,b的值,若不存在,请说明理由。 例4已知数列{an}是公差不为零的等差数列,数列{akn}是公比为q的等比数列,且k1=1,k2=5,k3=17,求k1+k2+k3+…+kn的值。 例5、 已知函数f(x)=2x-2-x ,数列{an}满足f( )= -2n (1)求{an}的通项公式。 (2)证明{an}是递减数列。 例6、在数列{an}中,an>0, = an+1 (n n) 求sn和an的表达式。 例7.已知数列{an}的通项公式为an= .求证:对于任意的正整数n,均有a2n─1,a2n,a2n+1成等比数列,而a2n,a2n+1,a2n+2成等差数列。例8.项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项及项数。作业 1 公差不为零的等差数列的第2,第3,第6项依次成等比数列,则公比是( ). (a)1 (b)2 (c)3 (d)4 2 若等差数列{an}的首项为a1=1,等比数列{bn},把这两个数列对应项相加所得的新数列{an+bn}的前三项为3,12,33,则{an}的公差为{bn}的公比之和为( ). (a)-5 (b)7 (c)9 (d)14 3 已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则 的值是 . 4 在等差数列{an}中,a1,a4,a25依次成等比数列,且a1+a4+a25=114,求成等比数列的这三个数。 5 设数列{an}是首项为1的等差数列,数列{bn}是首项为1的等比数列,又cn=an-bn(n∈n+),已知 试求数列{cn}的通项公式与前n项和公式。
等比数列教案 篇5
一、教材分析
从教材的编写顺序上来看,等比数列的前n项和是第三章“数列”第五节的内容,一方面它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习“数列的极限”等内容作准备。
就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如分类讨论等在各种数列求和问题中有着广泛的应用;另外它在如“分期付款”等实际问题的计算中也经常涉及到。
就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。
教师教学用书安排“等比数列的前n项和”这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系。
二、教学目标
依据课程标准,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:
知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
过程与方法目标:通过公式的`推导过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。
情感与态度目标:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。
三、教学重点和难点
重点:等比数列的前 项和公式的推导及其简单应用。从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识特点而言,蕴涵丰富的思想方法;就能力培养来看,通过公式推导教学可培养学生的运用数学语言交流表达的能力。
突出重点方法:“抓三线、突重点”,即(一)知识技能线:问题情境→公式推导→公式运用;(二)过程与方法线:特殊到一般、猜想归纳→ 错位相减法等→转化、方程思想;(三)能力线:观察能力→数学思想解决问题能力→灵活运用能力及严谨态度。
难点:等比数列的前 项和公式的推导。从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通,而知识的整合对学生来说恰又是比较困难的,而且错位相减法是第一次碰到,对学生来说是个新鲜事物。
突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,及时地给以鼓励,使他们知难而进;二抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导。
等比数列教案 篇6
教学目标
1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.
2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.
3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.
教学重点,难点
重点、难点是等比数列的定义的归纳及通项公式的推导.
教学用具
投影仪,多媒体软件,电脑.
教学方法
讨论、谈话法.
教学过程
一、提出问题
给出以下几组数列,将它们分类,说出分类标准.(幻灯片)
①-2,1,4,7,10,13,16,19,
②8,16,32,64,128,256,
③1,1,1,1,1,1,1,
④243,81,27,9,3,1,
⑤31,29,27,25,23,21,19,
⑥1,-1,1,-1,1,-1,1,-1,
⑦1,-10,100,-1000,10000,-100000,
⑧0,0,0,0,0,0,0,
由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).
二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数。
这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列等比数列. (这里播放变形虫分裂的多媒体软件的第一步)
判断下列数列是否为等比数列?若是,找出公比;不是,请说明理由、
(1) 1, 4, 16, 32、
(2) 0, 2, 4, 6, 8.
(3) 1,-10,100,-1000,10000、
(4) 81, 27, 9, 3, 1.
(5) a, a, a, a, a.
讲解例二,进一步熟悉定义,根据定义求数列未知项。最后的小例一为了由利
用定义的求解转到利用定义证明,二为了让学生发现等比数列隔项同号的规律。 例题二
求出下列等比数列中的未知项:
(1) 2, a, 8;
(2) -4, b, c, ?;
? 已知数列 2, x, d, y,8、是等比数列
①证明数列2, d, 8.仍是等比数列、
②求未知项d.
通过两道例题的讲解,让学生有个缓冲,做个巩固练习。当然此练习的`安排,
也是为了进一步挖掘等比数列定义的本质,辨析找寻等差数列与等比数列的关系,将具体问题再推广到一般,并要求学生理解并掌握等比数列的判断证明方法。
练习
判断下列数列是等差数列还是等比数列?
(1) 22 , 2 , 1 , 2-1, 2-2 .
(2) 3 , 34 , 37, 310 .
引申:已知数列{an}是等差数列,而bn?2n
证明数列{bn}是等比数列.
由最后一例的证明,说明给出通项公式后可由定义判断该数列是否为等比数
列。反过来若数列已经是等比数列了,能否由定义导出数列通项公式呢?为下节课做铺垫。
【课堂小结】
由学生通过一堂课的学习,做个简单的归纳小结。
1理解.等比数列的定义,判断或证明数列是否为等比数列要用定义判断
2.等比数列公比q≠0,任意一项都不为零.
3.学习等比数列可以对照等差数列类比做研究.
【作业】
1.书p48. No.1,2;
等比数列教案 篇7
【教学目标】
知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。
能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。
情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。
【教学重点】
等比数列定义的归纳及运用。
【教学难点】
正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列
【教学手段】
多媒体辅助教学
【教学方法】
启发式和讨论式相结合,类比教学.
【课前准备】
制作多媒体课件,准备一张白纸,游标卡尺。
【教学过程】
【导入】
复习回顾:等差数列的定义。
创设问题情境,三个实例激发学生学习兴趣。
1.利用游标卡尺测量一张纸的厚度.得数列a,2a,4a,8a,16a,32a.(a>0)
2.一辆汽车的售价约15万元,年折旧率约为10%,计算该车5年后的价值。得到数列15 ,15×0.9 ,15×0.92 ,15×0.93 ,…,15×0.95。
3.复利存款问题,月利率5%,计算10000元存入银行1年后的本利和。得到数列10000×1.05,10000×1.052,…,10000×1.0512.
学生探究三个数列的共同点,引出等比数列的定义。
【新课讲授】
由学生根据共同点及等差数列定义,自己归纳等比数列的定义,再由老师分析定义中的关键词句,并启发学生自己发现等比数列各项的限制条件:等比数列各项均不为零,公比不为零。
等差数列:
一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d表示.数学表达式:an+1-an=d
等比数列:
一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示.数学表达式:an?1 an?q
知晓定义的基础上,带领学生看书p29页,书上前面出现的`关于等比数列的实
例。让学生了解等比数列在实际生活中的应用很广泛,要认真学好。
在学生对等比数列的定义有了初步了解的基础上,讲解例一。给出具体的数列,会利用定义判断是否为等比数列。对(1)(5)两小题着重分析.
例题一
判断下列数列是否为等比数列?若是,找出公比;不是,请说明理由.
(1) 1, 4, 16, 32.
(2) 0, 2, 4, 6, 8.
(3) 1,-10,100,-1000,10000.
(4) 81, 27, 9, 3, 1.
(5) a, a, a, a, a.
讲解例二,进一步熟悉定义,根据定义求数列未知项。最后的小例一为了由利
用定义的求解转到利用定义证明,二为了让学生发现等比数列隔项同号的规律。
例题二
求出下列等比数列中的未知项:
(1) 2, a, 8;
(2) -4, b, c, ?;
已知数列2, x, d, y,8.是等比数列
①证明数列2, d, 8.仍是等比数列.
②求未知项d.
通过两道例题的讲解,让学生有个缓冲,做个巩固练习。当然此练习的安排,
也是为了进一步挖掘等比数列定义的本质,辨析找寻等差数列与等比数列的关系,将具体问题再推广到一般,并要求学生理解并掌握等比数列的判断证明方法。
练习
判断下列数列是等差数列还是等比数列?
(1) 22 , 2 , 1 , 2-1, 2-2 .
(2) 3 , 34 , 37, 310 .
引申:已知数列{an}是等差数列,而bn?2n
证明数列{bn}是等比数列。
由最后一例的证明,说明给出通项公式后可由定义判断该数列是否为等比数列。反过来若数列已经是等比数列了,能否由定义导出数列通项公式呢?为下节课做铺垫。
【课堂小结】
由学生通过一堂课的学习,做个简单的归纳小结。
1理解.等比数列的定义,判断或证明数列是否为等比数列要用定义判断
2.等比数列公比q≠0,任意一项都不为零.
3.学习等比数列可以对照等差数列类比做研究.
【作业】
1.书p48. No.1,2; a
等比数列教案 篇8
一. 教学内容:
等差、等比数列的综合应用
二、教学目标:
综合运用等差、等比数列的定义式、通项公式、性质及前n项求和公式解决相关问题.
三、要点:
(一)等差数列
1. 等差数列的前 项和公式1:
2. 等差数列的前 项和公式2:
3. (m, n, p, q ∈N )
5. 对等差数列前n项和的最值问题有两种:
(1)利用 >0,d
当 ≤0,且 二次函数配方法求得最值时n的`值。
(二)等比数列
1、等比数列的前n项和公式:
∴当 ① 或 ②
当q=1时, 时,用公式②
2、 是等比数列 不是等比数列
②当q≠-1或k为奇数时, 仍成等比数列
【模拟】
1. 已知等比数列的公比是2,且前四项的和为1,那么前八项的和为 ( )
A. 15 B. 17 C. 19 D. 21
2. 已知数列{an=3n-2,在数列{an}中取ak2,akn ,… 成等比数列,若k1=2,k2=6,则k4的值 ( )
A. 86 B. 54 C. 160 D. 256
3. 数列A. 750 B. 610 C. 510 D. 505
4.
A. 5 B. 6 C. 7 D. 8
5. 若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,
则这个数列有 ( )
A. 13项 B. 12项 C. 11项 D. 10项
6. 数列 并且 。则数列的第100项为( )
A. C. 7. 在等差数列{ =-15,公差d=3,求数列{ 的元素个数,并求这些元素的和。
等比数列教案 篇9
教学目标
熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学重难点
熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学过程
【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。
一、基础训练
1、某种细菌在培养过程中,每20分钟x一次一个x为两个,经过3小时,这种细菌由1个可繁殖成
A、511B、512C、1023D、1024
2、若一工厂的生产总值的月平均增长率为p,则年平均增长率为
A、B、
C、D、
二、典型例题
例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?
评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的`方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]
例2:某人从1999到20xx年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20xx年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?
例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从20xx年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。问经过多少年的努力才能使全县的绿洲面积超过60%。lg2=0.3
例4、流行性感冒简称流感是由流感病毒引起的急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。
等比数列教案 篇10
一、教材分析:
等比数列的前n项和是高中数学必修五第二章第3、3节的内容。它是“等差数列的前n项和”与“等比数列”内容的延续。这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系。意在培养学生类比分析、分类讨论、归纳推理、演绎推理等数学思想。在高考中占有重要地位。
二、教学目标
根据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:
1、知识与技能:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
2、过程与方法:通过公式的推导过程,提高学生的建模意识及探究问题、类比分析与解决问题的能力,培养学生从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。
3、情感与态度:通过自主探究,合作交流,激发学生的求知欲,体验探索的艰辛,体味成功的喜悦,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。
三、教学重点和难点
重点:等比数列的前项和公式的推导及其简单应用。
难点:等比数列的前项和公式的推导。
重难点确定的依据:从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通;从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。
四、教法学法分析
通过创设问题情境,组织学生讨论,让学生在尝试探索中不断地发现问题,以激发学生的求知欲,并在过程中获得自信心和成功感。强调知识的严谨性的同时重知识的形成过程,
五、教学过程
(一)创设情境,引入新知
从故事入手:传说,波斯国王下令要奖赏国际象棋的发明者,发明者对国王说,在棋盘的第一格内放上一粒麦子,在第二格内放两粒麦子,第三格内放4粒,第四格内放8米,……按这样的规律放满64格棋盘格。结果是国王倾尽国家财力还不够支付。同学们,这几粒麦子,怎能会让国王赔上整个国家的财力?
关键就在于计算麦粒的总数。很明显,这是一个以1为首项,以2为公比的等比数列前64项和的问题,即如何计算1+2+22+……+263?
(二)师生讨论、探究新知
总结归纳:当q=1时,Sn=na1
当q≠1时,
公式说明:①对等比数列{an}而言,a1,an,Sn,n,q知三可求二②运用公式时要根据条件选取适当的公式,特别注意的是,在公比不知道的情况下要分类讨论;③错位相减的思想方法。
(三)例题讲解,形成技能
例1:等比数列{an}中,
①已知a1=-4,q=1/2,求S10 ②已知a1=1,an=243,q=3,求Sn
③已知a1=2,S3=26,求q。
通过例题一,渗透知三求二的思想。
练习:求等比数列1,-1/2,1/4,-1/8,…,-1/512的各项的和。
例2、等比数列{an}中,已知a1=3,S3=9,求q,an。
练习:等比数列{an}中,若S3=7/2,S6=63/2,求an、S9。
通过练习得出等比数列前项和的一个性质:成等比数列。
例3:(1)求数列1+1/2,2+1/4,3+1/8,… n+,…的前n项和。
首先由学生分析思路,观察出这组数列的特点,它既不是等差数列,也不是等比数列,而是等差加等比。归纳出这类数列求和的方法。
思考:求和:1+a+a2+a3+…+an
(四)课堂小结
以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。
『设计意图:以此培养学生的口头表达能力,归纳概括能力。』
六、板书设计
略
七、课后记
本节课的设计体现呢“以学生为主体,教师是课堂活动的组织者、引导者和参与者”的现代教育理念。在教学的每一个环节中军设计了问题,始终以教师提出问题,引导学生解决问题的方式进行,让课堂活动变得生动而愉悦。
等比数列教案 篇11
教学目标
1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。
(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;
(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;
(3)通过通项公式认识等比数列的性质,能解决某些实际问题。
2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。
3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。
教材分析
(1)知识结构
等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.
(2)重点、难点分析
教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.
①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.
②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.
③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.
教学建议
(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.
(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.
(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.
(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.
(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.
(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.
教学设计示例
课题:等比数列的概念
教学目标
1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.
2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.
3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.
教学重点,难点
重点、难点是等比数列的定义的归纳及通项公式的推导.
教学用具
投影仪,多媒体软件,电脑.
教学方法
讨论、谈话法.
教学过程
一、提出问题
给出以下几组数列,将它们分类,说出分类标准.(幻灯片)
①-2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
⑧0,0,0,0,0,0,0,…
由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).
二、讲解新课
请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数
这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列. (这里播放变形虫分裂的多媒体软件的第一步)
等比数列(板书)
1.等比数列的定义(板书)
根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语.
请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识:
2.对定义的认识(板书)
(1)等比数列的首项不为0;
(2)等比数列的每一项都不为0,即
问题:一个数列各项均不为0是这个数列为等比数列的什么条件?
(3)公比不为0.
用数学式子表示等比数列的定义.
是等比数列①.在这个式子的写法上可能会有一些争议,如写成
,可让学生研究行不行,好不好;接下来再问,能否改写为是等比数列?为什么不能? 式子给出了数列第项与第项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.
3.等比数列的通项公式(板书)
问题:用和表示第项
①不完全归纳法
②叠乘法
,…,,这个式子相乘得,所以(板书)(1)等比数列的通项公式
得出通项公式后,让学生思考如何认识通项公式.
(板书)(2)对公式的认识
由学生来说,最后归结:
①函数观点;
②方程思想(因在等差数列中已有认识,此处再复习巩固而已).
这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)
如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题。
三、小结
1.本节课研究了等比数列的概念,得到了通项公式;
2.注意在研究内容与方法上要与等差数列相类比;
3.用方程的思想认识通项公式,并加以应用。
探究活动
将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0.01毫米。
参考答案:
30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0.001毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是 粒,用计算器算一下吧(对数算也行)。
小编推荐各科教学设计:
、、、、、、、、、、、、
等比数列教案 篇12
教学目标
1.理解的概念,掌握的通项公式,并能运用公式解决简单的问题。
(1)正确理解的定义,了解公比的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等比中项的概念;
(2)正确认识使用的表示法,能灵活运用通项公式求的首项、公比、项数及指定的项;
(3)通过通项公式认识的性质,能解决某些实际问题。
2.通过对的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。
3.通过对概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。
教学建议
教材分析
(1)知识结构
是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用。
(2)重点、难点分析
教学重点是的定义和对通项公式的认识与应用,教学难点 在于通项公式的推导和运用。
①与等差数列一样,也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出的特性,这些是教学的重点。
②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点。
③对等差数列、的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点。
教学建议
(1)建议本节课分两课时,一节课为的概念,一节课为通项公式的应用。
(2)概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到的定义。也可将几个等差数列和几个混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括的定义。
(3)根据定义让学生分析的公比不为0,以及每一项均不为0的特性,加深对概念的理解。
(4)对比等差数列的表示法,由学生归纳的各种表示法。 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象。
(5)由于有了等差数列的研究经验,的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现。
(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用。
教学设计示例
课题:的概念
教学目标
1.通过教学使学生理解的概念,推导并掌握通项公式。
2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力。
3.培养学生勤于思考,实事求是的精神,及严谨的科学态度。
教学重点,难点
重点、难点是的定义的归纳及通项公式的推导。
教学用具
投影仪,多媒体软件,电脑。
教学方法
讨论、谈话法。
教学过程
一、提出问题
给出以下几组数列,将它们分类,说出分类标准。(幻灯片)
①-2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1, , ,…
⑤31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
⑧0,0,0,0,0,0,0,…
由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为).
二、讲解新课
请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题。假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——. (这里播放变形虫分裂的多媒体软件的第一步)
(板书)
1.的定义(板书)
根据与等差数列的名字的区别与联系,尝试给下定义。学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的。教师写出的定义,标注出重点词语。
请学生指出②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是。学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例。而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是,让学生讨论后得出结论:当 时,数列 既是等差又是,当 时,它只是等差数列,而不是。教师追问理由,引出对的认识:
2.对定义的认识(板书)
(1)的首项不为0;
(2)的每一项都不为0,即 ;
问题:一个数列各项均不为0是这个数列为的什么条件?
(3)公比不为0.
用数学式子表示的定义。
是 ①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是 ?为什么不能?
式子 给出了数列第 项与第 项的数量关系,但能否确定一个?(不能)确定一个需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式。
3.的通项公式(板书)
问题:用 和 表示第 项 .
①不完全归纳法
.
②叠乘法
,… , ,这 个式子相乘得 ,所以 .
(板书)(1)的通项公式
得出通项公式后,让学生思考如何认识通项公式。
(板书)(2)对公式的认识
由学生来说,最后归结:
①函数观点;
②方程思想(因在等差数列中已有认识,此处再复习巩固而已).
这里强调方程思想解决问题。方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)
如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究。同学可以试着编几道题。
三、小结
1.本节课研究了的概念,得到了通项公式;
2.注意在研究内容与方法上要与等差数列相类比;
3.用方程的思想认识通项公式,并加以应用。
四、作业 (略)
五、板书设计
三。
1.的定义
2.对定义的认识
3.的通项公式
(1)公式
(2)对公式的认识
探究活动
将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0.01毫米。
参考答案:
30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0.001毫米,对折34次就超过珠穆朗玛峰的高度了。还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是 粒,用计算器算一下吧(用对数算也行).
数学教案系列
每个教师都必须拥有一份教案课件,这是一项不可缺少的工具。如果老师尚未完成,现在也是时候开始了。一份出色的教案可以帮助教师实现高效的课堂教学。那么,如何写出一份好的教案呢?今天,我们给大家推荐一篇主题为“数学教案”的文章,希望您能在本页内容中获得更多的启示!
数学教案【篇1】
教学目标
1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
教学重点及难点
会利用轴对称的知识画对称图形。
教学手段及方法
1、创设情景,引发思维。
2、组织讨论,深化思维。
3、加强练习,发展思维。
预习作业
1.欣赏P1的图片,你发现了这些图形有什么相同点和不同点?
2.同桌互相说说什么样的图形叫作轴对称图形?
3.仔细观察例1中的图形,你发现了什么?你知道怎么画对称图形吗?
4.试着在例2的格子图片上画一画
5.你能用预习到的知识用纸来折、剪出一个轴对称图形吗?
教学过程(集体备课可以用不同颜色笔在相应区域书写即可)
教师活动学生活动设计意图
一、复习引入:
(3)轴对称图形的概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
(4)通过例题探究轴对称图形的性质:
二、例题1:
你能发现什么规律。
三、交流
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
四、教学画对称图形。
例题2:
(2) 在研究的基础上,让学生用铅笔试画。
(3) 通过课件演示画的全过程,帮助学生纠正不足。
五、练习:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生相互交流
你们还见过哪些轴对称图形?
用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,
(1)思考:
A、怎样画?先画什么?再画什么?
B、每条线段都应该画多长?
1.课内练习一 -----第1、2题。
2.课外作业: 通过丰富的轴对称图形与轴对称的实例,让学生欣赏并体会轴对称,发展学生的审美能力、鉴赏能力,更激发了学习数学的兴趣
《新课程标准》强调,动手实践,自主探索与合作交流是学生进行有效的数
学学习活动的重要方式。教学中要鼓励每个学生亲自实践,积极思考,体会活动的乐趣,在乐学的氛围中,培养学生动手能力,并学会且应用新知。
板书设计
轴 对 称
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
教学反思或后记(教学的成败得失、学生的信息反馈、今后的教学建议)
数学教案【篇2】
教学目标:
1、进一步巩固24时记时法的表示方法,及24时记时法简单的时间计算。
2、培养学生自己的观察比较能力,能通过小组合作制作出一张属于自己的周末一天的安排,并通过相互交流,让学生从中受到珍惜时间、合理利用时间的教育。
教学重点:
体会24时记时法在生活中的应用。
教学难点:
合理安排作息时间。
教学对策:
结合具体的生活情境。
教学过程设计:
一、复习旧知。
1、4:00是下午( )时
16:00是下午( )时
18:30是下午 ( )时( )分
2、晚上8时睡觉,第二天6时起床。她睡了()小时。
二、实践活动。
1、出示小华周末一天的生活安排
2、学生分组讨论:从小华的作息时间表中,你了解到哪些信息?
3、根据这些信息,你可以提出哪些问题?
4、师从中选择出具有代表性的一些问题,如:做家务用了多少时间?做作业用了多少时间?到新华书店购书呢?
小组围绕问题进行讨论解决。使学生从中得到更多的启示。
○白天14小时,晚上睡觉10小时。
午睡1小时10分。
○学习2小时,航模制作1小时30分。
购书1小时20分。
○锻炼、做家务1小时。
○娱乐:4小时40分。
○每顿饭化费的时间均半小时。
5、让学生说说小华这样子安排有些什么好处?或者你认为他在哪些地方安排得很好的?好在哪里?
6、指导学生说说安排周末的时候:要合理,科学,充实而有意义。
三、那么你会安排你自己的周末吗?
如果让你安排你觉得该注意些什么地方?学生自由说说。
学生自己动手制作:
1、每个学生拿一张纸,自己动手制作自己的周末。
2、制作完后再让学生交流一下自己的周末时间安排表,说说好在哪里?也可以让学生在小组里说说。
师可以针对学生的各别情况进行评比,鼓励一些安排得特别好的学生。
板书设计:周末一天的安排
○白天14小时,晚上睡觉10小时。
午睡1小时10分。
○学习2小时,航模制作1小时30分
购书1小时20分。
○锻炼、做家务1小时。
○娱乐:4小时40分。
○每顿饭化费的时间均半小时。
课前思考:
这次时间活动主要让学生设计并制作自己周末一天的时间安排表。分为两个层次的活动。第一层次,引导学生观察给出的一张周末时间安排表,要求学生利用表中的信息发现问题、提出问题,并应用学过的知识解决问题,从而巩固对24时记时法的认识,进一步掌握计算经过时间的方法。第二层次,启发学生根据自身的实际,借鉴教材给出的周末时间安排表的形式,制作一张自己周末一天的时间安排表,并通过交流,让学生从中受到珍惜时间、合理利用时间的教育。
课后反思:
先复习已学的知识,这样为学生学习周末一天的安排积累一定的计算方法。根据小华周末一天的生活,学生自己提出这一单元相关的数学,在这一过程中培养学生质疑的能力。并要会提出有价值的问题。因为有了小华周末安排的启示,所以学生在自己安排的时候能够合理,科学地安排自己的周末。还能根据表格给出了信息,提出很多数学问题,并进行了计算,但是在计算时间上学生还不是那么熟练,需要进一步练习与巩固。学生之间在计算经过的时间这一知识点上存在很大差异,虽然在课上,我们之间进行了很多次方法的交流,让每一位学生的知识有了互动交流的机会,也能在别人方法的启发下,提高自己计算经过时间的能力,但由于受自己生活经验的限制,他们之间的差异还是很明显。可能学生刚接触这一比较抽象的知识,不知通过时间的推移,会觉得难度在下降,慢慢接受这方面的知识。
课后反思:
这部分内容是对整个单元的综合练习,帮助学生理清知识要点,巩固知识点,熟练运用计算方法。对于前两个问题,学生基本能运用自己的计算方法独立解答,但从中还是可以看出个别差异性。而在最后对小华周末安排能够提出的数学问题中,学生也基本能根据前两题的方式提出不一样的数学问题,并能独立解答,关于制作一张自己周末的时间安排表,由于之前已经有小华的事例,所以对于学生来说已经不难了。但由于学生生活经验不够,还无法真正灵活运用。
课后反思:
本节课的安排紧密联系了学生的生活经验,先出示小华周末一天的活动,让学生自己思考,提出问题并解决问题这一过程,既复习了24时计时法,又进一步让学生掌握了求经过时间的计算方法。然后组织学生根据自己的体验制作时间安排表,体会24时计时法在生活中的应用,引导学生科学合理地安排时间,养成良好的生活习惯。
课后反思:
这节课通过小华周末一天的时间安排,进一步熟练普通记时法和24时记时法之间的换算,并且巩固学生计算简单时间的方法和技能。在认识水平上,学生对于简单的24时记时法与普通记时法之间的换算还可以,但是一旦与生活联系,稍有复杂时,特别是涉及到跨越两天的时间计算时,学生的情况就不那么理想了,毕竟他们的生活经验还是很少。基于这种情况,在指导学生发现普通记时法与24时记时法联系的过程中,由于学生的个体差别,学生的回答千差万别,因而教师必须,或者说只能预测学生可能出现的各种现象,而根本无法设计好学生的每次回答情况,同时要根据学生的应答情况作出及时的调整,使学生在相互的启发下对解决问题的策略不断修正,最后达成共识。
数学教案【篇3】
教学目标:
1、培养学生十进制的数学建模能力,用自己喜欢的模型来表达数,建构适合自己的数世界。
2、认识数位顺序表。
3、通过小组合作共同操作、探究,培养学生协作与交流的能力。
教学过程:
一、复习引入
1、上节课我们学习了用千数图的简图来表示千及千以内的数,你知道这张图表示哪个数吗?(出示图)它表示(),由()个百、()个十和()个一组成。 写作(),读作()。
2、能不能用其它的方法来表示千以内的数?今天我们就来研究用其它的数学模型来表达数。出示课题:小探究。
二、探究新知
1、小组合作,动手操作,用小正方体积木块来建构千以内的数。
(1)请小朋友仔细看看能不能用桌上的学具小正方体来表示数呢?
引导:一个一个地数10个小方块组成一条10个一就是十十个十个地数10个条组成一板10个十是一百一百个一百个地数10个百组成一大块10个一百是一千多媒体演示,完成表格。你们知道一块、一条、一板、一大块分别可以用什么来表示吗?请你填入表格。导出数位顺序表:……千位百位十位个位
(2)练习:它表示哪个数?书最后一题。学生独立完成后集体交流。
2、用货币来表示数(课前准备好面值一百元、十元、一元的人民币)
(1)小朋友请你数一数学具中共有多少人民币?
(2)你是怎样数的?个别交流。
(3)你们小组一共有多少钱?它是由几个百几个十和几个一组成的?
三、综合应用
1、请小朋友用你喜欢的方法来表达243。你怎样表示243?学生交流。多媒体演示。小胖:用货币来表达243。小巧:用小正方体组成的块、条、板来表达243。小亚:用千数图的简图来表示243。
2、现在我们来看图写数。书第三题,个别完成后交流,并说说是怎么想的。
3、游戏:同桌互动,说说我摆的数或者我说数你来摆。
4、读一读、画一画、说一说
四、拓展提高可以合成几(必须合成三位数)?
比一比、赛一赛,你能写出几种?
9 400 30
8 70 500
数学教案【篇4】
猴子搬香蕉
一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里?
解答:
100只香蕉分两次,一次运50只,走1米,再回去搬另外50只,这样走了1米的时候,前50只吃掉了两只,后50只吃掉了1只,剩下48+49只;两米的时候剩下46+48只;...到16米的时候剩下(50-2×16)+(50-16)=18+34只;17米的时候剩下16+33只,共49只;然后把剩下的这49只一次运回去,要走剩下的33米,每米吃一个,到家还有16个香蕉。
河岸的距离
两艘轮船在同一时刻驶离河的两岸,一艘从A驶往B,另一艘从B开往A,其中一艘开得比另一艘快些,因此它们在距离较近的岸500公里处相遇。到达预定地点后,每艘船要停留15分钟,以便让乘客上下船,然后它们又返航。这两艘渡轮在距另一岸100公里处重新相遇。试问河有多宽?
解答:
当两艘渡轮在x点相遇时,它们距A岸500公里,此时它们走过的距离总和等于河的宽度。当它们双方抵达对岸时,走过的总长度
等于河宽的两倍。在返航中,它们在z点相遇,这时两船走过的距离之和等于河宽的三倍,所以每一艘渡轮现在所走的距离应该等于它们第一次相遇时所走的距离的三倍。在两船第一次相遇时,有一艘渡轮走了500公里,所以当它到达z点时,已经走了三倍的距离,即1500公里,这个距离比河的宽度多100公里。所以,河的宽度为1400公里。每艘渡轮的上、下客时间对答案毫无影响。
变量交换
不使用任何其他变量,交换a,b变量的值?
分析与解答
a = a+b
b = a-b
a= a-b
步行时间
某公司的办公大楼在市中心,而公司总裁温斯顿的家在郊区一个小镇的附近。他每次下班以后都是乘同一次市郊火车回小镇。小镇车站离家还有一段距离,他的私人司机总是在同一时刻从家里开出轿车,去小镇车站接总裁回家。由于火车与轿车都十分准时,因此,火车与轿车每次都是在同一时刻到站。
有一次,司机比以往迟了半个小时出发。温斯顿到站后,找不到
他的车子,又怕回去晚了遭老婆骂,便急匆匆沿着公路步行往家里走,途中遇到他的轿车正风驰电掣而来,立即招手示意停车,跳上车子后也顾不上骂司机,命其马上掉头往回开。回到家中,果不出所料,他老婆大发雷霆:“又到哪儿鬼混去啦!你比以往足足晚回了22分钟??”。温斯顿步行了多长时间?
解答:
假如温斯顿一直在车站等候,那么由于司机比以往晚了半小时出发,因此,也将晚半小时到达车站。也就是说,温斯顿将在车站空等半小时,等他的轿车到达后坐车回家,从而他将比以往晚半小时到家。而现在温斯顿只比平常晚22分钟到家,这缩短下来的8分钟是如果总裁在火车站死等的话,司机本来要花在从现在遇到温斯顿总裁的地点到火车站再回到这个地点上的时间。这意味着,如果司机开车从现在遇到总裁的地点赶到火车站,单程所花的时间将为4分钟。因此,如果温斯顿等在火车站,再过4分钟,他的轿车也到了。也就是说,他如果等在火车站,那么他也已经等了30-4=26分钟了。但是惧内的温斯顿总裁毕竟没有等,他心急火燎地赶路,把这26分钟全都花在步行上了。
因此,温斯顿步行了26分钟。
付清欠款
有四个人借钱的数目分别是这样的:阿伊库向贝尔借了10美元;
贝尔向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊库借了40美元。碰巧四个人都在场,决定结个账,请问最少只需要动用多少美金就可以将所有欠款一次付清?
解答:
贝尔、查理、迪克各自拿出10美元给阿伊库就可解决问题了。这样的话只动用了30美元。最笨的办法就是用100美元来一一付清。
贝尔必须拿出10美元的欠额,查理和迪克也一样;而阿伊库则要收回借出的30美元。再复杂的问题只要有条理地分析就会很简单。养成经常性地归纳整理、摸索实质的好习惯。
一美元纸币
注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值。
一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。当这三位男士同时站起来付帐的时候,出现了以下的情况:
(1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。
(2)这四人中没有一人能够兑开任何一枚硬币。
(3)一个叫卢的男士要付的账单款额最大,一位叫莫的男士要
付的帐单款额其次,一个叫内德的男士要付的账单款额最小。
(4)每个男士无论怎样用手中所持的硬币付账,女店主都无法找清零钱。
(5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己的账单而无需找零。
(6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先所持的硬币没有一枚面值相同。
(7)随着事情的进一步发展,又出现如下的情况:
(8)在付清了账单而且有两位男士离开以后,留下的.男士又买了一些糖果。这位男士本来可以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部硬币都找给了他。
现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美元的纸币付了糖果钱?
解答:
对题意的以下两点这样理解:
(2)中不能换开任何一个硬币,指的是如果任何一个人不能有2个5分,否则他能换1个10分硬币。
(6)中指如果A,B换过,并且A,C换过,这就是两次交换。
数学教案【篇5】
一、教材分析
教材选用人教版小学数学一年级下册,是位置与顺序学习中的一部分。
二、学生情况分析
教学对象为一年级中度智力落后的学生,共8名,其中3名学生有较好的语言表达能力,这三人中有两人课堂表现积极活跃,另一人的表达欲望不是很强;2名学生语言表达能力有障碍,有表达的意愿,在帮助下能进行简单表述;1名唐氏综合征的学生,给予刺激后可以做出简单的表述;2名认知和表达都有困难,有一定的模仿能力,能仿说但遗忘较快。
三、教学目标
1.轻度目标:区分物体的上、下位置空间关系。会用上面、下面方位词回答问题。
2.中度目标:区分物体的上、下位置空间关系。基本上会用上面、下面方位词回答问题。
3.重度目标:在教师的指导下,了解学习内容。
4.培养幼儿的空间感知能力,养成摆放物体有序的良好习惯。
四、教学重难点
理解分辨上下位置关系,并能描述物体的上下关系。
五、教学用具
多媒体,四幅含有树的图画,太阳,苹果和小花的图案若干
六、教学过程
1、激趣导入,揭示上下
在上课之前呢,老师先给大家讲个小故事。在大森林里住着一位树爷爷,他善良慈祥,待人友善。在森林里有很多的好朋友。今天啊,是树爷爷的生日,于是森林里的小动物都来为树爷爷过生日了,我们一起来看看,今天有谁来了,好不好?有谁来为树爷爷过生日了啊?(指着多媒体课件上的小动物)噢有小鸟,还有小兔子。那么现在老师要考考小朋友的观察力,看那位小朋友眼睛最亮。请小朋友观察下它们站在哪里?等下老师请小朋友们来说一说,(小鸟在上面,小兔子在下面),那么这节课,我们大家一起来认识“上下”。
2、探究新知,理解上下
a.认读上下,认读并领读说出小鸟在上面,小兔在下面(积极的同学已经会说了小鸟在上面,小兔子在下面,帮助中间的同学指引他们说出答案,最后重复答案让全班跟读小鸟在上面,小兔在下面,让程度较差的同学能够说出这部分内容)。
b.认识上下,教师举例教室内的一个上下关系,比如灯在上面,桌子在下面。之后让同学们自己举例身边的事物。(适时的给予一定的指导,并让每个同学都有举例的机会,针对具体的例子来具体辅导)。
c.区别上下,出示多媒体课件中的图片,有家里的客厅,卧室,冰箱里摆放的食物,还有森林里的小动物们等等(让同学能具体分辨出物体的位置上下关系)。
3、巩固练习,进一步体会上下
a.动手摆一摆上下,同桌两个人为一个小组,两人发一张树的图画,还有太阳、苹果和小花,让同学们自己完成一幅完整的画面。(看程度好的同学给他们鼓励,中度的同学告诉他们太阳在上面,小花在下面,让他们自己动手完成,程度较差的同学要特别辅导,非常清楚的说出太阳在上面,指出太阳和图片的上面的位置让他们自己动手贴到对应的位置,如此完成整幅图画)。指导完毕后鼓励全班同学,让同学们自己给自己鼓掌表扬。
b.听口令做出相应的动作,来,全体小朋友,拍拍手,向上看一看,向下望一望(检查学习上下的效果并锻炼孩子的运动和反应能力)。
4、总结
今天我们学习了上下,同学们都学的很棒,回家后跟爸爸妈妈说一说家里客厅里物品,什么在上面什么在下面,好不好。好那么今天的课就上到这里,下课。
数学教案【篇6】
教学目标:
1、在实际情景中,理解路程、时间与速度之间的关系
2、根据路程、时间与速度的关系,解决生活中简单的问题
3、感受数学知识与生活的密切联系,树立生活中处处有数学的思想
教学重点:
根据路程、时间与速度的关系解决生活中的实际问题。
教学过程:
一、创设情境,激发学生的学习兴趣。
出示刘翔跑步图片
师:同学们,图中跑步的是谁呀?你们认识吗?(刘翔)
师:对了,这就是我们中国的飞人刘翔。
师:同学们,刘翔跑得怎么样?(很快)这里的快指的是刘翔的什么快?(速度) (出示成绩表)
师:从成绩单中,他们都跑的这110米是什么意思?(出示:路程)
那么他们的12、91秒,13、18 秒,13、20秒这些是什么?(出示:时间) 同学们,通过这个表格来看,为什么是刘翔赢了呢?(他用的时间最少)师:(出示并观察这两个表格),那么通过刚才的两次比较,你发现速度的快慢与什么有关系?(时间、路程有关系)到底什么是速度?速度与路程和时间又有什
么关系?今天这节课就一起来研究(板书:路程 时间 与速度)
二、师生互动、探究新知。
1、师:刚才呀,咱们在比快慢的时候知道了如果路程相等的时候,谁用的时间少,谁就快。如果路程跟时间都不相同呢?怎么比快慢?下面请看这样一组信息:小卡车2小时行驶了120千米,大客车3小时行驶了210千米,哪辆车跑的比较快?
(1)师:你们能从图中了解到哪些数学信息?
哪辆车跑的快些?你们能试着解决吗?
(2)你可以通过计算,也可以借着画线段图的方法来分析数量关系,解决问题,清楚了吗?做完后可以和同桌交流,开始
(3)汇报各自的解决办法。(指名板演)
(4)同学们比的都不错,那么刚才老师在巡视的过程中,发现同学们都没有用线段图,其实呀,画线段图可以帮助我们正确的理解数量关系,解决问题,那么怎么画线段图呢?你们想不想学习呀?
师:好,请看。我们先画一段线段,用它表示小卡车行驶的路程,小卡车行驶了多少千米呀?(在黑板上画下表示120千米的线段)
然后我们再画一条线段,用来表示大客车行驶的路程,那么在画的时候要注意左端对齐,那么同学们,跟这条线段相比,应该画多长呀?
强调:应该按照一定的比例适当的长些。
(黑板上画了210千米长的线段)
那么大客车行使了多少千米?(210千米 标上)
师:小卡车的120千米是多少时间行驶的?(生反馈:2小时)
师:那么怎么样在线段图上表示它1小时行驶的路程?
师:恩,在一半的位置来画,就是把线段怎么样?
师:平均的分成两半
(教师在黑板上分)那么这里的每一份表示小卡车1时行驶的路程,我们这样来表示。那么怎么样在线段图上表示大客车1时行驶的路程呢?
(在黑板上比划了不同的3段)可以吗?怎么分?一起说。
师:把它平均分成3份,同样,这是每一份表示大客车1时行驶的路程,同样,我们取这一段来表示。
(教师在黑板上分)那么从线段图上来看,哪辆车1时行驶的路程长? 师:大客车行驶的路程长。大客车就跑的快。
2、讲解速度的读法、写法
师:在刚才的比较过程中,我们无论是通过计算,还是通过画线段图,都是比较两辆车多长时间行驶的路程?
师:对了,他们每小时或1时行驶的路程就是他们的速度,那么像这样小卡车1小时行使了60千米,也就是小卡车的速度是60千米/时,
(板书60千米/时)这就是我们今天要学习的用来表示速度的单位,谁来说一说这个单位是是由哪些我们学过的单位组成的?
师:对,速度的单位是由路程单位和时间单位组成的,中间用斜线隔开。读作每60千米每时。(指名读)
你知道每小时60千米表示什么吗?
那么你能不能这样来表示出大客车的速度?在练习本上写一写(指名板演)
3、经历公式形成的过程。
师:很好,刚才呀,咱们求出了小卡车和大客车的速度,那么结合这个算式和线段图来看一看,速度和路程还有时间有什么样的关系?和你的伙伴交流交流。好,开始。
(汇报,结合120÷2=60(千米)来讲解。板书:速度=路程÷时间)让学生读一读。
4、理解单位时间,理解速度的意义。
同学们,那么通过这个关系式来看,如果要想求出速度的话,我们需要知道什么?(路程与时间)知道了相对应的路程和时间,我们就可以求出速度了。好,请同学们在下面小声的读题,然后口答下列各题中物体的速度,开始。师:请写出下面各物体的速度
①一列火车2时行驶180千米,这列火车的速度是xx
②自行车3分钟行驶600米,这辆自行车的速度是xx
③一名运动员8秒跑了80米,这名运动员的速度是xx
师:我们一起来看下这三个速度,它们分别是这些物体在多长时间内行驶的路程?
师:其实他们每时,每分,每秒行驶的路程就是他们的速度,我们把这样的像一时、一分、一秒…这样的时间叫做单位时间。你对速度是怎样理解的?物体在单位时间(一时,一分,一秒…)内所行驶的路程,叫做速度。自己练习说一说。
5、经历公式形成的过程。
现在咱们知道了什么是速度,也知道了速度等于路程除以时间,那么同学们,时间该怎么求?路程又该怎么求呢?我们一起结合下面的问题来试一试。(出示题目1)你能从中获得什么数学信息?
那么根据这些信息,你能解决这个问题吗?
你能说一说求路程的关系式是怎么样的?
时间=路程÷速度
路程=时间×速度
师:同学们太厉害了,通过这个关系式我们可以看出要想求出速度,就必须知道相对应的路程和? (时间)
师:那么求时间和求路程也是一样的,必须要知道相对应的另两个量,你看,路
程,时间和速度的关系是多么的密切呀。
三、实际运用
1、感受生活中的速度
师:速度不仅在咱们的课堂中有,在咱们的生活中也是无处不在的,咱们一起到生活中感受一下速度,好吗?读一读,感受一下。出示看一看图片让学生看一看读一读。
2、解决问题
小红和小明约好到少年宫玩,如果她俩同时从家里出发,谁会先到达少年宫呢?
(出示 只有距离没有其它条件的题目)
师:那么同学们,你说如果看路程的话,能不能确定谁先到少年宫? 师:还需要知道什么?
数学教案【篇7】
支教数学教案总案
一、教学对象:四年级、五年级学生。
二、教学目的:
通过适合四五年级小学生特点的教学方法,调动大家学习数学的兴趣,教会大家学好数学的适合自己的方法,甚至达到学会自主学习数学的目的,并同时学会将学习的数学知识与能力应用于实际生活中或从现实生活中发现数学的妙用。
三、教学内容:
由于本次教学对象分四年级和五年级,因此教学总案将设置分别适合四五年级学生学习内容的学习能力的内容(以人教版为参考教学)。
四、教学方式与思路:
本次教学将设置15课时,每节课开始首先简略的为大家讲述一个数学家的小故事,并要求同学们下一节课起来复述一遍这个小故事,用以激励和提升小学生学习数学的意志与兴趣其次复习上一节课学习的内容,并将上一节课布置的作业内容作详细讲解(之前已收上来批分好并打分);结合现实生活的运用开始正式的教学内容,其中将穿插一些趣味数学题和趣味数学小游戏,另外在教学过程中将使用计算机辅助,例如:图形展示、趣味图形题等;最后两节课将做一次数学小测试,检验大家的学习成果,并将考题讲解完毕后再最后结课。
五、分课时教学教案:
1、四年级:
(1)第一、二、三课时:
主要内容:整数、小数四则运算及运用
数学家故事:陈景润
(2)第四、五、六课时:
主要内容:三角形基础及其应用
数学家故事:阿基米德
(3)第七、八、九课时:
主要内容:统计
数学家故事:高斯
(4)第十、十一、十二课时:
主要内容:长方体、正方体基础知识、体积与表面积及其应用(引入基本计量单位学习。如:体积、容积的立方米、立方厘米;面积的平方米、平方厘米;并教授一定换算知识)
数学家故事:费马
(5)第十三课时:
主要内容:课程总复习
(6)第十四课时:
主要内容:数学结课测试
(7)第十五课时:
主要内容:测试试卷讲解及学习总结
2、五年级:
(1)第一、二、三课时:
主要内容:整数、小数乘法、除法运算及运用(引入“四舍五入”内容)
数学家故事:祖冲之
(2)第四、五、六课时:
主要内容:各种基本图形基础知识、面积计算及其应用(平行四边形、三角形、梯形)
数学家故事:阿基米德
(3)第七、八、九课时:
主要内容:列式求解文字题
数学家故事:陈景润
(4)第十、十一、十二课时:
主要内容:几种基本形式应用题求解
数学家故事:费马
(5)第十三课时:
主要内容:课程总复习
(6)第十四课时:
主要内容:数学结课测试
(7)第十五课时:
主要内容:测试试卷讲解及学习总结
★最后学生成绩将由平时成绩(平时作业及课堂表现,占60%)
加上结课测试成绩(占40%)组成,并根据以上内容撰写学生评语与结课总结。
数学教案【篇8】
一、说教材
《比大小》是爱儿坊学前班数学下册主题三“数字的家”的一节活动课。
二、说目标
根据教材内容和幼儿的学习经验,制订出本次活动课的活动目标为:
1.引导幼儿认识50以内的数,学会比较数的大小。
2.通过游戏的过程使幼儿经历发现、归纳数学知识的过程,感知学习方法。
3.通过游戏活动,激发幼儿学习数学的兴趣和信心,体验学习成功的快乐。
三、说教法与学法
数字概念对幼儿来说是较抽象的,光靠教师枯燥无味的讲解,幼儿是没有兴趣的。那怎样引导幼儿轻松学习呢?为了帮助幼儿掌握活动重点,突破活动难点,活动中结合周围环境和季节特点,以幼儿为主体,以春游为主线,以游戏为主导。根据幼儿认知过程的直观形象性,主要采取数、认、读、比结合法来充分调动幼儿的思维活动,以唱、玩、赞穿插入行来激发幼儿的学习兴趣和自信。让幼儿通过自主探索和合作进步的方法让他们在游戏中体验到学习的成功与快乐。
四、说活动过程
活动中我为了防止了“一言堂”和“满堂吼”的现象,注重幼儿秩序性的培养及探索能力的发展,设计了以下的过程:
1.设计一条活动主线
在本节活动课中我设计了春有这样一个符合季节环境特点的情境主线。以开火车这样一种幼儿喜闻乐见的游戏为主导,在“准备坐火车——开火车春游——春游进行时”三个环节中,第一环节引导幼儿丰富对50以内数的认识;第二环节通过有顺序、有目的的关注来引导幼儿尝试比较数的大小,说出自己的想法,发现真确的解决问题的方法;最后一个环节:幼儿体验学习快乐,教师发现存在问题。整个活动调动了幼儿身体、感官、思维的活动,使枯燥抽象的数字在游戏中变得生动有趣,从而达到幼儿园保教活动以游戏为主的目的。
2.培养一种快乐习惯
游戏是幼儿的天性,尤其对于农村的孩子来说,户外活动有得天独厚的条件,但是同样的游戏也有玩腻的时候。通过开火车游戏的不同玩法,所带给孩子们不一样的快乐感受和体验。我希望孩子们能培养出一种探索意识,获得一种探索的习惯。
3.关注每一个幼儿发展
每个孩子都有获得表扬和赞许的权利,每一位老师也有表扬赞许孩子的义务。在每个孩子天真稚嫩的童心中,对表演赞许的渴望不亚于花儿对阳光的渴望。每一个幼儿都有他独特的个性,活动能力和身体各方面发展不尽相同,所以在工作及这节课中我都一直去留心发现每一个幼儿点滴的进步,并及时说出来。在活动中鼓励那些不积极,不善于表达的幼儿参与活动,我发现:“多给机会,多进步。”
五、活动延伸
回家比比家里人的年龄,你会发现什么?鼓励幼儿把学到的知识用于生活,激发幼儿的兴趣。
数学教案【篇9】
教学内容:
20以内的不退位减法
教学目标:
1.知识与技能
(1)借助熟悉的物体,使学生正确用数表示20以内这些物体的个数。
(2)使学生根据11-20各数的组成,掌握20以内不进位加法和不退位减法的计算方法。
2.过程与方法
培养学生发现、解决问题的能力,使学生意识到数学就在身边。
3.情感、态度与价值观
培养学生相互交流与合作的能力,培养学生数学应用意识。
教学重难点:
20以内不退位减法的计算。
教学过程:
一、复习导入
复习11~20各数的组成。
师分别出示数字卡片:14、17、12、11。
学生说数的组成。
二、新课教学
1.观察思考解决问题。
(1)搭积木(出示图片:摆一摆,算一算1、2图)
师:同学们,你们喜欢玩搭积木的游戏吗?(喜欢)
明明和丁丁搭好了两摞积木在列算式时遇到了困难,你们能帮帮他们吗?
(2)根据图意谁能列出相应的算式?教师板书:10+3=13 13+2=15
(3)为什么这样列算式?说一说你的想法。
①蓝灵鼠搭了两摞积木,左边一摞是十块,右边一摞是:
②后来它又放上了两块一共是十五块,所以就是13+2=15
2.出示图3。
师:现在蓝灵鼠又在玩积木了,说说这次它是怎样摆弄的。
生:它从15块积木中拿走了两块。
师:观察得的很仔细,刚才图中是向下的箭号表示加上,现在箭号向上就表示拿走。怎样用算式表示?
生:15-3
师:怎样计算15-3呢?
生:先用5-3=2,再10+2=12。
教师应多鼓励学生多说说,也可以同桌之间互说,加深算理。
3.出示图4。先指导学生观察图,说说图意,然后独立填空,后集体反馈。
生1:现在又拿走了2块,拿只剩左边的1摞正好是10块,所以12-2=10。
生2:12可以分成10和2,所以12-2就等于10。
4.观察比较。
师:现在请同学们观察这四幅图,说说有什么共同点?
①小组合作交流
②集体反馈
引导学生找出今天的算式,在计算时都是先进行个位的计算然后在加上10。
5.小结。
我们通过观察画面,动脑思考帮助蓝灵鼠解决了它搭积木问题,列出了算式而且找搭积木的块数。你们真聪明。
三、算一算
1.学生独立完成。
2.说说你是怎么算得?
(1)应该先引导学生观察左边一组的算式想想它们的联系。
(因为16可以分成10和6,从16里去掉6就剩下10,去掉了10就剩下了6,所以16-6=10,16-10=6。)
(2)出示:l7一3=19-5=
师:说说你是怎样算这两题的?
生1:17-3,我是这样算的,17可以分成10和7,7先减3等于4,再加上10就等于14。
生2:19-5我也是先用9减去5等于4,再加上10等于14。
(3)找规律。
师:比较17-3=和19-5=这两个算式,你会发现什么有趣的规律?
学生分组讨论,然后集体交流。
(引导学生发现被减数多2,减数也多2,而差不变。现在阶段不能要求学生表述清楚,教师只要他们能体会到算式中各个数的变化即可。)
四、练一练
1.练一练第1题。(课本第9页)
学生独立完成,教师指名口算,说说自己是怎样想的。
2.看图写算式。投影出示练一练第2题。
(1)学生独立完成。
(2)说说你是怎样列式的?这两题都是一题多解:
第一幅可以列式:10+6=16、16-6=10或16-10=6。
第二幅图可以列式:12+5=17、17-5=12或17-12=5
重要的是要让每个学生都说说自己算式表示的含义。体会整体与部分的关系。
可以先在小组内交流,然后再提问个别同学。
3.照小猪的样子说算式。(练一练第3题)
(1)引导学生观察小猪所说的三个算式,弄清图意。
(2)请学生以4人为一个小组,在小组内说说你相到的算式,并由小组长记录。
(3)小组交流反馈。
4.口算比赛
学生独立完成,然后指名回答,也可以请做错的同学再来说说怎么算。
五、课堂总结
师:今天我们学习了什么知识?(板书:20以内的不退位减法)怎样计算这样的题目?(可以根据数的组成或数的方法进行计算)你还有什么想法?
数学教案【篇10】
教学目标:
1、通过观察和操作等活动,感受并能用自己的语言描述长方形、正方形的特征,能判断一个图形或物体的某一个面是不是长方形或正方形。
2、通过观察、测量等活动,在获得直观经验的同时发展空间观念。
教学重难点:
重点:使学生掌握正方形和长方形的特征。
难点:正方形和长方形特征的归纳总结。
教学准备:
长方形纸片,正方形纸片,直尺1把,三角尺1块,钉子板,橡皮筋。
教学流程
流程一、联系生活,引入课题:
1、师(课件出示:教室图):同学们,在生活中,我们经常会看到各种各样的物体,这些物体的表面都有各自的形状。大家看屏幕,这是一间教室,你能找一找教室里哪些物体的面是长方形,哪些物体的面是正方形的?
2、(课件逐个点击这些物体的面)师小结:教室里视力表、国旗、黑板的面、粉笔盒的侧面、讲台的侧面、课桌面、电灯开关的面都是长方形的。广播喇叭的面是正方形的。其实,何止是教室里有长方形和正方形,生活中长方形和正方形无处不在。那么它们都有些什么特点呢?今天这节课我们就进一步来认识长方形和正方形,(PPT板书课题))研究它们的特征。
(PPT出示课题:认识长方形和正方形)
第二段:在游戏中初步感知长方形正方形的特征
流程二、在游戏中初步感知长方形、正方形特征。
1、师:(由现场老师准备一个不透明纸盒,里面装有一些硬纸板做的长方形、正方形以及其他平面图形)老师为每一组同学都准备了一个纸盒子,里面放有一些长方形、正方形以及其他平面图形。你不用眼睛看,能从中摸出一个长方形吗?每小组的同学轮流试一试。(暂停)
2、师(出示一个三角形):你们为什么不摸出这个图形?(暂停)
3、师(出示一个平行四边形):你们为什么不摸出这个图形?(暂停)
4、师(出示一个梯形):你们为什么不摸出这个图形?(暂停)
5、师(出示一个正方形):这个图形有四条边,四个叫都是直角,你们为什么不摸出呢?(暂停)
6、师:(出示一个长方形)那你们摸出的一定是这个图形了,对吗?
6、师:通过刚才的游戏活动,你们觉得长方形和正方形各有哪些特征呢?全班交流交流吧。(暂停)
第三段:在操作中建构长方形正方形的特征
流程三、在操作中建构长方形和正方形的特征:
1.师布置操作要求:同学们已经初步发现了长方形和正方形特征,但这些只能算作初步猜想,还需进一步验证。请同学们拿几张长方形和正方形的纸,折一折,量一量,比一比,看看长方形和正方形的边和角有什么特点。(PPT出示:下图)
2、师提问:现在我们来交流一下,你发现长方形的边有什么特点?你是通过怎样的操作发现的?(暂停)
3、师归纳长方形边的特征:(课件演示:长方形对折)我们可以将长方形对折,使它的两组对边分别重合,通过比较,发现长方形两组对边分别相等;也可以用量一量的方法,也能发现长方形两组对边的长短是相等的,但是相邻的两条边长度不相等。
4、师提问:再来看看长方形的4个角?这几个角都是什么样的角呢?(暂停)
5、师归纳长方形角的特点:通过同学们的观察,我们发现长方形有四个角,用三角板上的直角分别去比一比,发现这四个角都是直角。(PPT图片演示)
6、师提问:谁能像刚才一样,分别从边的特点和角的特点两个方面来说一说你从操作中发现了正方形的哪些特征?
7、师归纳正方形的特征:正方形也有四条边,每条边都相等;也有四个角,都是直角。
第四段:长方形和正方形的联系
流程四、长方形和正方形的联系
1、通过学习,我们发现了长方体、正方体边的特征和角的特征,你们能再用自己的话来说一说这些特征吗?与你的同桌相互交流交流。(暂停)
2、师归纳:我们一起来看课件的演示:
3、你们说的和屏幕上显示的一样吗?想一想,长方形和正方形有什么相同的地方?
4、师小结:长方形和正方形都有四条边和四个角,每个角都是直角,而且对边都相等。长方形具有的特征,正方形也都具备,所以,我们说正方形是特殊的长方形。
5、师:为了今后进一步研究长方形和正方形,我们通常把………
第五段:教学想想做做1、2、3、5、6
流程五、教学“想想做做”1
(注:钉子板改为点子图,由现场老师上课之前给每位同学准备好)
师:你会在点子图上画一个长方形和一个正方形吗?(暂停)
2、师:你画的图形有什么特点?能向大家介绍一下吗?(暂停)
流程六:教学“想想做做”2
1、师:大家刚才已经能利用点子图来画长方形和正方形了,下面我们再来进行一个有趣的活动。请你和你的同桌合作,一起用两幅同样的三角板分别拼一个正方形和长方形。在拼之前,请同学们先想想长方形和正方形各有什么特征,然后再拼。(暂停)
2、师:同学们已经拼出来的吧,老师也来拼一次,看看和你们拼的是不是一样。(互动工具软件演示拼的过程)(右上图)
3、师提问:在拼的过程中,你们有没有发现我们都是把三角尺中的哪一条边拼在了中间?为什么?自己静静地想一想。(暂停)
流程七:教学“想想做做”3:
1、师:接下来我们做一个折纸活动。你会把手中的长方形纸变成正方形吗?(暂停)
(课件出示:想想做做3)你是不是也和老师一样折的?
2、想一想,为什么我们这样子折了以后得到的就肯定是正方形了呢?(暂停)
3、师小结:将长方形的宽边与长边重合,剪去长比宽多出的长度,那么长边就和宽边一样长了,这就变成了一个正方形。
流程八、教学想想做做5:
1、师:刚才我们折出的是怎样的长方形和正方形?你怎样向别人介绍这个长方形或正方形的大小呢?(暂停)对了,只要告诉别人长方形的长和宽分别是多少,正方形的边长是多少别人就明白了。现在我们一起动手来量一量。做书上想想做做5.(课件出示)(暂停)
2、看看你填的结果是否正确,和电脑老师对一对。(暂停)
流程九:教学“想想做做”6:
师:我们的数学书是什么形状?(暂停)你知道它的长和宽是多少?我们先来估计一下大约是多少,再来量一量,看看你估计得准不准。(暂停)
第六段:全课总结及拓展
流程十、课堂总结。
1、师:今天这节课我们进一步认识、研究了长方形和正方形,长方形和正方形各有哪些特征?你们是用什么方法发现这些特征的?(暂停)同学们,只要你乐于探索,还可以发现长方形和正方形里面更多的奥秘。瞧,老师这里就有许多长方形和正方形拼成的图案,非常的有趣。(PPT展示:)
2、如果你们有兴趣,回家自己也可以用长方形和正方形创作更有趣的图画。
流程十一、拓展延伸:想想做做4(选做)
1、师:我们来讨论想想做做第4题,你们先自己独立解决,然后大家来交流。
2、师:(结合PPT演示)6个一样的小正方形拼成一个长方形,你想到几种拼法?是这样的两种吗?一种是将这6个小正方形排成一行,拼成一个长方形,它的长和宽分别是6厘米和1厘米;另一种是将6个小正方形分两行拼,拼成的长方形的长和宽分别是3厘米和2厘米。你们拼对了吗?
3、师:将16个一样的小正方形能拼成一个大正方形,边长是4厘米,如果将这些小正方形拼成长方形,也有下面的两种拼法。一种是将这16个小正方形排成一行,拼成一个长方形,它的长和宽分别是16厘米和1厘米;另一种是将16个小正方形分两行拼,拼成的长方形的长和宽分别是8厘米和2厘米。你们拼对了吗?(暂停)二次备课
数学教案【篇11】
【教学目标】
1、让学生学会运用数字进行编码,培养学生的抽象、概括能力。
2、通过日常生活中的一些事例,使学生初步体验数字编码思想在解决实际问题中的应用。
【教学重难点】
重、难点:初步学习数字编码的简单办法。
【教学过程】
一、谈话引入
教师:同学们,我们班有多少人?你自己的学号是多少?老师点名时,如果不叫名字怎么来区分班上的学生呢?
揭示本节课的重点内容,数不仅可以用来表示数量和顺序,还可以用来编码。
二、探索新知
1、教师:同学们邮寄过信或收过信吗?(拿出已经写好封面的信封)仔细观察,你发现了什么?
同桌相互说说,然后得出:每个信封上都有两个邮政编码。
教师:信封左上角那排数字代表什么?(收信人所在地的邮政编码)
教师:那么右下角那排数字代表什么呢?(寄信人所在地的邮政编码)
2、课件出示邮政人员介绍邮政编码作用的信息。
邮政编码是我国的邮政代码,机器能根据邮政编码对信件进行分类,这样可以大大提高信件邮递的速度。
3、教师:你想知道这些邮政编码是怎么样编排的吗?
(1)师生共同学习教材第77页的邮编448268是怎样编排的。
学生根据自己的理解说说邮政编码是如何编排的,对有疑问的地方,教师适时解答。
(2)学生介绍自己了解到的本地的邮政编码。我们学校的邮政编码是多少?它们是怎样组成的?
4、数字编码——身份证号码。
(1)课件出示一张身份证,让学生观察并说说发现了什么。
学生讨论后,汇报可能说出:身份证上有姓名、性别、出生年月、发放日期和有效期、编号。
(2)学生自学教材第77页关于身份证号码的内容。
教师:从身份证号码中你能获得什么信息?
指名学生说说。
5、数字编码——学号。
教师:我们来给学校的每一个学生编一个学号。
(1)请你讨论一下学号中应该包括哪些信息?
学生讨论后,汇报。汇报时可能说出:年级、班级、性别、入学年份等。
(2)根据以上内容来设计编码的方法。
(3)分组活动,共同探讨如何编号。
(4)以小组为单位来展示本组同学设计的学号的编排方法。
教师注意引导学生说出每个数字在编码中的含义。
三、巩固练习
1、你还知道哪些邮政编码?它们是怎么组成的?和同学交流一下。
2、生活中的编码有很多,你还知道哪些?
四、课堂小结
通过这节课的学习,你有什么收获?
数学等差数列教案2000字
老师每一堂上一般都需要一份教案课件,大家可以开始写自己课堂教案课件了。教案课件写好了,老师教学质量肯定也差不了,对于写教案课件有哪些疑问呢?出于您的需求,栏目小编为您搜集了以下内容:数学等差数列教案,供大家借鉴和使用,希望大家分享!
数学等差数列教案 篇1
一、等差数列
1、定义
注:“从第二项起”及
“同一常数”用红色粉笔标注
二、等差数列的通项公式
(一)例题与练习
通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二)新课探究
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件; f
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1—an=d (n≥1) ;h4z+0"6vG
同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1。 9 ,8,7,6,5,4,……;√ d=—1
2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01
3。 0,0,0,0,0,0,……。; √ d=0
4。 1,2,3,2,3,4,……;×
5。 1,0,1,0,1,……×
其中第一个数列公差0,第三个数列公差=0
由此强调:公差可以是正数、负数,也可以是0
2、第二个重点部分为等差数列的通项公式
在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项 ,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,
则据其定义可得:
a2 — a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
进而归纳出等差数列的通项公式:
an=a1+(n—1)d
此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an+1 – an=d
将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)当n=1时,(1)也成立,所以对一切n∈N﹡,上面的公式都成立因此它就是等差数列{an}的通项公式。在迭加法的证明过程中,我采用启发式教学方法。利用等差数列概念启发学生写出n—1个等式。对照已归纳出的通项公式启发学生想出将n—1个等式相加。证出通项公式。在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n—1)×2 , 即an=2n—1 以此来巩固等差数列通项公式运用同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。(三)应用举例这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项(2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。在前面例1的基础上将例2当作练习作为对通项公式的巩固例3 是一个实际建模问题建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5。8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型——————等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用展示实际楼梯图以化解难点)设置此题的目的:1。加强同学们对应用题的综合分析能力,2。通过数学实际问题引出等差数列问题,激发了学生的兴趣;3。再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法(四)反馈练习1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。2、书上例3)梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。目的:对学生加强建模思想训练。3、若数例{an} 是等差数列,若 bn = an ,(为常数)试证明:数列{bn}是等差数列此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。(五)归纳小结 (由学生总结这节课的收获)1。等差数列的概念及数学表达式.强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数2。等差数列的通项公式 an= a1+(n—1) d会知三求一3.用“数学建模”思想方法解决实际问题(六)布置作业必做题:课本P114 习题3。2第2,6 题选做题:已知等差数列{an}的首项a1= —24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)五、板书设计在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
数学等差数列教案 篇2
教学目标:
1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。
2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。
3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。
教学重点:
等差数列的概念及通项公式。
教学难点:
(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.回忆上一节课学习数列的定义,请举出一个具体的例子。表示数列有哪几种方法——列举法、通项公式、递推公式。我们这节课接着学习一类特殊的数列——等差数列。
2.由生活中具体的数列实例引入
(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:
你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?
(2)某剧场前10排的座位数分别是:
48、46、44、42、40、38、36、34、32、30
引导学生观察:数列①、②有何规律?
引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2。
二.新课探究,推导公式
1.等差数列的概念
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。
强调以下几点:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );
所以上面的2、3都是等差数列,他们的公差分别为0.20,-2。
在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的学习。
[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。
1.3,5,7,…… √ d=2
2.9,6,3,0,-3,…… √ d=-3
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
在这个过程中我将采用边引导边提问的方法,以充分调动学生学习的积极性。
2.等差数列通项公式
如果等差数列{an}首项是a1,公差是d,那么根据等差数列的定义可得:
a2 - a1 =d即:a2 =a1 +d
a3 – a2 =d即:a3 =a2 +d = a1 +2d
a4 – a3 =d即:a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
进而归纳出等差数列的通项公式:an=a1+(n-1)d
此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:
n=a1+(n-1)d
a2-a1=d
a3-a2=d
a4-a3 =d
……
an –a(n-1) =d
将这(n-1)个等式左右两边分别相加,就可以得到
an-a1=(n-1)d
即an=a1+(n-1)d (Ⅰ)
当n=1时,(Ⅰ)也成立,所以对一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差数列{an}的通项公式。
三.应用举例
例1求等差数列,12,8,4,0,…的第10项;20项;第30项;
例2 -401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
四.反馈练习
1.P293练习A组第1题和第2题(要求学生在规定时间内做完上述题目,教师提问)。目的:使学生熟悉通项公式对学生进行基本技能训练。
五.归纳小结提炼精华
(由学生总结这节课的收获)
1.等差数列的概念及数学表达式.
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
2.等差数列的通项公式an= a1+(n-1) d会知三求一
六.课后作业运用巩固
必做题:课本P284习题A组第3,4,5题
数学等差数列教案 篇3
教学目的:
1.明确等差数列的定义,掌握等差数列的通项公式。
2.会解决知道中的三个,求另外一个的问题。
教学重点:等差数列的概念,等差数列的通项公式。
教学难点:等差数列的性质
教学过程:
一、复习引入:(课件第一页)
二、讲解新课:
1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。
(课件第二页)
⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求;
⑵.对于数列{ },若 - =d (与n无关的数或字母),n≥2,n∈n ,则此数列是等差数列,d 为公差。
2.等差数列的通项公式: 【或 】等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得: 即: 即: 即: …… 由此归纳等差数列的通项公式可得: (课件第二页) 第二通项公式 (课件第二页)
三、例题讲解
例1 ⑴求等差数列8,5,2…的第20项(课本p111) ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
例2 在等差数列 中,已知 , ,求 , ,
例3将一个等差数列的通项公式输入计算器数列 中,设数列的第s项和第t项分别为 和 ,计算 的值,你能发现什么结论?并证明你的结论。
小结:①这就是第二通项公式的变形,②几何特征,直线的斜率
例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。(课本p112例3)
例5 已知数列{ }的通项公式 ,其中 、 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?(课本p113例4)
分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。
注:①若p=0,则{ }是公差为0的等差数列,即为常数列q,q,q,… ②若p≠0, 则{ }是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q. ③数列{ }为等差数列的充要条件是其通项 =pn+q (p、q是常数)。称其为第3通项公式④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。
例6.成等差数列的四个数的和为26,第二项与第三项之积为40,求这四个数.
四、练习:
1.(1)求等差数列3,7,11,……的第4项与第10项.
(2)求等差数列10,8,6,……的第20项.
(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.
(4)-20是不是等差数列0,-3 ,-7,……的项?如果是,是第几项?如果不是,说明理由.
2.在等差数列{ }中,
(1)已知 =10, =19,求 与d;
五、课后作业:
习题3.2 1(2),(4) 2.(2), 3, 4, 5, 6 . 8. 9.
数学等差数列教案 篇4
教学目标
1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.
(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;
(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;
(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.
2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.
3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.
关于等差数列的教学建议
(1)知识结构
(2)重点、难点分析
①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.
②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.
(3)教法建议
①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.
②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.
③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.
④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.
⑤有穷等差数列的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷等差数列的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.
⑥等差数列前 项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.
⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.
等差数列通项公式的教学设计示例
教学目标
1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;
2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;
3.通过参与编题解题,激发学生学习的兴趣.
教学重点,难点
教学重点是通项公式的认识;教学难点是对公式的灵活运用.
教学用具
实物投影仪,多媒体软件,电脑.
教学方法
研探式.
教学过程()
一.复习提问
前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
二.主体设计
通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
1.方程思想的运用
(1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第______项.
(2)已知等差数列 中,首项 , 则公差
(3)已知等差数列 中,公差 , 则首项
这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
2.基本量方法的使用
(1)已知等差数列 中, ,求 的值.
(2)已知等差数列 中, , 求 .
若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
如:已知等差数列 中, …
由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题
(3)已知等差数列 中, 求 ; ; ; ;….
类似的还有
(4)已知等差数列 中, 求 的值.
以上属于对数列的项进行定量的研究,有无定性的判断?引出
3.研究等差数列的单调性,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.
4.研究项的符号
这是为研究等差数列前 项和的最值所做的准备工作.可配备的题目如
(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?
(2)等差数列 从第________项起以后每项均为负数.
三.小结
1. 用方程思想认识等差数列通项公式;
2. 用函数思想解决等差数列问题.
数学等差数列教案 篇5
教学目标:
(1)理解等差数列的概念,掌握等差数列的通项公式;
(2)利用等差数列的通项公式能由a1,d,n,an“知三求一”,了解等差数列的通项公式的推导过程及思想;
(3)通过作等差数列的图像,进一步渗透数形结合思想、函数思想;通过等差数列的通项公式应用,渗透方程思想。
教学重、难点:等差数列的定义及等差数列的通项公式。
知识结构:一般数列定义通项公式法
递推公式法
等差数列表示法应用
图示法
性质列举法
教学过程:
(一)创设情境:
1.观察下列数列:
1,2,3,4,……;(军训时某排同学报数)①
10000,9000,8000,7000,……;(温州市房价平均每月每平方下跌的价位)②
2,2,2,2,……;(坐38路公交车的车费)③
问题:上述三个数列有什么共同特点?(学生会发现很多规律,如都是整数,再举几个非整数等差数列例子让学生观察)
规律:从第2项起,每一项与前一项的差都等于同一常数。
引出等差数列。
(二)新课讲解:
1.等差数列定义:
一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。
问题:(a)能否用数学符号语言描述等差数列的定义?
用递推公式表示为或.
(b)例1:观察下列数列是否是等差数列:
(1)1,-1,1,-1,…
(2)1,2,4,6,8,10,…
意在强调定义中“同一个常数”
(c)例2:求上述三个数列的公差;公差d可取哪些值?d>0,d=0,d
(d有不同的分类,如按整数分数分类,再举几个等差数列的例子观察d的分类对数列的影
响)
说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列,为递减数列。
例3:求等差数列13,8,3,-2,…的第5项。第89项呢?
放手让学生利用各种方法求a89,从中找出合适的方法,如利用不完全归纳法或累加法,然
后引出求一般等差数列的通项公式。
2.等差数列的通项公式:已知等差数列的首项是,公差是,求.
(1)由递推公式利用用不完全归纳法得出
由等差数列的定义:,,,……
∴,,,……
所以,该等差数列的通项公式:.
(验证n=1时成立)。
这种由特殊到一般的推导方法,不能代替严格证明。要用数学归纳法证明的。
(2)累加法求等差数列的通项公式
让学生体验推导过程。(验证n=1时成立)
3.例题及练习:
应用等差数列的通项公式
追问:(1)-232是否为例3等差数列中的项?若是,是第几项?
(2)此数列中有多少项属于区间[-100,0]?
法一:求出a1,d,借助等差数列的通项公式求a20。
法二:求出d,a20=a5+15d=a12+8d
在例4基础上,启发学生猜想证明
练习:
梯子的最高一级宽31cm,最低一级宽119cm,中间还有3级,各级的宽度成等差数列,请计算中间各级的宽度。
观察图像特征。
思考:an是关于n的一次式,是数列{an}为等差数列的什么条件?
课后反思:这节课的重点是等差数列定义和通项公式概念的理解,而不是公式的应用,有些应试教育的味道。有时抢学生的回答,没有真正放手让学生的思维发展,学生活动太少,课堂氛围不好。学生对问题的反应出乎设计的意料时,应该顺着学生的思维发展。
数学等差数列教案 篇6
一、知识与技能
1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;
2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.
二、过程与方法
1.通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;
2.通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性.
三、情感态度与价值观
通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识.
教学过程
导入新课
师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子)
(1)0,5,10,15,20,25,…;
(2)48,53,58,63,…;
(3)18,15.5,13,10.5,8,5.5…;
(4)10 072,10 144,10 216,10 288,10 366,….
请你们来写出上述四个数列的第7项.
生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510.
师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.
生:这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为78.
师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.
生:1每相邻两项的差相等,都等于同一个常数.
师:作差是否有顺序,谁与谁相减?
生:1作差的顺序是后项减前项,不能颠倒.
师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列.
这就是我们这节课要研究的内容.
推进新课
等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示).
(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;
(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n≥2,n∈N*,则此数列是等差数列,d叫做公差.
师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)
生:从“第二项起”和“同一个常数”.
师::很好!
师:请同学们思考:数列(1)、(2)、(3)、(4)的通项公式存在吗?如果存在,分别是什么?
生:数列(1)通项公式为5n-5,数列(2)通项公式为5n+43,数列(3)通项公式为2.5n-15.5,….
师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.
[合作探究]
等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1,公差是d,则据其定义可得什么?
生:a2-a1=d,即a2=a1+d.
师:对,继续说下去!
生:a3-a2=d,即a3=a2+d=a1+2d;
a4-a3=d,即a4=a3+d=a1+3d;
……
师:好!规律性的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?
生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-1)d.
师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了.需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?
生:前面已学过一种方法叫迭加法,我认为可以用.证明过程是这样的:
因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-1)d.
师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了.
[教师:精讲]
由上述关系还可得:am=a1+(m-1)d,
即a1=am-(m-1)d.
则an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,
即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式)
由此我们还可以得到.
[例题剖析]
【例1】(1)求等差数列8,5,2,…的第20项;
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?
生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-1)×(-3)=-49.
师:好!下面我们来看看第(2)小题怎么做.
生:2由a1=-5,d=-9-(-5)=-4得数列通项公式为an=-5-4(n-1).
由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是这个数列的第100项.
师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个).
说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.
【例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?
例题分析:
师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?
生:只要看差an-an-1(n≥2)是不是一个与n无关的常数.
师:说得对,请你来求解.
生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n≥2)〕
an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p为常数,
所以我们说{an}是等差数列,首项a1=p+q,公差为p.
师:这里要重点说明的是:
(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,….
(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.
(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习
(1)求等差数列3,7,11,…的第4项与第10项.
分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙.
解:根据题意可知a1=3,d=7-3=4.∴该数列的通项公式为an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39.
评述:关键是求出通项公式.
(2)求等差数列10,8,6,…的第20项.
解:根据题意可知a1=10,d=8-10=-2.
所以该数列的通项公式为an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.
评述:要求学生:注意解题步骤的规范性与准确性.
(3)100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,请说明理由.
分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数.
解:根据题意可得a1=2,d=9-2=7.因而此数列通项公式为an=2+(n-1)×7=7n-5.
令7n-5=100,解得n=15.所以100是这个数列的第15项.
(4)-20是不是等差数列0,,-7,…的项?如果是,是第几项?如果不是,请说明理由.
解:由题意可知a1=0,,因而此数列的通项公式为.
令,解得.因为没有正整数解,所以-20不是这个数列的项.
课堂小结
师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)
生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥2);其次要会推导等差数列的通项公式an=a1+(n-1)d(n≥1).
数学等差数列教案 篇7
一、教学内容分析
本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
二、学生学习情况分析
教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。
三、设计思想
1.教法
⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。2.学法
引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
用多种方法对等差数列的通项公式进行推导。
在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学目标
通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。
五、教学重点与难点
重点:
①等差数列的概念。
②等差数列的通项公式的推导过程及应用。难点:
①理解等差数列“等差”的特点及通项公式的含义。②理解等差数列是一种函数模型。关键:
等差数列概念的理解及由此得到的“性质”的方法。
六、教学过程(略)
数学等差数列教案 篇8
[教学目标]
1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。
2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。
3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。
[教学重难点]
1.教学重点:等差数列的概念的理解,通项公式的推导及应用。
2.教学难点:
(1)对等差数列中“等差”两字的把握;
(2)等差数列通项公式的推导。
[教学过程]
一.课题引入
创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)
二、新课探究
(一)等差数列的定义
1、等差数列的定义
如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。
(1)定义中的关健词有哪些?
(2)公差d是哪两个数的差?
(二)等差数列的通项公式
探究1:等差数列的通项公式(求法一)
如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?
根据等差数列的定义可得:
因此等差数列的通项公式就是:,
探究2:等差数列的通项公式(求法二)
根据等差数列的定义可得:
将以上-1个式子相加得等差数列的通项公式就是:,
三、应用与探索
例1、(1)求等差数列8,5,2,…,的第20项。
(2)等差数列-5,-9,-13,…,的第几项是–401?
(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。
例2、在等差数列中,已知=10,=31,求首项与公差d.
解:由,得。
在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。
巩固练习
1.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。
2.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。
四、小结
1.等差数列的通项公式:
公差;
2.等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;
3.判断一个数列是否为等差数列只需看是否为常数即可;
4.利用从特殊到一般的思维去发现数学系规律或解决数学问题.
五、作业:
1、必做题:课本第40页习题2.2第1,3,5题
2、选做题:如何以最快的速度求:1+2+3+???+100=
数数中班教案系列11篇
教案课件在老师少不了一项工作事项,只要课前把教案课件写好就可以。 教案课件是建立教学框架的工具,必须认真书写,写教案课件要具备哪些步骤?经过搜索和整理,我们为大家呈上数数中班教案,更多信息请继续关注本网站!
数数中班教案 篇1
活动目标
1.在熟悉序数的基础上能根据提示,找到事物相对的位置。
2.在绘本情境中,看懂数学符号“→”,体验数学思考的乐趣。
活动准备
1.材料准备:有关绘本内容的PPT,任务卡(利用现有场景设置的带有箭头的任务卡)、图片(各种魔法帽)、魔法帽各若干。
2.经验准备:幼儿能熟练点数1~10。
活动过程
一、图片导入
1.出示PPT1(魔法城)。师:这是哪里?这是谁?(魔法师)
小结:欢迎来到魔法城,这里住着一位大魔法师,他办了一所魔法学校。
2.出示PPT2(小魔法师们在玩耍)。师:有几位小魔法师?
出示PPT3(小魔法师们按照大小个排队)。师:他们是怎么排队的?
小结:魔法学校里一共有十位小魔法师,他们按照从矮到高的顺序排好队,准备去参加魔法考试了。
(价值分析:通过魔法城图片的解读,帮助孩子们迅速地进入活动情境,并初步接触“→”)
二、魔法考试
(一)找钥匙
1.出示 PPT4(第一个考试——找钥匙,并添加“↓7”)。师:第一个考试是找钥匙,钥匙在最大的书架上的柜子里。
提问:钥匙在哪里?“↓7”是什么意思?
小结:“↓7”就是按照箭头的方向,从上往下数第7个。
2.出示 PPT5(小魔法师们找钥匙)。师:哪几位小魔法师找对了?
小结:箭头“↓”表示从上往下数,一共有5位小魔法师闯关成功。
(二)找魔法卡片
1.出示 PPT6(第二个考试——找卡片,并添加“↑6”)。师:大魔法师给出了第二个题目,谁看懂了?是什么任务呢?
小结:第二个考试是从下往上数,在第6个抽屉找9张卡片。
2.出示 PPT7(小魔法师们找卡片的情况)。师:他们错在哪里?
小结:箭头从哪里开始,就表示从哪里开始数数。先要从下往上数,找到第 6 个抽屉,还要在抽屉里找9张牌,才算完成任务。
(三)寻找魔法斗篷
1.出示 PPT8(两位小魔法师通关)。师:通过两轮考试,最后只剩下了两位魔法师,让我们为这两位小魔法师拍手庆贺吧。
2.出示 PPT9(第三个考试——找衣服,并添加“→10”)。师:请仔细阅读任务卡,获得卡片上的信息,把这些信息都用起来就能完成挑战了。(从左到右数,第10件衣服)
(价值分析:通过三个任务,有层次性地帮助孩子们了解并内化相关符号。第一次任务,在幼儿解读的基础上由教师来告知任务内容;第二次,主要由幼儿来解读,并用语言组织,说出任务内容;第三次,由幼儿解读任务,并自己寻找图片上的答案)
三、寻找魔法帽
1.过渡。师:小魔法师终于来到了魔法城,他为了感谢我们,从魔法城给我们寄来了几张卡片。
2.解读卡片信息(寻找魔法帽图片的任务)。师:请说说卡片上藏着的任务是什么。(请幼儿一张张解读卡片上的信息)
3.幼儿两人或是三人一组,持一张任务卡,去寻找魔法帽图片。
4.展示幼儿找出的图片(各种魔法帽),教师给每一位幼儿分发魔法帽。
(价值分析:结合现实的情境,运用任务卡,在真实的操作中帮助孩子们真正地了解本次活动中数学符号的含义,激发幼儿运用逻辑与关系,寻找礼物,并获得真实的礼物,给予幼儿活动中参与的满足感)
活动反思
首先,活动目标的达成情况较好。为了达成目标,我主要采取了三个措施:一是在PPT中,为了方便幼儿验证,在图示上加入了数字;二是故事情境中,安排了三个与目标匹配的任务,并且利用“找对”与“纠错”来帮助幼儿进一步理解;三是操作紧紧围绕目标,结合活动场地,提供了任务卡片,让幼儿在现实操作中去运用序数与箭头。
数数中班教案 篇2
教学目标
1.学习3 的组成,知道3分成两份有2种分法,知道哪两个数合起来是3,并能用较为清楚的语言表达分与合的过程。
2.在活动中,正确记录分合式,并会整理自己的操作材料。
教学准备
1.幼儿人手一份数量是3的图片。
2.教师用记录卡一张,小猫头饰一个,两个圈。
3.幼儿人手一张数字宝宝卡片放在口袋里。
教学过程
一、导入活动
教师出示小猫头饰,"看,谁来了呀?"
二、学习3的组成。
1、教师:今天小猫要邀请它的好朋友们小兔、小猴到家里来做客,还为它们准备了许多好吃的,它想把这些好吃的分别放在2个盘子里,可是它不知道怎么分才好,你们愿意帮助小猫来分一分吗?
2、出示记录卡,幼儿自主学习3的分成。教师:我们先来看看有些什么好吃的?有多少?(3只桃子,3个蘑菇,3条小鱼……)
教师:那怎样把数量是3的分成两份呢,请你动动脑筋,看谁想得办法多,并用数字把每次的分法记在下面的格子里。
3、幼儿操作,教师指导。
4、教师:你是怎么分的?请你用一句好听的话来说。
(我把3只桃子,1只桃子分给了小兔,2只分分给了小猴。)
(我把3条小鱼,1条小鱼分给了小兔,2条小鱼分给了小猴。)
教师与幼儿一起记录3可以分成1和2,幼儿一起学念。
教师:还有其他分法吗?
(把3个蘑菇,2个蘑菇分给了小兔,1个蘑菇分给了小猴。)
(把3根棒棒糖,2根棒棒糖分给了小兔,1根棒棒糖分给了小猴。)
教师:还有其他的分法吗?
教师小结:3分成两份有两种分法。幼儿一起念两种分法。
三、游戏学习3的组成。
1、教师:小动物们吃得可开心啊,吃饱了,他们邀请我们小朋友一起森林玩,你们愿意吗?森林很远,我们3人一组开火车去吧!
2、听音乐3人一组玩开火车的游戏
(1)教师:看!这是什么啊?(魔洞),这个魔洞只允许数字3过去,可我们小朋友也想过去怎么办呢?
(2)先变成数字宝宝
请你们先将自己的数字宝宝请出来,看看自己是数字宝宝几呢? 是数字3吗?那怎样才能让我们的数字变成3呢?
(3)幼儿讲述1和2组合,2和1组合
教师:那快点找到一个与自己合起来是3的朋友手拉手、排好队一起过魔洞吧!(教师检查)幼儿分组找到朋友过魔洞后,做一个胜利的表情或动作!
3、教师:刚才你们都很聪明,都能找到和自己合起来是3的好朋友一起过魔洞,真棒!请你来告诉大家,你是数字宝宝几,你找到的好朋友是几?
数数中班教案 篇3
一、说教材
教材分析:
《海底世界》是儿童学习与发展活动指南中班上册数学教材《数与量》主题中的一个分类计数活动。《纲要》中科学领域目标要求:“幼儿能从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣”。而游戏又是幼儿最喜爱的活动,它既能让幼儿主动参与,又能在游戏中获得知识经验,根据这一特点,我设计了以游戏“小鱼游”为主线来开展的《海底世界》这一数学活动。整个活动我注重由感知入手,从具体到抽象,从易到难,循序渐进将形象有趣的游戏贯穿活动全过程。把数学融入到游戏之中,让幼儿在游戏中理解数学的实际意义,并提高数能力。
学情分析:
4——5岁幼儿能根据物体的某些明显特征进行分类,但分类后说明分类标准又成了中班孩子进行分类活动的难点。《指南》建议:利用生活和游戏中的实际情境,引导幼儿理解数概念,通过实物操作引导幼儿理解数与数之间的关系。因此,运用计数法来表示分类标准,根据统计结果进行比较,然后逐步过渡到用语言描述分类标准。
活动目标
根据幼儿的年龄特点和实际情况,确立了认知、能力、情感等方面的目标:
1.认知目标:学习分类计数的方法,巩固对5以内数的认识,感知数物对应,尝试用圆点来表示数量。
2.能力目标:能用分类计数的方法来表现物体的数量。
3.情感目标:培养幼儿的动手、动脑能力,激发幼儿对数学活动的兴趣。
活动重难点:
根据目标,我把活动重点定位于:引导幼儿学习分类计数的方法。
活动难点是:能将数物对应,并用圆点表示数量。
活动准备:
海底世界背景图1幅;海底世界楼房大图1幅;乌龟图片1张、螃蟹图片2张、小虾图片3张、章鱼图片4张、小鱼图片5张;海底动物玩具和计数卡每小组1份。
二、说教法
本节活动中我运用到的教法有:游戏激趣法、情景感染法、操作法。
1、游戏激趣法:游戏的过程就是一个感知、体验的过程。在游戏的过程中小朋友们体验了在老师的引导、帮助、鼓励下获得成功的快乐。
2、情景感染法:本次活动,我非常重视情景创设,通过创设情景感染幼儿。如:活动中以“小动物们迷路了”情景引入,“送小小动物回家”这一环节幼儿的情绪高涨,兴趣非常浓厚。这种方法不仅为幼儿创设了生动活泼的生活情景,还为幼儿创设了宽松、自由、探索的学习环境。
三、说学法
根据《3—6岁儿童学习与发展活动指南》中科学领域的要求,我最大限度的支持和满足幼儿通过直接感知、实际操作和亲身体验来获得知识经验的需要,因此我的学法主要有:
1、多感官参与法:为了更好地突出幼儿的主体地位,整个活动通过让幼儿看一看、数一数、计一计、说一说等多种感官方式,帮助幼儿获得直接感知和经验。
2、快乐游戏法:游戏既是教法也是学法,又是幼儿最喜欢的活动方法,使幼儿在玩中学、学中玩,为幼儿提供一个轻松、愉悦的活动氛围。
此外,我还运用了操作法、讲述法和讨论法
四、说活动过程
整个活动我将遵循“教师主导、幼儿主体”的原则,抓住幼儿的兴趣是由强渐弱的特点,设计循序渐进环环相扣的环节,通过游戏激趣——展示交流——操作提升——游戏巩固——延伸体验这一流程来组织本次活动,因此,活动过程如下:
第一个环节,游戏导入。
教师带领幼儿做手指游戏《小鱼游》,引出活动的主题《海底世界》。
第二个环节,情景引入,学习分类计数。这个环节是活动的重点。
展示背景图“海底世界”激发幼儿兴趣。幼儿欣赏图画,教师提问:海底有哪些小动物?此问题的提出对幼儿学习分类做了铺垫。设置情景,请幼儿分别把背景图中的小动物送回家,引导幼儿准确使用量词,通过数数来感知每个代表队各有几名队员,再说出应该用数字几来表示,如:1只海龟、2只螃蟹等,并找出数字卡片贴至相应的小动物房间,这样有效培养了幼儿数物对应的能力。
第三个环节,通过比较感知动物数量,尝试用圆点来表示分类计数。
幼儿通过数数、计数、数物对应的方法进行比较,找出了数量最多的——小鱼代表队当裁判。同时,这个环节又是幼儿自主探索、感知数量的过程,为此,我启发幼儿尝试用圆点来表示数量,让他们通过比较来感知数的大小、多少。孩子们在轻松自然的游戏氛围中学习感知了5以内的数量,也培养了幼儿手眼协调点数的良好习惯。
第四个环节,幼儿操作,巩固练习分类计数,突破难点。教师巡回指导幼儿操作。
第五个环节,教师点评,结束活动。
本节活动以游戏贯穿始终,在情景中感知了5以内的数量,掌握了分类计数这一重点,通过操作活动让孩子们在材料的相互作用过程中进行探索学习,突破了活动难点,达到了活动目标。
数数中班教案 篇4
活动目标:
1.过对树叶的观察、比较、对应,激发对周围事物的关心。
2.养语言概括力,能清楚地表达自己的意见。
活动准备:
1.叶标本四种。
2.收集的各种树叶若干。
活动过程:
1.(出示树叶标本)你们看,这是什么呀?这些树叶是从哪里来的呀?
老师这有许多离开了树妈妈的小树叶,我们来和小树叶做朋友,好吗?
请小朋友在箩筐里找一片树叶和自己做好朋友。
让我们一起来认识一下你的好朋友,看看它长得什么样?是什么颜色的?摸上去是什么感觉?
你们说小树叶离开了妈妈会怎么样呢?
那我们可以帮小树叶做些什么呢?
2.一起来帮你的好朋友小树叶找妈妈!请小朋友找找小树叶的妈妈在哪里,它的妈妈是谁?(小朋友分散找树妈妈)
3.小朋友真能干,都帮小树叶找到了妈妈,那到底对不对呢?我们再一起来找一找、认一认,好吗?刚才有哪些小朋友找的是这片小树叶的妈妈?它的妈妈在哪里?我们一起去看看。
是不是这个呀?为什么是呀?他们有哪些地方一样?让我们来比一比。
那我们把小树叶送回家吧!
接下来我们再去找哪片小树叶的妈妈呢?
4.我们小朋友真能干,都帮小树叶找到了妈妈,还把他们送回了家,我们认识了四种树叶,你们发现了吗?有一个有趣的现象,秋天很多树叶都变黄掉落了,但我们今天认识的树叶不但没有掉,还越来越绿了,这是怎么回事呀?今天请小朋友回家找答案,下次来告诉大家。
数数中班教案 篇5
一、说教材:
幼儿的一日生活中的各环节都渗透着数学知识,如:早晨入园时可以问问幼儿:“今天几点起床的?几点上幼儿园的?”又如,在幼儿做操排队时,问问幼儿:“谁排在第一个、第二个、第三个??”让幼儿形成了序数的概念;分午饭时,碗与筷子的一一对应、小朋友的人数与所搬的小椅子的个数的对应与比较,既提高了幼儿的点数能力,又将对应、比较知识融合其中。生活中的数学教育随处都有,而这些活动,都离不开数字。
根据幼儿的认知,理解水平,我把本次活动的目标定为:
二、说难点,重点
难点:中班幼儿的思维仍带有直觉行动性,主要依靠动作进行,需要亲身体验,在操作探索中发现事物的特征。他们对数字的认识仅仅停留在“每个数字的形状不同”这一点上,数字究竟表示什么意思,在我们的生活中又有什么用处,幼儿的概念是模糊的。
重点:在幼儿的眼中,“数字”与“图画”没有太多的区别,所以,常常有幼儿把“5”写成了“ζ”,把“9”画成“”像一个气球。
教师的准备工作:
(1)一座没有门牌号的楼房,分别住着小鸡,小鸭,小狗,小羊,小牛等十个小动物。
幼儿的准备工作:请幼儿收集写有数字的常见物品或图片。(手表,闹钟,日历,温度计等。
根据新《纲要》中要求,让孩子们在情景中学习,在探索中学习。
带领幼儿来到“数字世界”,请幼儿注意观察,这些物品有一个共同的特征,是什么?教师用
神秘的语调说:“小朋友,今天,老师带你们来到了一个神秘世界,这里的东西都有一个共同的特点,请你找一找,是什么?”引导幼儿寻找数字,发现钟,表,日历,称等物品上都有数字。这样问题导入,一下子就能调动孩子的兴趣。这一环节大约进行4分钟。
请幼儿猜想物品上数字的意义及他们的功用。教师说:“刚才,我们逛了数字世界,发现这里的东西上都有数字,请你们想一想,它们有什么用处呢?”教师逐一取出钟,日历,称等物品,请幼儿分别说一说他们的用处。
请幼儿寻找生活中的数字。教师说:“原来,数字有这么大的用处!那么,在我们的生活中,除了我们今天收集来的这些物品上有数字外,还有哪些物品上也有数字呢?”请幼儿自由发言,谈谈他们还在那里见到过数字,有什么用处。
请幼儿为空白的物品添上数字。
数数中班教案 篇6
中班语言活动数数歌教案(附教学反思)主要包含了活动目标,活动准备,活动过程,教学反思等内容,跟手诗歌中量词的准确运用,在掌握诗歌基本格式的基础上创编诗歌,适合幼儿园老师们上中班语言活动课,快来看看数数歌教案吧。
活动目标:
1.跟手诗歌中量词的准确运用。
2.在掌握诗歌基本格式的基础上创编诗歌。
3.认读重点字词:三株草、七条河、九座山。
4.理解诗歌所用的比喻手法,学会有感情地朗诵诗歌。
5.萌发对文学作品的兴趣。
活动准备:
幼儿准备:小图书人手一册。
教师准备:大图书、温馨的音乐。
活动过程:
一、游戏活动导入。
游戏:我会说,准确说出量词。
二、自由阅读。
1.幼儿翻阅小读书,自由阅读诗歌,教师适时引导。
图中有些什么?引导幼儿用数量词来表述。
2.幼儿结伴阅读,也可相互小声讨论画面内容,教师观察指导。
三、大图书阅读。
1.教师出示大图书和幼儿一起阅读。
(1)仔细看图上有什么?教师引导幼儿掌握合适的量词。
(2)幼儿看大图书,听教师朗诵诗歌。
2.引导幼儿找出诗歌中的规律。如:整首诗歌是用从一到十的数字为每句的开头,每两个数字说一个物体等。
3.教师和幼儿一起朗诵诗歌,注意诗歌中两次的运用。
四、体验创造
1.节奏朗读、
教师和幼儿一起用不同方式打节奏朗诵诗歌。如用拍手、跺脚,打响指等方式配合朗读。
2.看图仿编。
幼儿在框中任选一张图片,根据图片内容按诗歌中的句式来仿编。如。拿到画有瓜的图片可说:一个瓜,两个瓜,瓜儿甜甜我爱它。
五、结束活动。
幼儿有序收书,整理物品。
教学反思:
一节活动下来,感觉幼儿参与性很高,课件的运用、图文结合让幼儿在短时间内就记住了诗歌,并朗读下来,整节活动幼儿思维活跃,紧紧跟随老师的思路。不足之处就是觉得老师说的有点多。在今后的教学活动中要注意教师指导语言要精练,真正做到引导。
数数中班教案 篇7
活动目标:
1、使孩子们同过观察,比较,表演,游戏等活动认识1――9各数的相邻数。
2、通过学习相邻数,进一步了解一个数与相邻两个数之间的多1和少1的关系,进一步掌握数序。
3、在情景化的活动中,孩子们体验表演的乐趣,对美的欣赏,对数的兴趣。
活动准备:
1、绳子,大块的布,若干小泡沫垫子;小草,小花,用伞做的蘑菇(每个花和蘑菇上有一个数字),地毯。
2、纸做的蝴蝶翅膀,蝴蝶触角,若干数字;数字娃娃的头饰。
3、小朋友会玩游戏《蝴蝶找花》。
活动过程:
一、老师、小朋友一起布置数字王国。
1、把小泡沫垫子拼成t型舞台,把绳子牵起来,遮上布,分成表演的前台和后台。地毯在地上,在空地上撒上花和草,放上伞做的蘑菇成草地。
2、大家合作给蝴蝶翅膀涂上漂亮颜色。
3、小朋友们选择角色进行装扮:蝴蝶戴上翅膀,挂上数字;数字娃娃戴上头饰,剩下的孩子做数字王国的客人。
二、小朋友去数字王国做客。
师:今天我们要去数字王国做客,数字王国里做多的是什么呀?(数字)是啊,每个孩子一定要有一个数字,才能进入数字王国的。
三、小朋友和数字娃娃见面。
师:咦,数字娃娃怎么不见呢?我们一起喊喊吧!
1、数字娃娃(2)从布景后跳出来:“我在这里呢!”小朋友热情的和数字娃娃打招呼。
2、数字娃娃(2)说:“接下来出来的是我的邻居,他的数字比我的数字少一个,你们猜猜他是谁呀?”小朋友说对了,数字娃娃(1)就出来。
3、老师:数字娃娃(2)还有一个邻居,他的数字比数字娃娃(2)多一个,他是谁呀?(小朋友说对了,数字娃娃(3)就出来)1和3是2的邻居,也可以说1和3是2的相邻数)。
4、依照此方法,1――9的数字娃娃有趣的出来。
5、给数字娃娃按数序排好队。
6、请数字娃娃和小朋友坐在一起,不过数字娃娃的数字和小朋友脸上的数字是相邻数就可以坐在一起。
四、观看蝴蝶的时装表演。
1、师:今天为了迎接我们的到来,蝴蝶们还准备了一场时装表演呢!最先出场的是3号蝴蝶,大家欢迎!
2、在动听的音乐声下,3号蝴蝶在t型台上表演。
3、师:接下来出场的蝴蝶身上的数字和3号蝴蝶身上的数字是相邻数,小朋友说他们是谁呀?(2号和4号,可以反复强调2比3少一个,4比3 多一个)现在我们用热烈的掌声欢迎2 号和4号蝴蝶出场!
4、依照此方法1――9号蝴蝶都出场。
五、小朋友和数字娃娃给蝴蝶献花。
1、小朋友、数字娃娃、蝴蝶手牵手边成一个大圆圈。
2、师:我们的蝴蝶表演的这么好,我们应该怎么表示呢?(献花)我们到草地上采一些漂亮的花送给它们吧!花上面的数字和蝴蝶身上的数字是相邻数,那朵花才能送给蝴蝶的
3、小朋友、数字娃娃采花,鲜花。(把花贴在蝴蝶的身上)
六、音乐游戏《蝴蝶找花》
1、交代游戏规则:大家一起随音乐自由表演,蝴蝶到处飞舞,唱到一半的时候,每只蝴蝶做一个花心,身上的数字和花心的数字是相邻数的小朋友,数字娃娃就做花瓣,手牵手把花心围起来。音乐完了,就从头再玩。
2、大家玩游戏。
七、结束。
1、、放打雷的音乐。
师:呀,要下雨了,我们到蘑菇下躲雨吧。免的挤在一起,你身上的数字和蘑菇上的数字是相邻数,你就进去躲。
2、大家都躲在蘑菇的下面。(放下雨的音乐声)。
3、关掉音乐。
师:看,雨停了,我们也该回家了,和蝴蝶、数字娃娃再见吧!
4、小朋友和数字娃娃、蝴蝶说再见,自由走出数字王国。
幼儿园中班数学活动――这是椭圆(图形)
幼儿园中班数学教案――这是椭圆(图形)
有益的学习经验:
认识椭圆,比较圆与椭圆的相同与不同之处。
准备:
1.塑料和纸圆(便于折叠用)、椭圆片,每个幼儿各一片,圆的半径与椭圆的短半轴相等,纸的和塑料的圆与椭圆一样大。
2.细铁环1个。
3.黑板上画一个圆(与细铁环直径相等),一个椭圆,并分别标上圆心和椭圆的中心。
活动与指导:
1.出示细铁环,让幼儿说出它是什么样的图形,接着引导幼儿看黑板上的圆,使铁环与圆重合,使幼儿明白这两个圆一样大。启发幼儿观察圆心,画几条半径,用小棒量半径给幼儿看,让幼儿懂得一个圆的每一条半径都是一样长的。
2.把细铁环拉或压成椭圆,并使它与黑板上的椭圆重合。告诉幼儿这个圆形叫椭圆。画出椭圆的长轴和短轴,并且量给幼儿看,长轴和短轴不相等。
3.发给幼儿塑料和纸的圆以及椭圆。让幼儿先看一看,摸一摸塑料圆和椭圆,再把它们重叠起来,找出它们之间的不同处。
4.让幼儿把纸的圆和椭圆分别对折和四折,看看它们有何不同。
5.小结:圆心到圆上各点的距离(半径)等长,椭圆中心到椭圆上各点距离不一定相等。
数数中班教案 篇8
一、 教学目标
让幼儿知道10以内单、双数的具体内容,理解单双数的含义。
二、 教学准备
1—10的数字卡片,事先画好两个大圈。
三、教学过程
(一)幼儿随《我爱我的幼儿园》音乐进教室。
师:小朋友,我们该进教室啦,边走边随音乐做动作。
小朋友,今天有几位叔叔阿姨来我们班做客了,和叔叔阿姨打个招呼好不好?“嗨!大家好!”真棒!我们班的小朋友最有礼貌了。
(二)以游戏“找朋友”引出活动。
师:今天来了这么多新朋友,正好我们玩的游戏也是“找朋友”,小朋友们还记得怎么玩吗?先和老师玩一遍好吗?小朋友们我问你们,你们想不想和后边的叔叔阿姨交个朋友?那我们先数一数来了几位叔叔阿姨?噢,5位,来,上来5位小朋友,你们先看一看你喜欢哪位叔叔阿姨,就走到那位叔叔阿姨的跟前,和叔叔阿姨交个朋友,来我们一起唱:“找呀找呀 ”,真好,你们都找到了一位新朋友。现在都回到自己的座位上我们接着玩下面的游戏。
(三)认识单数双数。
1、出示数字卡片1—10,玩“找朋友”游戏。
师:我们一起读卡片好吗?
现在我们来玩找朋友的游戏,首先由一名小朋友抽一张数字卡
片,抽到几就上来几位小朋友玩找朋友的游戏,如果有小朋友没有找到朋友,我们就把这个数字贴在黑板的左边,如果所有的小朋友都找到朋友了,我们就把它贴到黑板的右边,以此类推,直到把1—10的数字都抽完。
2、认识单双数。
师:小朋友们一起读一读,黑板的左边都有几?(1、3、5、7、
9)像这样两个两个的找朋友,总能剩下一个小朋友的数字,我们给它取个名字叫单数,像右边的2、4、6、8、10,都能找到好朋友的数字叫双数,跟老师一起读“单数”、“双数”(反复几次)。
3、巩固练习
(1)师:现在我指哪个数字请一位小朋友来告诉我它是单数还是双数,看哪位小朋友回答的又快又对!
(2)玩“小动物找家”游戏。
每个小朋友头戴数字卡片,左边的圈代表单数,右边的圈代表双数,音乐响起,幼儿围成一个大圈,随着音乐绕事先画好的两个圈小步慢跑,音乐停幼儿根据自己头上的数字,跑到相应的圈内,站错圈的小朋友表演一个节目,幼儿互相交换卡片后继续玩。
(四) 活动结束。
师:现在头戴单数的小朋友排成一队,像小鸟一样飞回活动室,头戴双数的小朋友排成一队像小青蛙一样蹦回活动室,游戏自然结束。
数数中班教案 篇9
活动目的:
1、进一补学习问答式的对唱,体验歌曲中小兔与鼓对话的幽默情趣。
2、借助兔子和小鼓的图片分清角色,并按角色较准确的接唱。
3、在结伴表演唱时,寻找双方都舒适的敲击方式和力度,体验与同伴进行身体接触性交流的快乐。
活动准备:
1、兔子、小鼓图片各一张,画有五个鼓棰的图片两张。
2、幼儿座位排成双马蹄形,男女面对坐。小鼓一面。
活动过程:
一、幼儿学习节奏型。
1、出示鼓,敲击节奏型。教师:这是什么?听听它是怎么说话的?
2、幼儿跟随教师用语音练习节奏型,琴声自然伴奏。
二、幼儿看图学习第一段歌词。
1、教师出示小兔的图片。教师:看,谁在打鼓呀?
2、教师指图,带领幼儿完整的念第二段歌词,琴声轻轻的伴奏。
三、幼儿看图学习第二段歌词。
1、教师出示小鼓图片,引导幼儿看图猜测歌词。教师:小兔学打鼓,小鼓怎么样呢?
2、教师指图,带幼儿完整地念第二段歌词,琴声轻轻的伴奏。
四、幼儿看图学习第三段歌词。
1、教师出示五个鼓棰图片。
2、教师:你们数一数,小兔敲了几下鼓?
3、教师:小鼓也不生气了,它也要敲一敲兔子,再数数是几下?
五、幼儿完整的学唱《数数歌》。
1、教师边指图边演唱。教师:我把他们的故事唱给你们听。仔细听,什么地方是兔子唱?什么地方是小鼓唱?
2、幼儿完整的跟唱《数数歌》。
六、教师退出,幼儿分角色表演唱。
1、教师与幼儿分角色表演唱。
2、教师指导女孩子扮演兔子,男孩子扮演小鼓分角色演唱。
3、教师引导幼儿发现问题,寻找解决策略。教师退出,幼儿互换角色表演唱。
数数中班教案 篇10
一、说设计意图:
本次活动尝试打破传统集体教学的模式,把幼儿数学活动与游戏活动进行了整合。根据《纲要》中“能从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣……”对数学活动的要求,我们为幼儿创设了一个有准备的环境,把抽象、枯燥的数学内容变成有趣的游戏活动,使幼儿在轻松、自由的环境中主动的去探索学习。
针对本班幼儿对数量认识水平,特确定以下活动目标:复习1—10数字的认识,知道数字能表示相应物体的数量,培养幼儿对计算活动的兴趣,能愉快地参加游戏活动的习惯。此次活动也注重幼儿的情感体验,使幼儿在心情愉悦的情况下,不知不觉中主动的学习,体验数学活动的快乐,并感受集体活动的乐趣。
二、说活动目标:
1、让幼儿体验友爱、互助的快乐,在一个有和谐的环境中,使幼儿能够主动学习,培养幼儿对数学活动的兴趣。
2、认识数字1—10,知道数字能表示相应物体的数量。
三、说活动分析:
重点:知道数字能表示相应的物体的数量。
难点:用完整的语言表达清楚数与物体之间的'关系。
四、说教法与学法
根据幼儿的学习情况,本次活动我运用了直观法、提问法、游戏法、操作法等
教学方法,特别是游戏法,是孩子最喜爱的,游戏能增强幼儿的参与兴趣。
五、说学法:
整个过程,我遵循由浅到深的教学原则,层层递进,,幼儿将运用操作法、游戏法等学习方法。
六、说设计思路:
在本次活动中,我依据本班幼儿的特点,设计了几个环节:①.导入活动。②.基本活动。③.结束活动。
在第一个环节,导入活动中,教师出示数字卡片,让幼儿认识数字,本环节中,主要是回忆起数字。
在第二个环节,基本活动,在认识了数字的基础上,根据实物匹配相应的数字,感知数字能表示相应的实物,通过提问法,启发幼儿在生活中还有什么东西可以也用数字来表示呢。然后根据数字拍手游戏让幼儿运用多种感官感知数,然后通过找朋友的游戏让幼儿感知数物相对应的关系,让幼儿体验数学活动的乐趣。最后通过幼儿动手操作给实物找朋友,小圆点找朋友的连线活动得以巩固。
数数中班教案 篇11
活动目标
1、通过观察、交流与讨论等活动,感知周围事物的不断变化,知道一切都在变。
2、激发幼儿乐于探索科学实验的乐趣。
各位评委,各位老师大家好!
今天我说课的题目是中班数学活动《找一找说一说》这个活动来自山东省编教材中班上册《我的新班》这一主题。自己的创设与主题紧紧相扣,并且与幼儿的生活密切相关,这一课程即培养了幼儿的想象力,创造力,又培养了幼儿的思维能力,还增强了幼儿简单数字的运用和识记能力。
下面,我将从说教材,说教法,说学法,说教学过程,说教学反思这几个方面来进行说课。
一说教材
1教材的内容及其特点幼儿园数学是一门系统性、逻辑性很强的学科,有着自身的特点和规律,新《纲要》提出“数学教育必须要让幼儿能从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣;教师要引导幼儿对周围环境中数、量、形、时间和空间等现象产生兴趣,建构初步的数概念,并学习用简单的数学方法解决生活和游戏中某些简单的问题。”由此可见生活化、游戏化已经成为构建数学课程最基本的塬则在新学期的开始,幼儿就有了一定的独立能力,他们更多愿意独立的做事情,并且感到自豪。经常听到他们说杯子是做什么用的?衣服又是做什么用的?冬天的衣服是什么样子的?夏天的衣服又是什么样子的?等等。因此,我设计了这堂《找一找说一说》的教学活动,希望孩子们在轻松愉快的游戏活动中和积极参与操作的过程中获得相关知识。
活动目标:
1、复习4以内的点数,或根据物品用途的不同,学会简单的分类。
2、能用自己喜欢的颜色,学习用花,草等进行简单的装饰。
3、会看标志找到自己的用品,不随便乱用、错拿,懂得讲卫生。
活动重点难点:
重点:复习4以内的点数,或根据物品用途的不同,学会简单的分类。
难点:会看标志找到自己的用品,不随便乱用、错拿,懂得讲卫生。
活动准备:
事先剪好的叁角形、圆形、正方形卡片若干,彩笔每人一盒、幼儿用书。
二说教法
在课前我认真分析教材,做好挂图,准备好所有的教具。以培养孩子“主动学习,逻辑推理,创造思考,解决问题”的能力为主旨,活动以“游戏式数学”为精神主轴,增强数学学习的乐趣,让孩子在轻松,快乐的情景下展开与数学的第一类接触,在学习历程中积累足够的操作经验,构建完整的数理概念,让孩子更喜欢数学并养成主动探索,追求知识的兴趣和良好的品质。因此我将采用以下教学方法:
1游戏法我将通过组织有规则的游戏来引导幼儿学习。游戏法符合幼儿喜好游戏的天性,能将教学目标,教学内容和教学兴趣结合起来,让幼儿在感兴趣的游戏中轻松的学习。
比如说我把小朋友自己用的杯子,饭盒,毛巾等小物品都全部打乱,让小朋友自己去找到自己的东西并把它放回塬处,这样教会他们不乱放东西,并且养成良好的习惯。
2动手操作法我让幼儿找自己的用品,让他们找到以后在向我介绍这些用品是做什么用的?他们是怎样找到的?再让幼儿说说自己的标志是什么。这样既发展了幼儿的观察力,学习能力,认识能力以及思维能力,又促使幼儿养成良好的生活习惯。
我先做示范,画几多简单的花纹,让小朋友们模仿,然后在让他们自己动手动脑设计标志,贴在自己的用品上,防止拿错等。
三说学法
整个活动我以幼儿为主体,变过去的“要我学”为现在的“我要学”,让幼儿在看看、听听、想想、说说、玩玩的轻松氛围中掌握活动的重点、难点,幼儿运用了讨论谈话法、游戏联系法等学习方法。讨论谈话法:幼儿在讨论、谈话中能无拘无束地说出自己的理解与看法,是幼儿练习说话的好机会。。游戏练习法:幼儿在游戏中,边游戏边联系故事中的有些句子,正体现了《幼儿园教育指导纲要》提出的“语言能力是在运用过程中发展起来的。”
四活动程序
1、阅读幼儿用书,复习4以内的点数,会进行简单的分类。
(1)看看图上有什么?说说这些物品有什么用?(喝水用的、擦手用的、睡觉用的、放衣服用的)(2)数一数每种物品有多少?
2、照照自己的用品在哪里?
告诉来是你的衣帽橱、小床、杯子、毛巾、小椅子都在哪里?你是怎么找到的?请幼儿说一说自己的标志是什么?知道标志能帮助我们很快找到自己的用品,不易拿错。
3、动手设计标志。
激发幼儿制作的兴趣。动物学校也开学了,小动物们总是拿错用品,这样乱用物品很不卫生,他们想请小朋友帮它们一起设计用品上的标志,你们愿意吗?我们设计什么样的图案呢?幼儿自由讨论。
在幼儿讨论的基础上,老师示范几种简单的花纹画法,如圆形花瓣、长形花瓣等。
幼儿动手在已准备好的图形卡片上,进行大胆的设计,老师巡回指导。
4。展示作品,幼儿互相欣赏。
鼓励幼儿大胆向同伴介绍自己的作品,并能讲出他人作品的可取之处。
小结:小动物收到标志牌很高兴,以后它们再也不能用错物品了,谢谢小朋友们!
提醒幼儿记住自己的标志,知道使用完杯子、毛巾后,要放回塬处。会轻拿轻放,爱护自己的用品。
教学反思:
在整个活动中利用幼儿的好奇心引起他们的学习兴趣,并且达到了预期目标,效果非常好,甚至超过了预期效果。整个活动既让幼儿体验了实验成功时的快乐、增强了自信心,也知道了保护环境的必要性,同时也培养了幼儿的观察力及动手操作的能力,这个活动在中班开展是非常有意义和有必要的。